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Abstract. Solving the adjoint linear transport equation by Monte Carlo methods can be convenient for
applications emerging in radiation shielding, where the detector is typically small (in terms of probability
of detecting a signal). In this work we compare a few stochastic models that can be used in order to
formally solve the adjoint transport equation by simulating artificial particles called adjunctons: these
models differ in the form of adjuncton cross-sections, scattering laws and multiplicities. In view of testing
the accuracy and the performances of these schemes, we have selected some benchmark configurations for
continuous-energy transport in infinite media, where reference solutions can be established. The role of
population control techniques, such as Russian roulette and splitting, is also carefully examined.

1 Introduction

In the context of radiation transport, Monte Carlo simulation is considered as the golden standard for the computation
of physical quantities and is traditionally adopted so as to establish reference values for faster, but approximated,
deterministic calculations [1]. Monte Carlo codes are intrinsically based on the simulation of forward random walks,
with neutrons flowing from sources and depositing their scores when (and if) they cross or interact with the detectors:
as such, they are ideally suited to provide accurate estimates of physical observables weighted by the forward flux ϕ
at the detectors, which is the solution of the forward Boltzmann linear transport equation [2]. The solution ϕ† of the
adjoint Boltzmann equation takes the name of adjoint neutron flux and physically represents the importance (i.e., the
expected contribution) of a neutron with respect to a given detector [3]. In terms of the underlying random walks, the
adjoint Boltzmann equation corresponds to an inversion of the time arrow, with neutrons flowing backward from the
detector and depositing their scores when (and if) they cross or interact with the source [1].

In several applications emerging in radiation shielding and reactor physics, the adjoint approach might yield faster
and more accurate answers than the regular forward Monte Carlo approach [1]. In particular, forward particle transport
becomes inefficient when the detector is “small”1 in the phase space: in the limit case of a point-like detector, almost
no particles can contribute to the simulation, the probability that a forward random walk coming from the source
will cross the detector phase space being negligibly small. On the contrary, all adjoint random walks will start from
the detector, and there will be a higher chance that they will eventually cross the source (unless the source is also
very small). The so-called reciprocity theorem ensures that arbitrary observables can be estimated by resorting to
either forward or backward Monte Carlo methods, each leading to the same unbiased score, upon inverting the roles
of source and detector [3]. The choice of either scheme must be guided by a variance minimization principle, which is
problem-dependent. Ideally, zero-variance Monte Carlo schemes might be conceived by weighting the forward random
walks by the importance obtained by solving the corresponding adjoint problem [1,4, 5].

The idea of extending standard (i.e., forward) Monte Carlo methods for neutral particle transport to the simulation
of backward random walks was first proposed in the pioneering works appeared at the end of the 1960s [6–8], based on
an original idea by Maynard [9]. Although initially tailored to solve ad hoc problems with a limited number of allowed

a e-mail: andrea.zoia@cea.fr
1 We use the terms “small” or “large” referring to the concept of probability to detect a signal.
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nuclear reactions, these schemes have been soon generalized to cover arbitrary collision events, scattering distributions
and multiplication [10–15]. In particular, it was shown that most of the proposed adjoint Monte Carlo methods can be
regarded as particular cases of a broad class of probabilistic models where the simulation of artificial particles (called
adjunctons), with modified forward displacement and collision kernels, provides an unbiased estimate of the adjoint
flux [15]. Following these theoretical advances, there have been several attempts at implementing adjoint Monte Carlo
methods in continuous-energy transport codes [16–19]. Although the key concepts are firmly established [13, 14] and
can be a priori applied to production Monte Carlo codes [17–19], adjoint particle transport demands that adjuncton
displacements and collisions be sampled from the modified kernels: this daunting task requires either extensively
modifying existing sampling routines for particle transport [10,15], or rewriting the entire nuclear data pre-processing
tools that are currently used for Monte Carlo codes [14,18,19].

Despite these difficulties, adjoint Monte Carlo methods are still a subject of active research per se [20–22] and in
view of providing efficient variance reduction strategies for forward methods [23–25]. Bearing in mind the possibility
of introducing adjoint methods into Tripoli-4

R©, the production Monte Carlo transport code developed at CEA [26],
in this work we illustrate a comparison of different adjoint simulation models. Monte Carlo simulation findings will
be tested against benchmark solutions for continuous-energy neutron transport in infinite media, with elastic and
inelastic scattering, absorption and multiplication, and their performances will be assessed in terms of both variance
and figure of merit.

This paper is organized as follows: in sect. 2, we will briefly recall the forward and adjoint formulations of linear
particle transport, which will set the ground for the derivation of the adjuncton transport models. In sect. 3, we will
describe the benchmark configurations and the reference solutions that we will use in order to compare the various
adjoint Monte Carlo methods. Simulation findings will be analysed, in sect. 4, for different collision kernels. The effects
of population control techniques on the obtained results will be also discussed. Conclusions will be finally drawn in
sect. 5. Technical details will be condensed in the appendix.

2 A class of stochastic models for adjoint neutron transport

2.1 The reciprocity property for linear particle transport

The forward integro-differential form of the Boltzmann equation for steady-state linear particle transport, with a unit
point source of neutrons at spatial coordinate r0, monochromatic at energy E0 and collimated along direction Ω0,
reads as follows:

Ω · ∇G(r0,Ω0, E0 → r,Ω, E) + Σt(r, E)G(r0,Ω0, E0 → r,Ω, E) =
∑

j

∫∫
νj(E′)Σj(r, E′)fj(Ω′, E′ → Ω, E)G(r0,Ω0, E0 → r,Ω′, E′)dΩ′dE′ + Q0, (1)

with Q0 = δ(r − r0)δ(Ω − Ω0)δ(E − E0). The solution G takes the name of Green’s function. Here Σt(r, E) is the
total cross-section for neutrons at position r and incident energy E, Σj(r, E) is the cross-section for reaction of type j
(such that pj(E) = Σj(E)/Σt(E) is the probability for a neutron with energy E to undergo a reaction event of type j
upon collision), νj(E) is the mean number of neutrons released in a collision of type j, and fj(Ω′, E′ → Ω, E) is the
(normalized) probability density of transferring the neutron energy from E′ to E and its direction from Ω′ to Ω in
a collision of type j. In order to make notation simpler, we will assume that a single isotope is present in the media
considered: the generalization to the case of material compositions containing several isotopes is straightforward.

Based on the linear superposition theorem, the angular neutron flux ϕS(r, E,Ω) for neutrons at position r, with
energy E and direction Ω for a generic source S over a domain S of the phase space can be expressed in terms of the
forward Green’s function as

ϕS(r,Ω, E) =
∫∫∫

S
G(r′,Ω′, E′ → r,Ω, E)S(r′,Ω′, E′)dr′ dΩ′ dE′, (2)

where the index S is used to recall that the forward angular neutron flux depends on the source. A generic physical
observable R associated to a (real or virtual) detector D is usually formulated as an integral functional of the neutron
flux ϕS , namely,

RD,S =
∫∫∫

D
ϕS(r,Ω, E)gD(r,Ω, E)drdΩ dE, (3)

where gD is the pay-off function of the detector D, defined over some domain D of the phase space. In reactor physics,
the forward neutron flux represents the track density per unit time.
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The equation adjoint to eq. (1) reads2

− Ω · ∇G†(r0,Ω0, E0 → r,Ω, E) + Σt(r, E)G†(r0,Ω0, E0 → r,Ω, E) =
∑

j

∫∫
νj(E)Σj(r, E)fj(Ω, E → Ω′, E′)G†(r0,Ω0, E0 → r,Ω′, E′)dΩ′ dE′ + Q0, (5)

whose solution yields the adjoint Green’s function G† [3]. The forward and adjoint Green’s functions in eqs. (1) and
(5) are related by the so-called reciprocity property [3], namely,

