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Abstract. In this paper, we apply two methods which are the arbitrary nonlinear parameters and the
exponential rational function method to construct many new exact solutions of the higher-order nonlin-
ear partial differential equations, namely, the higher-order nonlinear Schrödinger (HNLS) equation. The
solutions obtained by the current methods are generalized periodic solutions. The shape of the solutions
can be well controlled by adjusting the parameters of the system. Optical soliton solutions obtained can
be used to transport information in the telecommunication domain. It also comes from this work that the
behavior of this HNLS equation may be easily studied by means of the phase plane plot which is the best
tool to predict some solutions.

1 Introduction

Since the first observation of a soliton by John Scott Russell in 1834 [1], this type of solitary wave with exceptional
stability has fascinated scientists; primarily because of their spectacular experimental properties and their undeni-
able elegances, but also due to their mathematical properties. Soliton research has been conducted in diverse fields
such as meteorology, nonlinear electrical lines, biology, cosmology and optical fibers, to cite a few. Optical solitons
have promising potential to become principal information carriers in telecommunication due to their capability of
propagating a long distance without attenuation and changing their shapes. The pioneering works of Hasegawa and
Tappert [2], who predicted solitons theoretically, and Mollenauer, Stolen, and Gordon [3], who observed them exper-
imentally, made solitons a realistic tool for this cause. In a single mode fiber, the pulse envelope function satisfies a
nonlinear Schrödinger (NLS) equation [4] in the following form:

iEz − α1Ett − α2|E|2E = 0, (1)

where z is the propagation direction of the pulse, t is the retarded-time variable, E = E(z, t) is the pulse envelope
function, α1 and α2 are constants related to the group velocity dispersion (GVD) and the self-phase modulation (SPM),
respectively. On the other hand, in the subpicosecond or femtosecond regime, the NLS equation has been claimed to
be inadequate since the optical pulse becomes shorter [5,6]. Thus, it becomes absolutely necessary to include the third-
order dispersion (TOD), the self-steepening (SS), and the stimulated Raman scattering (SRS) as considered in [7]

Ez = i(α1Ett + α2|E|2E) + ε[α3Ettt + α4(|E|2E)t + α5E(|E|2)t]. (2)
a e-mail: Aly742001@yahoo.com (corresponding author)
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Equation (2) is a higher-order nonlinear Schrödinger (HNLS) equation. In this equation, E is the slowly varying
envelope of the electric field, the subscripts z and t are the spatial and temporal partial derivatives, and α1, α2, α3,
α4, and α5, are the parameters related to the GVD, the SPM, the TOD, the SS, and the SRS, respectively. Now, if
ε = 0, eq. (2) reduces to the NLS equation. This higher-order equation was derived by Kodama et al. [8,9] and using
perturbation theory they treated all higher-order terms as perturbation to the NLS soliton. The main advantage of
eq. (2) is that the self-frequency shift is a potentially detrimental effect in soliton communication systems because
power fluctuations at the source translate into frequency fluctuations in the fiber through the power dependence of
the soliton self-frequency shift and hence into timing jitter at the receiver [10].

Our objective here is to find new exact solutions of this equation. Over the last few years, finding the appropriate
solutions of nonlinear equations have been the subject of intense investigation. In this context, several methods have
been proposed by researchers in the literature. We can list the projective Riccati equation method [11], the Backlund
transformation, inverse scattering method [12], the Hirota bilinear forms, the pseudo spectral method, the tanh-sech
method [13], the Darboux transform method [14], the Painlevé’s singularity structure analysis [15], the homotopy
perturbation method [16], the variational iteration method [17], the inverse scattering transform method [18], the
(G′/G)-expansion method [19], the Hirota’s bilinear method [20], the exp-function method [21], the exp(−φ(ε))-
expansion method [22], the modified simple equation method [23], the exponential rational function method [24,25],
the semi-inverse variational principle [26], the Bilinear representation [27], the generalized tanh-coth method [28], the
modified extended direct algebraic method [29], the auxiliary equation method [30], and so on [31–48].

The rest of the paper is structured as follows: In sect. 2, we discuss the bifurcations of phase portraits of the model
studied. In sect. 3, we find the solutions of the model using arbitrary nonlinear parameters [49] and the exponential
rational function method. The graphical representations are given in sect. 4. Finally, sect. 5 concludes the work.