G(r′,Ω′, E′ → r,Ω, E) = G†(r,Ω, E → r′,Ω′, E′). (6)

Using again the linear superposition property, the adjoint angular flux ϕ†
S† corresponding to an adjoint source S† over

a domain S† of the phase space can be determined as

ϕ†
S†(r0,Ω0, E0) =

∫∫∫

S†
G†(r0,Ω0, E0 → r′,Ω′, E′)S†(r′,Ω′, E′)dr′ dΩ′ dE′, (7)

where the index S† is used to recall that ϕ†
S† depends on the adjoint source. The term adjoint flux is widely adopted

in the literature to define the quantity that is adjoint to the regular particle flux. Formally speaking, ϕ†
S† represents

an adjoint emission density, providing the importance of a particle entering the system with phase space coordinates
equal to the arguments of the adjoint flux function [1]. The adjoint and forward flux do not carry the same physical
units. A generic physical observable R† at a (real or virtual) adjoint detector D† over a domain D† in the phase space
can be expressed by taking

R†
D†,S† =

∫∫∫

D†
ϕ†

S†(r0,Ω0, E0)gD†(r0,Ω0, E0)dr0dΩ0dE0, (8)

where gD† is the pay-off function associated to the adjoint detector.
If we formally identify the adjoint source with the forward detector pay-off function, i.e., S† = gD, and the adjoint

detector pay-off function with the forward source, i.e., gD† = S, we have then

R†
S,D =

∫∫∫

S

ϕ†
D(r0,Ω0, E0)S(r0,Ω0, E0)dr0dΩ0dE0 =

∫∫∫

D

ϕS(r,Ω, E)gD(r,Ω, E)drdΩ dE = RD,S . (9)

In other words, the physical observable R in eq. (3) can be equivalently expressed by resorting to the adjoint flux,
based on the reciprocity of the forward and adjoint Green’s functions, provided that we set S† = gD and gD† = S.

If one is interested in estimating R by Monte Carlo methods, the forward formulation of the linear transport
equation given in eq. (1) suggests that we simulate a forward random walk from the neutron source S, with a pay-off
function gD for particles entering the generic detector D in the phase space. This is the standard approach that
is customarily implemented in production Monte Carlo codes for applications in radiation shielding. The statistical
uncertainty of the Monte Carlo estimates decreases with the square root of the number of simulated random walks;
if the observable R is distributed over small intervals of one or more variables, the forward Monte Carlo method
becomes more and more inefficient, because fewer and fewer random walks cross the detector, and might even become
impractical if a quantity at a point detector is sought. On the other hand, eq. (9) suggests that the quantity R can be
alternatively estimated by an adjoint Monte Carlo simulation with backward random walks, the function gD acting
as a “source” and the function S acting as a pay-off function for particles entering the “detector”. Thus, problems
where the estimation function is non-zero in a small volume of the phase space but the neutron source is distributed
over a relatively larger volume of the phase space might in principle be efficiently solved by adjoint Monte Carlo
methods. However, in the adjoint formulation source and detector are interchanged, and the transport kernels are
defined with reversed directions of flight and reverse collision kinematics. This calls for an entirely different approach
to the simulation of backward neutron histories.

2 For a well-defined operator associated to a kernel K(z′ → z), the adjoint kernel K† is defined by the scalar product

Z

u(z)

Z

K(z′ → z)v(z′)dz′ dz =

Z

v(z)

Z

K†(z′ → z)u(z′)dz′ dz, (4)

for every set of integrable functions u(z) and v(z). By interchanging the integration variables in eq. (4), we have thus the
definition of the adjoint kernel in terms of the forward kernel, namely, K†(z′ → z) = K(z → z′).
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2.2 Solving the adjoint transport equation by Monte Carlo methods

Several approaches have been proposed in order to solve the adjoint neutron transport equation by the Monte Carlo
method. It has been shown that most, if not all, of these schemes might actually be seen as particular cases of a
general solution strategy based on the idea of simulating artificial neutron-like particles, called adjunctons, whose
forward Green’s function can be easily mapped into the adjoint Green’s function of the neutrons [15]. In order to
set the ground for the following discussion, here we briefly recall the derivation of the transport equation for the
adjunctons, by formally transforming the physical quantities associated to the transport of neutrons in the forward
formulation.

The main ingredients to simulate a forward random walk are the macroscopic cross-section Σj(r, E′) for a specified
reaction j (with associated total macroscopic cross-section Σt(r, E′) =

∑
j Σj(r, E′)), the transfer function fj(Ω′, E′ →

Ω, E), and the multiplicity νj(E′) for each reaction j. The corresponding cross-sections for the adjunctons are formally
introduced as

Σ̃j(r, E′) = Σt(r, E′)
p̃j(r, E′)∑
k p̃k(r, E′)

, (10)

where the quantities p̃j ≥ 0 are arbitrary bounded functions and the sum runs over all neutron reaction types [12,15].
The specification of the functions p̃j implicitly defines an adjoint transport model that can be solved by Monte Carlo
simulation, as detailed in the following. The total cross-section for the adjunctons stems from eq. (10), namely,

Σ̃t(r, E′) =
∑

j

Σ̃j(r, E′) = Σt(r, E′), (11)

and is thus equal to the forward total cross-section. The transfer function f̃j(Ω′, E′ → Ω, E) and the multiplicity
ν̃j(E′) for adjunctons are then defined by the balance relationship:

ν̃j(E′)Σ̃j(r, E′)f̃j(Ω′, E′ → Ω, E) = νj(E)Σj(r, E)fj(−Ω, E → −Ω′, E′). (12)

The transfer function f̃j for adjunctons must be normalized. Equation (12) yields thus the multiplicity

ν̃j(E′) =
∫∫

νj(E)fj(−Ω, E → −Ω′, E′)
Σj(r, E)
Σ̃j(r, E′)

dΩ dE. (13)

Finally, from eq. (12) we can express the transfer function f̃j as

f̃j(Ω′, E′ → Ω, E) =
νj(E)Σj(r, E)fj(−Ω, E → −Ω′, E′)

ν̃j(E′)Σ̃j(r, E′)
=

νj(E)Σj(r, E)fj(−Ω, E → −Ω′, E′)∫∫
νj(E)Σj(r, E)fj(−Ω, E → −Ω′, E′)dΩ dE

. (14)

By construction, the transport process for adjunctons is the same as for regular particles in forward linear transport,
i.e., free flights and collisions with scattering, multiplication and/or absorption [12, 15]. Hence, adjunctons formally
satisfy a Boltzmann-like forward transport equation. In particular, their Green’s function G̃ obeys

Ω · ∇G̃(r0,Ω0, E0 → r,Ω, E) + Σ̃t(r, E)G̃(r0,Ω0, E0 → r,Ω, E) =
∑

j

∫∫
ν̃j(E′)Σ̃j(r, E′)f̃j(Ω′, E′ → Ω, E)G̃(r0,Ω0, E0 → r,Ω′, E′)dΩ′ dE′ + Q0, (15)

which yields the formal relation

G†(r0,Ω0, E0 → r,Ω, E) = G̃(r0,−Ω0, E0 → r,−Ω, E), (16)

provided that the boundary conditions for the two Green’s functions are consistent [15]. In other words, solving the
forward equation for the Green’s function of adjunctons leads to the ajoint Green’s function of neutrons, as from the
transformation in eq. (16).

Equation (10) formally defines a broad class of forward stochastic models that can be in principle solved by Monte
Carlo methods. In order to explicitly simulate adjunctons, one must however be able to sample particle displacement
and collision events from the kernels introduced above, which in turn depend on the choice of the functions p̃j . Similarly
to what is customarily done for neutrons in forward transport, it is also possible to introduce biasing schemes: instead
of performing analog Monte Carlo sampling from f̃j and ν̃j , we would sample from h̃j , an arbitrary distribution
normalized over the same domain as f̃j [15]. In order to preserve a fair Monte Carlo game, it would then be necessary
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to introduce statistical weights w for the adjunctons: after each collision, the statistical weight w′ of an adjuncton
entering a collision would be modified to

w = w′ ν̃j(E′)f̃j(Ω′, E′ → Ω, E)
h̃j(Ω′, E′ → Ω, E)

= w′ νj(E)Σj(r, E)fj(−Ω, E → −Ω′, E′)
Σ̃j(r, E′)h̃j(Ω′, E′ → Ω, E)

. (17)

Following the collision event of type j, we can thus either sample ν̃j(E′) adjunctons from the law f̃j , each with
a statistical weight w = w′, or a single adjuncton with a weight w from the law h̃j . The role of h̃j is such that
an importance sampling can be performed by drawing the adjuncton features from this distribution instead of the
original kernel f̃j , which may simplify the calculations and reduce the variance. Following the introduction of statistical
weights, population control techniques such as Russian roulette or splitting can be introduced as well: comments will
be provided in sect. 4.

In view of comparing the performances of adjoint Monte Carlo schemes, we recall here a few relevant choices for
the model functions p̃j and of the biased kernels h̃j that have been introduced in the literature. In selecting those
schemes, we have been mainly guided by their flexibility and broad applicability to arbitrary reaction types, having
in mind the possibility of implementing them in the production Monte Carlo code Tripoli-4

R©.
The first two schemes (M1 and M2) have been proposed by Hoogenboom [13], and differ only by the appearance

of an E′/E biasing factor in energy. In this case, the two model functions are defined as

p̃M1
j (r, E′) =

∫∫
νj(E)Σj(r, E)fj(−Ω, E → −Ω′, E′)dΩ dE (18)

and

p̃M2
j (r, E′) =

∫∫
νj(E)Σj(r, E)

E′

E
fj(−Ω, E → −Ω′, E′)dΩdE. (19)

The additional term 1/E appearing in eq. (19) can be understood as a biasing factor based on the consideration that the
shape of the forward flux in media where elastic scattering is the dominant reaction is of the kind ϕ(E) ∼ 1/E: model
M2 can be then regarded as an improvement of M1 with biased adjuncton cross-sections having an approximation
of the forward flux as a weighting function. The functional forms for M1 and M2 are general and apply to any type
of reaction j. For both models, the biased scattering kernel is defined as the integrand of p̃j divided by p̃j [15], which
yields

h̃M1
j (Ω′, E′ → Ω, E) =

νj(E)Σj(r, E)fj(−Ω, E → −Ω′, E′)∫∫
νj(E)Σj(r, E)fj(−Ω, E → −Ω′,→ E′)dΩ dE

= f̃M1
j (Ω′, E′ → Ω, E) (20)

and

h̃M2
j (Ω′, E′→Ω, E)=

νj(E)Σj(r, E)E′

E fj(−Ω, E→−Ω′,→E′)∫∫
νj(E)Σj(r, E)E′

E fj(−Ω, E→−Ω′, E′)dΩ dE
=

E′

E
ν̃j(E′)

Σt(r, E′)∑
k p̃k(r, E′)

f̃M2
j (Ω′, E′→Ω, E).

(21)
From eq. (17), for M1, we have thus

w = w′ν̃j(E′) = w′
∑

k p̃M1
k (r, E′)

Σt(r, E′)
(22)

and, for M2, we have

w = w′
∑

k p̃M2
k (r, E′)

Σt(r, E′)
E

E′ , (23)

where E′ is the incident adjuncton energy and E is the adjuncton energy after the collision event.
A variant of the M2 model, which we will denote as (M∗

2), consists in biasing the adjuncton source by a factor 1/E
and correspondingly multiplying the adjuncton pay-off function by a factor E [13]. The functions p̃j and the biased
kernel h̃j are the same as in model M2, i.e., p̃

M∗
2

j = p̃M2
j and h̃

M∗
2

j = h̃M2
j . In order to preserve a fair Monte Carlo

game, for M∗
2 we must have

w = w′
∑

k p̃
M∗

2
k (r, E′)

Σt(r, E′)
. (24)

In a recent paper [22], a model (M3) in which the functions p̃j are equal to the forward macroscopic cross-section
of the j-th reaction has been proposed, which yields

p̃M3
j (r, E′) = Σj(r, E′). (25)



Page 6 of 19 Eur. Phys. J. Plus (2018) 133: 317

This definition applies to any arbitrary reaction j as in the previous models. Model M3 does not explicitly consider
biased kernels h̃j [22]: in the following, we will thus assume that the sampling is made from the analog distributions f̃j .

The last model (M4) that we will consider in this work has been introduced by De Matteis and Simonini [15].
Contrary to the previous schemes, here the definition of the functions p̃j and of the biased kernels h̃j depends on the
considered reaction, although it is in principle possible to cover the entire range of allowed events by carefully deriving
ad hoc choices. For instance, for the elastic scattering reaction we would have

p̃M4
e (r, E′) = Σe(r, E′), (26)

as in the previous model, whereas for other reactions different rules would be assigned.
In the following, we will provide an extensive comparison of the adjoint Monte Carlo methods presented above on

benchmark problems, and analyse the performances of the corresponding simulation results.

3 Energy-dependent transport in infinite media

In order to establish benchmark solutions for the adjoint Monte Carlo schemes, a convenient choice is to resort to
neutron transport in infinite media, where ϕ and ϕ† only depend on energy. In this case, the steady-state linear adjoint
particle transport equation for the adjoint flux ϕ† reads:

Σt(E)ϕ†(E) =
∑

j

νj(E)Σj(E)
∫ ∞

0

fj(E → E′)ϕ†(E′)dE′ + S†(E). (27)

For the sake of simplicity, let us assume that the particles are generated at a given energy E0, i.e.,

S†(E) = S†
0δ(E − E0), (28)

S†
0 being a normalization constant. Correspondingly, the adjoint flux can be decomposed into a singular term (due to

un-collided contributions), plus a continuous portion (due to collided contributions), namely,

ϕ†(E) = ϕ†
0δ(E − E0) + ϕ†

c(E). (29)

The energy domain ranges from the source energy of the particles E0 up to a cut-off energy, say E∗. An analytical
solution to eq. (27) has been explicitly derived for the case of elastic scattering alone with general cross-section
Σe(E) [22], based on adjoint Placzek functions [27]. The forward transfer function for elastic scattering reads

fe(E → E′) =
1

E(1 − α)
, for αE ≤ E′ ≤ E, (30)

where

α =
(

A − 1
A + 1

)2

(31)

and A is the ratio of the atomic mass of the nuclide to the neutron mass [2]. Let us suppose that the cross-sections do
not depend on energy, and that the allowed reactions are elastic scattering and absorption. Then eq. (27) yields:

ϕ†(E) =
γ

E(1 − α)

∫ E

αE

ϕ†(E′)dE′ +
S†(E)

Σt
, (32)

with γ = Σe/Σt ≤ 1. By equating singular parts, from eq. (32) we immediately have

ϕ†
0 =

S†
0

Σt
. (33)

The collided portion of the adjoint flux satisfies the integral equation

ϕ†
c(E) =

θ(E − E0)θ(E0 − αE)
E(1 − α)

S†
0

Σt
+

γ

E(1 − α)

∫ E

αE

ϕ†
c(E

′)dE′, (34)
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where θ is the Heaviside function. The solution of eq. (34) can be recursively obtained by closely following the arguments
in [22], and yields:

ϕ†
c,1(E) =

γ

E0Σt(1 − α)

(
E

E0

) γ
1−α−1

ϕ†
c,2(E) =

γ2

E0Σt(1 − α)2

(
E

E0

) γ
1−α−1[(

1 − α

γ

)(
1 − α

γ
1−α

)
− α

γ
1−α log

αE

E0

]

...