2 Phase portraits of the model

We consider the one-dimensional HNLS equation which reads,

Ez = i(α1Ett + α2|E|2E) + ε[α3Ettt + α4(|E|2E)t + α5E(|E|2)t]. (3)

We assume a solution given by the following expression:

E(z, t) = A(ξ)eiθ, (4)

where ξ = δt + uz and θ = βt + rz; A(ξ) is a real amplitude function, δ, u, β and r are real parameters. Substituting
eq. (4) into eq. (3) and separating real and imaginary parts, we obtain

Im : −(εα4β + α2)A3 + (r + α1β
2 + εα3β

3)A − (α1δ
2 + 3α3εβδ2)A′′ = 0, (5)

Re : (u + 2α1βδ + 3α3εβ
2δ)A′ − (3εα4δ + 2εα5δ)A2A′ − εα3δ

3A′′′ = 0. (6)

It is possible to integrate eq. (6) because it has only first- and third-order derivatives. We then have

−u + 2α1βδ + 3α3εβ
2δ

εα3δ3
A +

α4 + (2/3)α5

α3δ2
A3 + A′′ = 0. (7)

Comparing eqs. (7) and (5) the parameters β and r can be evaluated in the form

β = −3α1α4 + 2α1α5 − 3α2α3

6εα3(α4 + α5)
, (8)

and

r = −8β3δε2α2
3 + 8β2δεα1α3 + 2βδα2

1 + 3βεuα3 + uα1

δεα3
. (9)

Therefore, eqs. (5) and (7) have similar form and we concentrate ourselves on eq. (5) from which the first integral is
obtained by multiplying it by A′ and integrating the resulting equation:

A′2 − r + α1β
2 + εα3β

3

α1δ2 + 3α3εβδ2
A2 +

εα4β + α2

2(α1δ2 + 3α3εβδ2)
A4 = 2C, (10)

where C is the constant of integration. Let us mention that, eq. (10) can be also derived from the auxiliary Hamiltonian
˜H and lagrangian ˜L defined by

˜H =
1
2
m(A)[A′2 + U(A)] (11)
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and
˜L =

1
2
m(A)[A′2 − U(A)]. (12)

This Hamiltonian may be viewed as the energy of a particle with an effective mass m(A) = 1 moving in the effective
potential

U(A) = −r + α1β
2 + εα3β

3

α1δ2 + 3α3εβδ2
A2 +

εα4β + α2

2(α1δ2 + 3α3εβδ2)
A4 − 2C. (13)

It is obvious that eq. (5) can be transformed into the following equivalent autonomous dynamic system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

dA

dξ
= A′,

dA′

dξ
=

[

− εα4β + α2

α1δ2 + 3α3εβδ2
A2 +

r + α1β
2 + εα3β

3

α1δ2 + 3α3εβδ2

]

A,

(14)

where solutions are the fixed points of the system. The behavior of this system may be easily studied by means of
the phase plane plot which is the best tool for observing the evolution of the variable A. The number of equilibrium
points, and consequently the dynamic of this system depend on the sign of the quantity

F0 =
r + α1β

2 + εα3β
3

εα4β + α2
, (15)

with εα4β + α2 �= 0.
For example, if F0 > 0, the system (14) admits three equilibrium points: (0, 0) and (0,±Feq), with

Feq =

√

r + α1β2 + εα3β3

εα4β + α2
. (16)

However, when F0 < 0, the system admits only the equilibrium point (0, 0). By the qualitative analysis, we obtain the
different topological phase portraits shown in fig. 1 and the corresponding effective potentials in fig. 2. We observe
that by changing the values of the constants αi (i = 1, 2, . . . , 5), the behavior of the system studied change and
consequently, new solutions are obtained.

3 Exact solutions of eq. (3)

3.1 Cnoidal and hyperbolic wave solutions

In this section, we shall discuss the construction of some of the physically interesting periodic solutions. These solutions
will depend of the value of the constant C.

Case 1.