ϕ†
c,n(E) =

γn

E0Σt(1 − α)n

(
E

E0

) γ
1−α−1[(

1 − α

γ

)n−1(
1 − α

γ
1−α

)
−

(
1 − α

γ

)n−2

α
γ

1−α log
αE

E0

+
n−1∑

m=2

(−1)m−2α
γm
1−α

(
((1 − α)/γ)n−m

(m − 1)!
logm−1 αmE

E0
+

((1 − α)/γ)n−m−1

m!
logm αmE

E0

)]
, (35)

where the n-th term ϕ†
c,n(E) is non-zero only in the energy range

E0

αn−1
≤ E ≤ E0

αn
. (36)

The adjoint flux and its derivatives show discontinuities similar to those appearing in the forward solution (the so-called
Placzek transients [27]) and ϕ†

c(E) asymptotically converges to a constant value for large E � E0.
When other kinds of reactions are involved, with arbitrary transition kernels, analytical expressions are no longer

available, but it is nonetheless relatively straightforward to derive reference solutions for eq. (27) by accurate numerical
integration. We start from a guess function ϕ†

0 and at each iteration q we compute

ϕ†
q+1(E) =

∑

j

νj(E)
Σj(E)
Σt(E)

∫ ∞

0

fj(E → E′)ϕ†
q(E

′)dE′ +
S†(E)
Σt(E)

. (37)

This procedure is repeated until a given convergence criterion is satisfied.

4 Monte Carlo simulation results

The adjoint flux ϕ†(E), solution of eq. (27) for a point-source located at E0, is now determined by Monte Carlo
methods. The five adjuncton models introduced above have been implemented in a computer code and tested against
reference solutions obtained as detailed in sect. 3. The energy domain is divided into 100 equally spaced energy intervals
between E0 and the cut-off energy E∗, and each interval acts as a detector for ϕ†(E). For the examples considered
in this work, the energy interval of the benchmark configurations spans one decade at most, so that the choice of
linearly spaced energy bins seems to be reasonable. Energies are expressed in arbitrary units. The adjuncton histories
are simulated as follows.

1) The first step consists in sampling the initial energy from the adjuncton source. For all models except M∗
2, the

initial energy E is sampled from the normalized distribution

S†(E)∫
S†(E′)dE′ = δ(E − E0); (38)

for model M∗
2, the initial energy E is sampled from

S†(E)

E
∫ S†(E′)

E′ dE′
=

E0

E
δ(E − E0), (39)

which for this special case formally yields the same result as the unbiased source. For all models, set the initial
statistical weight of the adjunctons w = 1.

2) Sample a free flight from an exponential distribution with average Σ−1
t (E). Cross-sections are expressed in arbitrary

units.
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3) Score the adjoint neutron flux by using a collision estimator, for each event occurring in a detector interval. For
all models except M∗

2, set the score weight wscore =
∫

S†(E′)dE′, which for the point-source yields wscore = 1, and
record

wscore
w

Σt(E)
=

w

Σt(E)
. (40)

For model M∗
2, set the score weight wscore =

∫
S†(E′)/E′dE′, which for the point-source yields wscore = 1/E0, and

record
wscoreE

w

Σt(E)
=

E

E0

w

Σt(E)
. (41)

Inspection of M∗
2 immediately shows that the scores produced by this model at collision events are identical to

those of model M2. However, if population control is applied after each collision, M∗
2 may turn out to be more

convenient than M2, since the weight correction will be generally smaller (see the discussion in sect. 4.5).
4) Sample a reaction j with probability Σ̃j/Σ̃t. If required, apply population control techniques. If the particle has

not been killed (because of absorption or population control), sample the energy of the emitted particle from
distribution f̃j (or h̃j if variance reduction techniques are applied). Update then the statistical weight of the
adjuncton by using eq. (17).

This procedure is iterated until the adjuncton has disappeared or the history has been terminated because the current
particle energy is above the simulation cut-off. A total number of N = 107 adjuncton histories will be simulated for
each model. Finally, the computed scores are divided by the total initial weight of the simulated adjunctons, and by
the energy interval ΔE of each energy bin.

For each energy bin, the relative variances of the Monte Carlo scores will be estimated from (σb/μb)2, where b is
the index of the energy interval, μb is the average score in interval b and σb is the corresponding standard deviation.
A possible definition of a single indicator to establish the variance of the scores in the different energy ranges can be
conveniently introduced in the form

σ2
r =

∑

b

(
σb

μb

)2

, (42)

where the sum runs over all energy intervals. The figure of merit associated to this global indicator is thus estimated as

FOM =
1

σ2
rTc

, (43)

where Tc is the computational time. Four different neutron reactions are considered for our tests: elastic scattering,
inelastic scattering, absorption and (n, 2n) multiplication. In the following, we detail the simulation procedures that
apply to each collision event according to the specific Monte Carlo models.

In order to reduce the variance of the scores, several population control techniques and variance reduction schemes
will be tested in our Monte Carlo simulations. Implicit capture allows neutrons to survive absorption by reducing their
statistical weight by a factor of 1 − Σ̃a/Σ̃t. For infinite media, particles cannot escape the simulated medium and
would thus live forever in the absence of a cut-off energy. It is thus convenient to use implicit capture in combination
with Russian roulette, a fair game that applies to the statistical weights of the particles w after collision. A threshold
0 < ωR < 1 is set for the statistical weights. If w < ωR, a random number ξ is uniformly sampled in the interval [0, 1].
If ξ < ωR, the particle history is terminated. Otherwise, w = 1 and the history is allowed to continue. Russian roulette
is an effective variance reduction technique, in that it removes particles with lower weights, which contribute less to
the scores. The threshold will be set to ωR = 0.8 for our simulations.

Conversely, the statistical weight of the particles can rapidly increase when the multiplicity is larger than one and
non-analog Monte Carlo methods are applied. In this case, population control can be enforced by resorting to particle
splitting. If the particle weight w after collision is larger than some threshold ωS , nb − 1 copies of the original particle
are created, with nb defined as the largest integer value that is not larger than the original weight w, and a new weight
equal to w/nb is assigned to the original particle and to its copies. For our simulations, we will set ωS = 2.

4.1 Elastic scattering

Our first benchmark problem concerns adjuncton neutron transport inside a purely elastic scattering medium, with
constant cross-section Σe (and multiplicity νe = 1) and an adjuncton point source at E0. We now explicitly derive the
rules for the stochastic models introduced above. For model M1, as shown in [13,14], from eq. (18) we have

p̃M1
e = Σe

log α

α − 1
, (44)
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whence also Σ̃e = Σe and

ν̃e =
log α

α − 1
, (45)

from eq. (13). Finally, the energy after collision is selected from

f̃e(E′ → E) = − 1
E log α

, for E′ ≤ E ≤ E′

α
, (46)

which follows from eq. (14). It is assumed that no biasing is applied to the scattering law, i.e., h̃e(E′ → E) = f̃e(E′ →
E) as specified in eq. (20), so that from eq. (22) we have the weight correction

w = w′ log α

α − 1
. (47)

Since α < 1, the statistical weights of adjunctons are bound to increase at each elastic scattering collision for model
M1 [13, 14].

For model M2, as shown in [13,14], from eq. (19) we have

p̃M2
e = Σe, (48)

with Σ̃e = Σe. The multiplicity yields

ν̃e =
log α

α − 1
, (49)

from eq. (13). The biased scattering law follows from eq. (21), and reads

h̃e(E′ → E) =
E′

E2(1 − α)
, for E′ ≤ E ≤ E′

α
. (50)

Correspondingly, from eq. (23), we have the weight correction

w = w′ E

E′ . (51)

In this case, the statistical weights of adjunctons are multiplied by a factor E/E′ at each elastic scattering collision,
with E ≥ E′, independently of α.

Model M∗
2 is similar to M2, but from eq. (24) the weight correction is simply w = w′ for elastic scattering. This

formula is compensated by the 1/E0 biasing factor of the source and the E biasing factor of the pay-off function.
For elastic scattering, model M3 is defined such that p̃M3

e = Σe and Σ̃e = Σe [22]. The scattering law and the
weight multiplication are also equivalent to those of model M1.

Finally, for model M4 we have p̃M4
e = Σe, with Σ̃e = Σe [15]. The definition of model M4 is formally equal to

model M2.
We have assumed Σe = 1 and E0 = 1. The maximum allowed energy of the simulated particles is taken to be

E∗ = E0/α4, where α depends on the mass A of the scattering nuclide. Reference solutions for ϕ†(E) have been
derived over an energy grid with 104 points from eq. (35). For illustration, an example of Monte Carlo estimation for
the adjoint flux is shown in fig. 1, where we compare the simulation result corresponding to model M1 to the reference
solution, for A = 5. A good agreement is observed, and similar unbiased results have been obtained also for the other
models. In order to compare the performances of the methods tested here, we have run several simulations for different
values of A: the relative standard deviations as defined in eq. (42) are displayed in table 1 and the figures of merit
(FOM) as defined in eq. (43) are displayed in table 2.

For any A, model M∗
2 displays the largest FOM, due to the combined use of lower statistical weights and the

biased scattering law h̃e. As A increases, the FOM for models M∗
2 decreases and approaches that of model and M2

and M4, which are larger than those of model M1 and M3. This can be understood by observing that for model M1

elastic scattering collisions lead to a relevant change in the particle weight, by a factor log α/(α− 1) depending on A.
For model M2 and M4, the weight change does not explicitly depend on α and is given by the ratio E/E′. Finally, for
model M∗

2, the particles do not change their weights at collisions. Models M2 and M4 perform better than M1 and
M3, thanks to the use of the biased scattering law. Finally, it is worth observing that model M∗

2 shows the largest
variance for each value of A examined here: the best FOM is achieved thanks to the shortest simulation times, as a
result of a weaker incidence of particle splitting, i.e., a reduced weight dispersion.
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Fig. 1. Adjoint collided flux ϕ†
c(E) for a purely elastic scattering medium with A = 5 and Σe = 1. The Monte Carlo results

corresponding to model M1 are displayed with symbols. The reference solution from eq. (35) is displayed with a solid line.

Table 1. Relative variances σ2
r of the Monte Carlo scores, from eq. (42), for a purely elastic scattering medium.

A M1,3 M∗
2 M2,4

5 6.3 × 10−5 1.1 × 10−4 5.6 × 10−5

15 1.1 × 10−4 1.2 × 10−4 1.1 × 10−4

25 1.3 × 10−4 1.2 × 10−4 1.2 × 10−4

Table 2. FOM of the Monte Carlo scores, from eq. (43), for a purely elastic scattering medium.

A M1,3 M∗
2 M2,4

5 1.0 × 102 5.0 × 102 1.4 × 102

15 3.0 × 102 4.9 × 102 3.9 × 102

25 3.4 × 102 4.8 × 102 4.6 × 102

4.2 Inelastic scattering

As a second benchmark configuration we have considered a system with elastic and inelastic scattering, with constant
cross-sections Σe and Σi, respectively. The law for inelastic scattering reads

fi(E → E′) =
1

E(1 − α)
√

1 − εi/E
, (52)

where εi is the threshold energy for the reaction [26]. The post-reaction energy E′ lies in the interval

(
A

√
1 − εi/E − 1
A + 1

)2

E ≤ E′ ≤
(

A
√

1 − εi/E + 1
A + 1

)2

E. (53)

The associated multiplicity is trivially νi = 1. As shown in [13], the functions p̃i for models M1 and M2 read

p̃M1
i (E′) =

∫ E′
i,max

E′
i,min

Σi
1

E(1 − α)
√

1 − εi/E
dE (54)

from eq. (18), and

p̃M2
i (E′) =

∫ E′
i,max

E′
i,min

Σi
E′

E2(1 − α)
√

1 − εi/E
dE, (55)
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Fig. 2. The macroscopic inelastic cross-section Σi and the adjuncton cross-section Σ̃i for model M1. Here we have taken A = 5,
threshold at εi = 1 and post-threshold value Σi = 1.

from eq. (19), respectively. Here E′
i,min and E′

i,max are the lowest and the highest energies of the scattered particle,
whose explicit expressions are derived in the appendix. Since inelastic scattering is a threshold reaction, by definition
Σi(E) = 0 for E < εi. However, the adjuncton cross-section Σ̃i that follows from the functions p̃i for models M1

and M2 do not vanish. A comparison between forward and adjuncton cross-sections for M1 is shown in fig. 2. From
eq. (13), the adjuncton multiplicity reads

ν̃i(E′) =
∫

fi(E → E′)
Σi(E)
Σt(E′)

[
1 +

p̃e(E′)
p̃i(E′)

]
dE. (56)

The ratio p̃e(E′)/p̃i(E′) appearing in eq. (56) is well defined for every value of the energy E′, which stems from the
integration bounds in the definition of p̃i for models M1 or M2. For model M1, the scattering law for adjunctons is
f̃i, defined as in eq. (14), whereas for model M2 we sample from the biased law h̃i defined in eq. (21).

For model M3, the case of inelastic scattering was not considered in [22]. Following the general definition provided
above, we should have

p̃M3
i (E′) = Σi(E′), (57)

which yields

Σ̃i(E′) = Σt(E′)
p̃i(E′)

p̃i(E′) + p̃e(E′)
. (58)

According to this definition, for model M3 the ratio p̃e(E′)/p̃i(E′) appearing in eq. (56) would be defined only for
E′ ≥ εi. In order to allow for threshold reactions in model M3, the multiplicity can be, for instance, defined by using
the functions p̃i of model M1 when E′ < εi, and those of model M3 when E′ ≥ εi. For model M3, the inelastic
scattering law for adjunctons is f̃i, defined as in eq. (14).

Finally, for inelastic scattering, M4 does not coincide with M2. By following [15] in model M4 we have

p̃M4
i (E′) =

Σi(Ē)
(1 − α)

√
1 − εi

Ē
I(E′)E′, (59)

where the function I(E′) is defined as

I(E′) =
∫ ER

EL

dE

E2(1 − εi/E)
=

1
εi

log
(

EL

ER

ER − εi

EL − εi

)
, (60)

and the quantity Ē is provided in the appendix. The quantities EL and ER denote the lowest and the highest allowed
energies, respectively, whose definitions are given in the appendix. The sampling of the scattered adjuncton is made
from a biased law

h̃i(E′ → E) =
1

I(E′)
1

E2(1 − εi/E)
, for EL ≤ E ≤ ER. (61)
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Fig. 3. Adjoint collided flux ϕ†
c(E) for a medium with elastic and inelastic scattering, with A = 25. The Monte Carlo results

corresponding to model M1 are displayed with symbols. Blue squares: Σi = 0.1 and Σe = 0.9; red circles: Σi = 0.2 and
Σe = 0.8; green triangles: Σi = 0.3 and Σe = 0.7. The reference solution from eq. (37) is displayed with a solid line.