We set C = − (r+α1β2+εα3β3)2m2

(α1δ2+3α3εβδ2)(εα4β+α2)(1+m2)2 and we get the solution of eq. (10) as

A(ξ) =

√

2(r + α1β2 + εα3β3)m2

(εα4β + α2)(1 + m2)
sn

[
√

− r + α1β2 + εα3β3

(α1δ2 + 3α3εβδ2)(1 + m2)
ξ,m

]

(17)

and the solution of (3) is

E(z, t) =

√

2(r + α1β2 + εα3β3)m2

(εα4β + α2)(1 + m2)
sn

[
√

− r + α1β2 + εα3β3

(α1δ2 + 3α3εβδ2)(1 + m2)
(δt + uz),m

]

ei(βt+rz). (18)

Now, if m → 1, sn(x, 1) = tanh(x) and the previous solution takes the following form:

E(z, t) =

√

r + α1β2 + εα3β3

2(εα4β + α2)
tanh

[
√

− r + α1β2 + εα3β3

2(α1δ2 + 3α3εβδ2)
(δt + uz)

]

ei(βt+rz). (19)
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Fig. 1. Different phase portraits of the HNLS equation (2). Panel (a) is obtained for α1 = 1.0, α2 = −2.0, α3 = 3.0, α4 = 1.0,
α5 = 0.6, ε = 0.5, δ = 2.0 and u = 3.0. Panel (b) is obtained for α1 = 1.0, α2 = −0.5, α3 = 2.0, α4 = 0.1, α5 = 6.0, ε = 0.5,
δ = 2.0 and u = 3.0. Panel (c) is obtained for α1 = 1.0, α2 = 2.0, α3 = −3.0, α4 = −1.0, α5 = −6.0, ε = 0.5, δ = 2.0 and
u = 3.0. Panel (d) is obtained for α1 = 1.0, α2 = 2.0, α3 = −3.0, α4 = −1.0, α5 = 6.0, ε = 0.5, δ = 2.0 and u = 3.0.

Case 2.

We set C = − (r+α1β2+εα3β3)2(1−m2)
(α1δ2+3α3εβδ2)(εα4β+α2)(2−m2)2 and we get the solution of eq. (10) as

A(ξ) =

√

2(r + α1β2 + εα3β3)
(εα4β + α2)(2 − m2)

dn

[
√

r + α1β2 + εα3β3

(α1δ2 + 3α3εβδ2)(2 − m2)
ξ,m

]

, (20)

and the solution of (3) is

E(z, t) =

√

2(r + α1β2 + εα3β3)
(εα4β + α2)(2 − m2)

dn

[
√

r + α1β2 + εα3β3

(α1δ2 + 3α3εβδ2)(2 − m2)
(δt + uz),m

]

ei(βt+rz). (21)

Now, if m → 1, dn(x, 1) = sech(x) and the previous solution takes the following form:

E(z, t) =

√

2(r + α1β2 + εα3β3)
εα4β + α2

sech

[
√

r + α1β2 + εα3β3

α1δ2 + 3α3εβδ2
(δt + uz)

]

ei(βt+rz). (22)
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Fig. 2. Effective potential U(A) of the HNLS equation (2). These figures are obtained with the same parameters as in fig. 1.
Panel (a) corresponds to phase portrait fig. 1(a); Panel (b) corresponds to phase portrait fig. 1(b); Panel (c) corresponds to
phase portrait fig. 1(c); Panel (d) corresponds to phase portrait fig. 1(d).

Case 3.

We set C = − (r+α1β2+εα3β3)2(m2−1)m2

(α1δ2+3α3εβδ2)(εα4β+α2)(2m2−1)2 and we get the solution of eq. (10) as

A(ξ) =

√

2m2(r + α1β2 + εα3β3)
(εα4β + α2)(2m2 − 1)

cn

[
√

r + α1β2 + εα3β3

(α1δ2 + 3α3εβδ2)(2m2 − 1)
ξ,m

]

, (23)

and the solution of (3) is

E(z, t) =

√

2m2(r + α1β2 + εα3β3)
(εα4β + α2)(2m2 − 1)

cn

[
√

r + α1β2 + εα3β3

(α1δ2 + 3α3εβδ2)(2m2 − 1)
(δt + uz),m

]

ei(βt+rz). (24)

Now, if m → 1, cn(x, 1) = sech(x) and the previous solution takes the following form:

E(z, t) =

√

2(r + α1β2 + εα3β3)
εα4β + α2

sech

[
√

r + α1β2 + εα3β3

α1δ2 + 3α3εβδ2
(δt + uz)

]

ei(βt+rz). (25)
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3.2 The exponential rational function method

In this subsection, we first present the different steps of the exponential rational function method [25]:

1) Suppose that a nonlinear partial differential equation is given by

Q(v, vx, vxx, vt, vtt, vxt, vvx . . .) = 0. (26)

2) To solve this equation, we reduce the number of variables to only one. Thus,

v(x, t) = v(ξ). (27)

And therefore, eq. (26) constructs an ordinary differential equation (ODE) of the form

Q(v, v′, v′′, vv′ . . .) = 0, (28)

where ′ denotes the derivation with respect to ξ. If it is possible, eq. (28) can be integrated term by term one or
more times.