Table 3. Relative variances σ2
r of the Monte Carlo scores, from eq. (42), for a medium with elastic and inelastic scattering.

Σi/Σt M1 M∗
2 M2 M3 M4

0.1 3.7 × 10−5 5.6 × 10−5 3.2 × 10−5 3.7 × 10−5 3.2 × 10−5

0.2 5.0 × 10−5 7.5 × 10−5 4.2 × 10−5 5.0 × 10−5 4.2 × 10−5

0.3 6.9 × 10−5 8.7 × 10−5 5.0 × 10−5 6.9 × 10−5 5.1 × 10−5

Table 4. FOM of the Monte Carlo scores, from eq. (43), for a medium with elastic and inelastic scattering.

Σi/Σt M1 M∗
2 M2 M3 M4

0.1 1.7 × 102 3.9 × 102 2.9 × 102 1.6 × 102 2.2 × 102

0.2 1.3 × 102 3.2 × 102 2.3 × 102 1.2 × 102 1.8 × 102

0.3 9.0 × 101 2.4 × 102 1.8 × 102 8.3 × 101 1.3 × 102

For our numerical comparisons, an adjuncton point source is set at E0 = 1 and the maximum allowed energy of the
simulated particles is taken to be E∗ = E0/α4. The viable energy range is partitioned into 100 equally spaced intervals,
and the adjoint flux determined by Monte Carlo methods is benchmarked against reference solutions computed from
eq. (37) over a grid with 104 points with 30 iterations. The threshold energy for inelastic scattering has been set to
εi = 1.5, and we have taken A = 25. A parametric study has been performed by changing the ratio Σi/Σt of the
inelastic scattering cross-section with respect to the total cross-section in the region E > εi: three pairs of values have
been considered, namely, Σi = 0.1, Σe = 0.9; Σi = 0.2, Σe = 0.8; Σi = 0.3, Σe = 0.7. In each case, Σt = 1 for E > εi.
For illustration, an example of calculation is displayed in fig. 3 for model M1. A good agreement is observed, and
similar unbiased results have been obtained also for the other models. The qualitative behaviour is similar to that of
elastic scattering alone, but the amplitude of the Placzek transients increases with increasing Σi/Σt.

The comparison of the different Monte Carlo models for various values of Σi/Σt is displayed in table 3 for the
relative standard deviations, as defined in eq. (42), and in table 4 for the FOM, as defined in eq. (43). The behaviour
of these configurations is similar to those with pure elastic scattering. Concerning variance, the increase of the inelastic
scattering fraction Σi/Σt leads to increasing statistical weights: model M∗

2 shows the largest value for variance, followed
by M2 and M4, which are very close, and finally by M1 and M3, which are also very close. However, similarly as
for the case of pure elastic scattering, model M∗

2, which is less sensitive to weight changes, leads to shorter simulation
times, and thus yields the largest FOM. Model M2 shows also very good performances. Model M4, although tailored
specifically for inelastic reactions with threshold, has slightly worse FOM. Methods M1 and M3 have the lowest FOM
for this set of problems.
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4.3 Absorption

We now consider the contribution of absorption to the transport of adjunctons. As discussed in [13,14], for model M1

we have
p̃M1

a = 0, (62)

because no particles are emitted from absorption (νa = 0). This definition leads to Σ̃a = 0, which means that absorption
cannot be sampled explicitly. The effects of absorptions are nonetheless conveyed by the other adjuncton reactions via
the total cross-section and the multiplicity. For instance, for a medium with elastic scattering (with cross-section Σe)
and absorption, from eq. (13) the multiplicity of elastic scattering would read

ν̃e =
Σe

Σt

log α

α − 1
, (63)

i.e., lower by a factor Σe/Σt than in the case of pure elastic scattering. Thus, the adjuncton statistical weight change
at each collision would be reduced by the same amount, namely,

w = w′ Σe

Σt

log α

α − 1
, (64)

which stems from eq. (22) with f̃e = h̃e as in eq. (20). Using the multiplicity as a weight correction factor formally
consists in applying a form of implicit capture, as suggested in sect. 4. The same considerations apply to method M2,
provided that we replace f̃e by the biased kernel h̃e as defined in eq. (21), which yields

w = w′Σe

Σt

E

E′ . (65)

For the same combination of elastic scattering and absorption, for model M∗
2 we would have

w = w′ Σe

Σt
. (66)

Concerning model M3, no multiplicity is formally present in the general expression for p̃a [22], i.e.,

p̃M3
a = Σa. (67)

Absorption can then be explicitly sampled for adjunctons, with Σ̃a = Σa. If the adjuncton is absorbed, the particle
history is terminated. Model M4 coincides with the prescriptions of model M3 for absorption [15].

For our numerical comparisons, the same energy range and discretization are assumed as in the previous case,
and the adjoint flux determined by Monte Carlo methods is benchmarked against reference solutions computed from
eq. (35) over a grid with 104 points. We have taken a medium with elastic scattering and absorption, with A = 5.
A parametric study has been performed by changing the ratio Σa/Σt of the absorption cross-section with respect to
the total cross-section: three pairs of values have been considered, namely, Σa = 0.1, Σe = 0.9; Σa = 0.3, Σe = 0.7;
Σa = 0.5, Σe = 0.5. In each case, Σt = 1. For illustration, an example of calculation is displayed in fig. 4 for model
M1. A good agreement is observed, and similar unbiased results have been obtained also for the other models. When
the fraction of absorption is small, the qualitative behaviour is similar to that of elastic scattering alone; however, due
to absorption, adjunctons disappear and the adjoint flux vanishes in the limit of large energies E � E0. As expected,
the adjoint flux decreases faster for increasing values of the ratio Σa/Σt.

The comparison of the different Monte Carlo models for various values of Σa/Σt is displayed in table 5 for the
relative standard deviation, as defined in eq. (42), and in table 6 for the FOM, as defined in eq. (43). The behaviour
of these configurations is different from those with pure elastic scattering, and the discrepancies increase with an
increasing fraction of absorption. For small values of the absorption ratio Σa/Σt, models M∗

2 and M2 display the
largest FOM, which is coherent with the results found for pure elastic scattering. As the absorption ratio increases,
the performances of models M∗

2 and M2 worsen, and model M1 shows the largest FOM, followed by M4, M3.
Since the shape of the forward flux ϕ(E) for a medium with a large absorption cross-section deviates from the 1/E
behaviour, the gain induced by the biasing factor of models M∗

2 and M2 deteriorates. This feature is also mirrored by
the behaviour of the variance, as reported in table 5: methods M1, M3 and M4, which are based on explicit capture,
have larger variances than M∗

2 and M2, which are based on implicit capture.
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Fig. 4. Adjoint collided flux ϕ†
c(E) for a medium with elastic scattering and absorption, with A = 5. The Monte Carlo results

corresponding to model M1 are displayed with symbols. Blue squares: Σa = 0.1 and Σe = 0.9; red circles: Σa = 0.3 and
Σe = 0.7; green triangles: Σa = 0.5 and Σe = 0.5. The reference solution from eq. (35) is displayed with a solid line.

Table 5. Relative variances σ2
r of the Monte Carlo scores, from eq. (42), for a medium with elastic scattering and absorption.

Σa/Σt M1 M∗
2 M2 M3 M4

0.1 8.2 × 10−5 1.7 × 10−4 7.0 × 10−5 9.1 × 10−5 8.5 × 10−5

0.3 1.3 × 10−4 8.7 × 10−4 1.5 × 10−4 2.5 × 10−4 2.5 × 10−4

0.5 5.9 × 10−4 7.1 × 10−3 5.8 × 10−4 1.2 × 10−3 1.3 × 10−3

Table 6. FOM of the Monte Carlo scores, from eq. (43), for a medium with elastic scattering and absorption.

Σa/Σt M1 M∗
2 M2 M3 M4

0.1 1.9 × 102 3.0 × 102 2.5 × 102 1.5 × 102 1.8 × 102

0.3 4.1 × 102 5.9 × 101 3.4 × 102 2.0 × 102 2.2 × 102

0.5 1.9 × 102 7.2 × 100 8.8 × 101 1.0 × 102 1.1 × 102

4.4 Multiplication

To conclude our analysis, we examine the case of a multiplication reaction of the kind (n, 2n), i.e., with multiplicity
νm = 2. Generalization to the case of (n, xn) reactions or more broadly to fission would be relatively straightforward.
For the sake of simplicity, we assume that particles are re-emitted with an evaporation spectrum as

fm(E → E′) ∝ E′ exp(−E′/ξ(E)), for 0 < E′ < E − εm, (68)

where εm is the threshold energy for the reaction, and ξ(E) is the so-called nuclear temperature, which depends on
the energy of the neutron before the collision [28]. A common modelling choice is that ξ(E) follows a linear relation
with respect to energy, namely, ξ(E) = E − εm. In this case we have

fm(E → E′) =
e

e − 2
E′

(E − εm)2
e−

E′
E−εm for 0 < E′ < E − εm. (69)

Suppose that the (n, 2n) cross-section Σm is constant and that εm = 0. Correspondingly, for model M1 from eq. (18)
we have

p̃M1
m = 2Σm

e − 1
e − 2

, (70)

where we have assumed that the largest energy of a particle emitted from a (n, 2n) reaction is unbounded for increasing
incident energy E′. The adjuncton multiplicity is then obtained from eq. (13) as

ν̃m(E′) = 2
e − 1
e − 2

Σm

Σ̃m(E′)
. (71)
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Fig. 5. Adjoint collided flux ϕ†
c(E) for a medium with elastic scattering, absorption and (n, 2n) multiplication, with A = 5.

The Monte Carlo results corresponding to model M1 are displayed with symbols. Blue squares: Σm = 0.09 and Σa = 0.01; red
circles: Σm = 0.05 and Σa = 0.05; green triangles: Σm = 0.01 and Σa = 0.09. The reference solution from eq. (35) is displayed
with a solid line.

As a consequence, the adjoint multiplicity ν̃m depends on the energy E′ and can largely deviate from 2. A finer analysis
with finite Emax for the emitted particles and non-vanishing threshold εm > 0 would show that ν̃m becomes small
for E′ close to Emax and for small values of εm. In model M1, the energy distribution for the re-emitted adjunctons
follows from eq. (14) as

f̃m(E′ → E) =
e

e − 1
E′

E2
e−

E′
E , for E > E′. (72)

The sampling is made from the unbiased distribution f̃m, so that for the statistical weight from eq. (22) we have

w = 2w′ e − 1
e − 2

Σm

Σ̃m(E′)
. (73)

For model M2, from eq. (19) we have
p̃M2

e = 2Σm. (74)

The energy of the re-emitted particle is sampled from the biased distribution

h̃m(E′ → E) =
e

2(e − 2)
E′2

E3
e−

E′
E , for E > E′. (75)

Models M3 and M4 follow the rules of M1, but with

p̃m = Σ̃m. (76)

For our numerical comparisons, the energy range and discretization are assumed to be the same as in the previous
case, and the adjoint flux determined by Monte Carlo methods is benchmarked against reference solutions computed
from eq. (37) over a grid with 105 points and 25 iterations. We consider a medium with (n, 2n), elastic scattering and
absorption, with A = 5. For the sake of simplicity, we have set εm = 0. A parametric study has been performed by
changing the weight of the (n, 2n) cross-section with respect to the total cross-section: three pairs of values have been
considered, namely, Σm = 0.09, Σa = 0.01; Σm = 0.05, Σa = 0.05; Σm = 0.01, Σa = 0.09. In each case, we have
taken Σe = 0.9, so that Σt = 1. For illustration, an example of calculation is displayed in fig. 5 for model M1. A good
agreement is observed also for this problem, and similar unbiased results have been obtained for the other models. For
a ratio Σm/(Σm + Σa) = 0.5, the flux eventually converges to an asymptotic value for large E (the effects of particle
productions and particle losses are compensated). For larger ratios, the flux diverges for large E, and conversely for
smaller ratios the flux converges to zero.
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Table 7. Relative variances σ2
r of the Monte Carlo scores, from eq. (42), for a medium with elastic scattering, absorption and

(n, 2n) multiplication.

Σm/(Σm + Σa) M1 M∗
2 M2 M3 M4

0.1 7.3 × 10−5 1.2 × 10−5 5.4 × 10−5 7.9 × 10−5 6.1 × 10−5

0.5 7.5 × 10−5 1.2 × 10−5 6.0 × 10−5 8.4 × 10−5 6.3 × 10−5

0.9 8.0 × 10−5 1.6 × 10−5 6.9 × 10−5 9.0 × 10−5 6.9 × 10−5

Table 8. FOM of the Monte Carlo scores, from eq. (43), for a medium with elastic scattering, absorption and (n, 2n) multipli-
cation.

Σm/(Σm + Σa) M1 M∗
2 M2 M3 M4

0.1 3.8 × 101 3.1 × 102 6.3 × 101 5.0 × 101 4.3 × 101

0.5 6.5 × 101 3.5 × 102 1.0 × 102 8.3 × 101 7.3 × 101

0.9 1.1 × 102 2.5 × 102 1.7 × 102 1.4 × 102 1.1 × 102

The comparison of the different Monte Carlo models for various values of Σm/(Σm + Σa) is displayed in table 7
for the relative standard deviation, as defined in eq. (42), and in table 8 for the FOM, as defined in eq. (43). The
behaviour for these configurations is very similar to those with pure elastic scattering. This can be justified by recalling
that for these configurations Σe/Σt = 0.9. Model M∗

2 displays the largest FOM due to lower statistical weights and
the biased scattering law h̃e, followed by model M2.