3) According to the present method, a solution of eq. (28) is expressed as follows:

v(ξ) =
M
∑

i=0

βi

(1 + eμξ)i
, (29)

where μ and βi are unknown constants which will be determined. The parameter M is determined by balancing
the linear terms of the highest order in the resulting equation with the highest-order nonlinear terms. Substituting
eq. (29) into eq. (28), we collect all coefficients of powers of eμξ in the resulting equation where these coefficients
have to vanish. This leads to a system of algebraic equations involving the parameters μ and βi. Solving this system
with the aid of Maple, we obtain the exact solutions of eq. (26).

Now, considering eq. (10), the balancing process gives M = 1 and the following solution is considered:

A(ξ) = β0 +
β1

1 + eμξ
. (30)

Substituting (30) into (10) and collecting all the coefficients of (eμξ)j (j = 0, 1, 2, 3, 4) and setting them to zero, we
have the following algebraic equations:

(eμξ)4 : − 2 ε α3β
3β0

2 + ε α4β β0
4 + α2β0

4 − 4Cδ2α1 − 12Cδ2α3ε β − 2 rβ0
2 − 2α1β

2β0
2 = 0, (31)

(eμξ)3 : − 16Cδ2α1 − 8 rβ0
2 + 4 ε α4β β0

3β1 + 4α2β0
4 + 4 ε α4β β0

4 − 8α1β
2β0

2 − 4 rβ0β1

− 48Cδ2α3ε β − 4 ε α3β
3β0β1 − 8 ε α3β

3β0
2 − 4α1β

2β0β1 + 4α2β0
3β1 = 0, (32)

(eμξ)2 : 6α2β0
4 − 72Cδ2α3ε β − 12 rβ0β1 − 12 rβ0

2 − 24Cδ2α1 + 6 ε α4β β0
4 + 2β1

2μ2δ2α1

− 12α1β
2β0

2 − 2 rβ1
2 + 12α2β0

3β1 − 12 ε α3β
3β0

2 − 12 ε α3β
3β0β1 + 6α2β0

2β1
2

− 2α1β
2β1

2 + 12 ε α4β β0
3β1 + 6β1

2μ2δ2α3ε β − 2 ε α3β
3β1

2

+ 6 ε α4β β0
2β1

2 − 12α1β
2β0β1 = 0, (33)

(eμξ)1 : 12α2β0
3β1 + 12α2β0

2β1
2 − 12α1β

2β0β1 − 8 rβ0
2 − 4 ε α3β

3β1
2 + 12 ε α4β β0

2β1
2

+ 4 ε α4β β0
4 − 12 rβ0β1 − 16Cδ2α1 − 4 rβ1

2 + 12 ε α4β β0
3β1 − 48Cδ2α3ε β

+ 4α2β0β1
3 − 8α1β

2β0
2 + 4 ε α4β β0β1

3 − 4α1β
2β1

2 − 8 ε α3β
3β0

2

− 12 ε α3β
3β0β1 + 4α2β0

4 = 0, (34)

(eμξ)0 : ε α4β β0
4 − 2 ε α3β

3β0
2 + 4α2β0

3β1 − 4α1β
2β0β1 − 2 ε α3β

3β1
2 − 2α1β

2β1
2

− 4 rβ0β1 − 2 rβ1
2 + 6 ε α4β β0

2β1
2 + α2β1

4 + 4 ε α4β β0β1
3 + 4 ε α4β β0

3β1

+ 6α2β0
2β1

2 + ε α4β β1
4 − 2 rβ0

2 − 2α1β
2β0

2 − 4 ε α3β
3β0β1 − 12Cδ2α3ε β

+ 4α2β0β1
3 + α2β0

4 − 4Cδ2α1 = 0. (35)
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Solving the above algebraic eqs. (31)–(35), we have the following sets of coefficients:
Set 1:

β0 =

√

r + α1β2 + εα3β3

εα4β + α2
, β1 = −2

√

r + α1β2 + εα3β3

εα4β + α2
,

C = −1
4

(r + α1β
2 + εα3β

3)2

δ2(εα4β + α2)(α1 + 3α3εβ)
, μ = η

√

2(r + α1β2 + εα3β3)
δ2(α1 + 3α3εβ)

.