4.5 Population control and variance reduction techniques

In order to assess the impact of population control techniques on the obtained result, we will revisit the case of
purely elastic scattering presented in sect. 4.1. For the different Monte Carlo models introduced above, we have
wM1,3 = w′′ log α/(α − 1), wM∗

2
= w′, and wM2,4 = w′(E/E′). In fig. 6 we illustrate the Monte Carlo simulation

results for model M1 and A = 5, with and without particle splitting. For these simulations we have used 106 particles,
in order to visually emphasize the effects of population control. As expected, when splitting is applied the variance
of the scores decreases, since for this particular case particles have an average weight multiplier log α/(α − 1) larger
than unit, which would lead to a large weight dispersion. We have examined the behaviour of particle splitting as a
function of A; it is worth recalling that increasing A leads to lower weight multipliers at elastic collisions, i.e., for
A → ∞ we have α → 1 and log α/(α − 1) → 1 from above. Results are presented in table 9 for the relative standard
deviation, as defined in eq. (42), and in table 10 for the FOM, as defined in eq. (43). Splitting is never applied for
model M∗

2, since the statistical weight does not change after the collision; moreover, when population control is not
applied M∗

2 coincides with M2. On the other hand, methods M1,3 and M2,4 imply particle weights increasing at each
elastic collision. For models M1,3, the weight multiplier depends only on the collided nucleus mass A and is always
larger than unit; for model M2,4 the weight multiplier depends on the energy ratio E/E′ and is thus again larger than
one, since adjunctons are scattered to higher energies E ≥ E′ for elastic collisions. In particular, from eq. (50) it is
possible to evaluate the average energy sampled from h̃e for model M2,4, namely,

Ē =
∫

Eh̃e(E′ → E)dE = E′ log α

α − 1
. (77)

For the average weight multiplier of model M2,4 we thus obtain

w̄M2,4 = w′ Ē

E′ = w′ log α

α − 1
. (78)

Therefore, on average the statistical weight for method M1,3 and M2,4 is multiplied by the same factor log α/(α− 1).
For all these schemes splitting is thus expected to be a convenient population control tool, while it is ineffective for
model M∗

2. Variance reduction comes at the expense of an increased simulation time, because of the additional particle
histories that must be simulated, which might in some cases lead to a deterioration of the FOM. As A increases, the
average weight multiplier decreases, so that splitting becomes less efficient, as shown in table 9.
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Fig. 6. Adjoint collided flux ϕ†
c(E) for a medium with elastic scattering, with A = 5. The Monte Carlo results corresponding

to model M1 are displayed with symbols. Blue squares: simulation with particle splitting. Red diamonds: simulation without
particle splitting. The reference solution from eq. (35) is displayed with a solid line.

Table 9. Relative variances σ2
r of the Monte Carlo scores, from eq. (42), for a purely elastic scattering medium: the effects of

particle splitting.

A Splitting M1,3 M∗
2 M2,4

5 yes 6.3 × 10−5 1.1 × 10−4 5.6 × 10−5

5 no 1.8 × 10−4 same as M2,4 1.1 × 10−4

15 yes 1.1 × 10−4 1.2 × 10−4 1.1 × 10−4

15 no 1.3 × 10−4 same as M2,4 1.2 × 10−4

25 yes 1.3 × 10−4 1.2 × 10−4 1.2 × 10−4

25 no 1.3 × 10−4 same as M2,4 1.2 × 10−4

Table 10. FOM of the Monte Carlo scores, from eq. (43), for a purely elastic scattering medium: the effects of particle splitting.

A Splitting M1,3 M∗
2 M2,4

5 yes 1.0 × 102 5.0 × 102 1.3 × 102

5 no 2.5 × 102 same as M2,4 4.9 × 102

15 yes 3.0 × 102 4.9 × 102 3.9 × 102

15 no 3.6 × 102 same as M2,4 4.8 × 102

25 yes 3.4 × 102 4.8 × 102 4.6 × 102

25 no 3.7 × 102 same as M2,4 4.8 × 102

5 Conclusions

In this work we have examined five different Monte Carlo models that can be used in order to formally solve the adjoint
neutron transport equation. These models have been shown to belong to a broad class on Monte Carlo methods
whereupon the simulation of fictitious particles (called “adjunctons”) obeying modified displacement and collision
kernels allows estimating the adjoint neutron flux. Each scheme differs in the choice of adjuncton cross-sections,
scattering kernels and multiplicities, and otherwise shares the same simulation strategy.

In order to test the performances of the proposed schemes, we have considered a benchmark problem consisting in
continuous-energy transport in infinite media starting from a mono-chromatic source, where reference solutions can be
derived by solving a family of adjoint Placzek equations. Four kinds of nuclear reactions have been examined, namely,
elastic and inelastic scattering, absorption and (n, 2n) multiplication. The relative standard deviations and the figures
of merit of the Monte Carlo models have been computed for different physical configurations of interest.
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For purely elastic scattering media, models M∗
2 and M2 display the highest figure of merit thanks to the introduc-

tion of a variance reduction scheme that is especially efficient when elastic scattering is the dominant reaction. Model
M∗

2 is a variant of model M2 including a biased source and pay-off function, which leads to a reduction in the weight
multiplication factor at each collision. The variance reduction method of model M4, although slightly less efficient
than that of M2 and M∗

2, yields a figure of merit larger than those of model M1 and M3. When inelastic scattering
is taken into account, method M∗

2 is very robust and displays the highest figure of merit and the smallest variance.
If absorption is considered, the variance reduction technique of M∗

2 and M2 becomes less efficient, and the figure
of merit of these models becomes comparable to that of the other models when absorption is the dominant process.
Yet, M∗

2 and M2 have the prominent advantage of being universal, i.e., not specifically tailored for distinct collision
kernels, and can be thus more easily implemented in existing production Monte Carlo codes.

The relevance of two population control techniques, namely Russian roulette and particle splitting, has been also
shown, and their impact on the figures of merit of the Monte Carlo simulations has been discussed. Russian roulette
prevents particle weights to decrease indefinitely, whereas splitting prevents particle weights to diverge indefinitely.
Both techniques are greatly beneficial to the adjoint simulations.

It should be stressed that for the configurations tested here the maximum gain in the FOM is in most cases of
the order of 10 at best: in this respect, the choice of an adjuncton model should be principally guided by a criterion
of parsimony in view of a possible implementation in an existing Monte Carlo code. Based on these considerations, it
would appear that the most judicious option would be to prefer model M1, because of its versatility, and switch to
model M2 or M∗

2 when needed. However, a wider panel of tests must be performed in order to assess the performances
of adjuncton models for systems with coupled angle-energy scattering laws and with spatial leakages. Future work will
then consist in extending the present analysis to other benchmark problems for finite-size media.

The authors are very grateful to the reviewer for pointing out to some crucial aspects and giving the opportunity to improve
the paper.

Appendix A. Constants for inelastic scattering

We recall the definition of a few useful constants, as introduced in [13]. For model M1 and M2 let us define

zmin =

√
1 − εi

E′
i,min

(A.1)

and
zmax =

√
1 − εi

E′
i,max

. (A.2)

If E′ ≥ εi(A + 1)2, zmin and zmax are obtained from the following formulae:

zmin =
−A +

√
A2 + [A2 + (A + 1)2E′/εi][(A + 1)2E′/εi − 1]

A2 + (A + 1)2E′/εi
(A.3)

and

zmax =
A +

√
A2 + [A2 + (A + 1)2E′/εi][(A + 1)2E′/εi − 1]

A2 + (A + 1)2E′/εi
. (A.4)

Conversely, if E′ < εi(A + 1)2, then zmin and zmax are obtained from

zmin =
A −

√
A2 + [A2 + (A + 1)2E′/εi][(A + 1)2E′/εi − 1]

A2 + (A + 1)2E′/εi
(A.5)

and

zmax =
A +

√
A2 + [A2 + (A + 1)2E′/εi][(A + 1)2E′/εi − 1]

A2 + (A + 1)2E′/εi
. (A.6)

For model M4, we recall some definitions from [15]. The quantity Ē is defined as the arithmetic average energy
between EL and ER, namely,

Ē =
1
2
[EL(E′) + ER(E′)], (A.7)
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where

EL(E′) =
εi

1 − y2
, (A.8)

ER(E′) =
εi

1 −
(

a
by

)2 . (A.9)

The expressions for energies EL and ER are derived by assigning the coefficients

a =
(A + 1)2E′/εi − 1

2A
, (A.10)

b =
(A + 1)2E′/εi + A2

2A
(A.11)

y =
2a

1 +
√

1 + 4ab
. (A.12)
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