Set 2:

β0 = −
√

r + α1β2 + εα3β3

εα4β + α2
, β1 = 2

√

r + α1β2 + εα3β3

εα4β + α2
,

C = −1
4

(r + α1β
2 + εα3β

3)2

δ2(εα4β + α2)(α1 + 3α3εβ)
, μ = η

√

2(r + α1β2 + εα3β3)
δ2(α1 + 3α3εβ)

.

In this subsection, the solutions of the HNLS equation depend of the constant r+α1β2+εα3β3

α1+3α3εβ .

Case 1.

If r+α1β2+εα3β3

α1+3α3εβ > 0, we have as solutions

E(z, t) =

√

r + α1β2 + εα3β3

εα4β + α2

⎡

⎢

⎣
1 − 2

1 + cosh
(√

2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

+ η sinh
(√

2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

⎤

⎥

⎦
ei(βt+rz), (36)

for set 1 and

E(z, t) = −
√

r + α1β2 + εα3β3

εα4β + α2

⎡

⎢

⎣
1 − 2

1 + cosh
(√

2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

+ η sinh
(√

2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

⎤

⎥

⎦
ei(βt+rz),

(37)
for set 2.

Case 2.

If r+α1β2+εα3β3

α1+3α3εβ < 0, we have μ = iη
√

− 2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) with − r+α1β2+εα3β3

α1+3α3εβ > 0 and the solutions are

E(z, t) =

√

r + α1β2 + εα3β3

εα4β + α2

⎡

⎢

⎣
1 − 2

1 + cos
(√

− 2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

+ iη sin
(√

− 2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

⎤

⎥

⎦
ei(βt+rz),

(38)
for set 1 and

E(z, t) =

√

r + α1β2 + εα3β3

εα4β + α2

⎡

⎢

⎣
−1 +

2

1 + cos
(√

− 2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

+ iη sin
(√

− 2(r+α1β2+εα3β3)
δ2(α1+3α3εβ) ξ

)

⎤

⎥

⎦
ei(βt+rz),

(39)
for set 2.

In all these solutions, ξ = δt + uz and η = ±1; r and β are given by eq. (8) and eq. (9), respectively; δ and u are
arbitrary constants.

4 Graphical representations

The results obtained in this work are cnoidal solutions, kink solutions, pulse solutions and trigonometric solutions.
These solutions can be utilized to transport information in optical fibers. We plot some solutions to have an idea on
the mechanism of the original eq. (3). Specifically, we plot solutions (18), (21) and (24), this by taking suitable values
of the parameters obtained. The graphical representations of these solutions are shown in figs. 3, 4, and 5.
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Fig. 3. Solution corresponding to eq. (18). These figures are obtained with the following parameters: α1 = 1.0, α2 = 2.0,
α3 = −3.0, α4 = −1.0, α5 = 6.0, ε = 0.5, δ = 2.0 and u = 3.0. Panel (a) is plotted for m = 0.6, while panel (b) is plotted for
m = 1.0.

Fig. 4. Solution corresponding to eq. (21). These figures are obtained with the following parameters: α1 = 0.1, α2 = 2.0,
α3 = −3.0, α4 = −1.0, α5 = 0.1, ε = 0.5, δ = 10.0 and u = 3.0. Panel (a) is plotted for m = 0.6, while panel (b) is plotted for
m = 1.0.

Fig. 5. Solution corresponding to eq. (24). These figures are obtained with the same parameters as in fig. 4. Panel (a) is plotted
for m = 0.6, while panel (b) is plotted for m = 1.0.
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5 Conclusion

By using the arbitrary nonlinear parameters and the exponential rational function method, we find in this work
many new exact solutions of the higher-order nonlinear Schrödinger equation. The solutions obtained by the current
methods are cnoidal solutions, kink solutions, pulse solutions and trigonometric solutions. By adjusting, for example,
the modulus of some solutions obtained (m = 0.6, 1), the shape of solutions can be well controlled. Optical soliton
solutions obtained here can be used to transport information in telecommunication domain and in many other domains
like nonlinear electrical transmission lines or nonlinear chains of atoms to list a few. It also comes from this work that
the behavior of this HNLS equation may be easily studied by means of the phase plane plot which is the best tool to
predict some solutions. The behavior of these phase portraits are confirmed by the corresponding effective potentials.
It is also important to mention that the solutions found in this paper are new solutions of the model not yet reported
in the literature.
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