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Abstract. Markov processes play an important role in physics and in particular in the theory of open
systems. In this paper we study the asymptotic evolution of trace-nonincreasing homogeneous quantum
Markov processes (both types, discrete quantum Markov chains and continuous quantum Markov dynami-
cal semigroups) equipped with a subinvariant faithful state in the Schrödinger and the Heisenberg picture.
We derive a fundamental theorem specifying the structure of the asymptotics and uncover a rich set of
transformations between attractors of quantum Markov processes in both pictures. Moreover, we gener-
alize the structure theorem derived earlier for quantum Markov chains to quantum Markov dynamical
semigroups showing how the internal structure of generators of quantum Markov processes determines
attractors in both pictures. Based on these results we provide two characterizations of all asymptotic and
stationary states, both strongly reminding in form the well-known Gibbs states of statistical mechanics.
We prove that the dynamics within the asymptotic space is of unitary type, i.e. quantum Markov processes
preserve a certain scalar product of operators from the asymptotic space, but there is no corresponding
unitary evolution on the original Hilbert space of pure states. Finally simple examples illustrating the
derived theory are given.

1 Introduction

Any physical system is inevitably in contact with its surrounding. This may be intended or even designed with the
purpose to achieve external control over quantum phenomena (quantum control theory [1]). However, it is always
accompanied by unavoidable mutual interactions between the system and its surrounding typically leading to informa-
tion and energy system-environment exchange. While the former is responsible for decoherence —the loss of quantum
coherences [2], the latter may cause dissipation [3]. In all cases it breaks the unitary evolution of individual subsystems
and the resulting irreversible open dynamics of the system of interest becomes highly involved and in most cases
escapes the possibility for analytical solutions. Exceptions are rare and often assume additional conditions like the
representation of the surrounding as a thermal bath of harmonic oscillators [4]. A recent review mapping the scarcely
occupied space of exactly solvable quantum many-body models can be found in [5].

In order to avoid the overall complexity of composed system-environment dynamics some simplifying assumptions
are often applied [6]. One of the most convenient approaches focuses on quantum systems whose evolution can be
described to sufficient extent by Markovian dynamics [7]. In such a case the system stays uncorrelated with the
environment and changes arising in the surrounding environment can be neglected. Basically two large classes of
Markovian processes are at hand. Both classes of quantum Markov processes (QMPs), continuous quantum Markov
dynamical semigroups (QMDSs) [8,9] and discrete quantum Markov chains (QMCHs) [10] are frequently employed
to investigate a broad class of processes like the equilibration of quantum systems [11], interaction of matter with
electromagnetic radiation [6,7], decoherence effects in noisy environment [12]. As a complement, engineered Markovian
dynamics provides a tool allowing for example the preparation of a system in the desired quantum state [13–15], its
storage and manipulation [16,17], verification of quantum programs [18], the synchronization of subsystems clocks [19]
or environment-assisted quantum transport [20–22].

Despite the simplifications made towards the Markovian regime, a full solution of quantum Markovian evolution
constitutes in general a challenging task. However, a large class of problems of interest, like the already mentioned
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problem of decoherence free states [23], equilibrium states, transport efficiency or synchronization of subsystems, may
be resolved at the level of asymptotic dynamics. Unlike the rest the of dynamics, the asymptotic part is fully determined
by the asymptotic (peripheral) spectrum of the relevant Markovian generator and its associated eigenvectors (attrac-
tors) forming the attractor (asymptotic) space. Understanding what structures attractors form, their mutual algebraic
properties or how they are determined via the internal structure of Markovian generators is of central interest. Due
to their relevance for the growing field of quantum thermodynamics and quantum cryptography, intensive research is
devoted to the analysis of stationary states and related fixed points of QMPs. The existence of a unique invariant state
for irreducible trace-preserving QMPs was investigated within the Perron-Frobenius theory in infinite-dimensional
(respectively, in finite-dimensional) Hilbert spaces [24] (respectively [25]). Based on irreducible decomposition, a char-
acterization of asymptotic states was provided in [26] for trace-preserving QMPs in finite-dimensional Hilbert spaces
and recently it was generalized for stationary states of QMCHs in infinite-dimensional Hilbert spaces [27]. How the in-
ternal structure of QMPs determines the set of fixed points was investigated for unital channels in infinite-dimensional
(respectively, finite-dimensional) Hilbert spaces [28] (respectively [29]), for trace-preserving QMDSs equipped with
a faithful invariant state [30,31] and lately for any quantum channel [32] and quantum Markov dynamical semi-
group [33]. The structure analysis of the whole attractor space emerging from QMPs was carried out for quantum
operations equipped with a faithful invariant state [34] and for trace-preserving QMDSs [35].

Another equally important issue concerns the mutual relationship between attractors in the Schrödinger and Heisen-
berg picture. As the former contains all stationary states and the latter all conserved quantities of the evolution, it
plays a crucial role in our understanding how conserved quantities determine the resulting stationary state [36].
In closed, unitary dynamics both sets of attractors coincide and the same applies to QMCHs generated by uni-
tal channels [37]. However, attractors in the Schrödinger and the Heisenberg picture of QMCHs equipped with a
general faithful invariant state are in general different and a simple algebraic relation between them was presented
in [34].

In this paper we reveal that this relation [34] is just a particular example from a whole family of mutual relations
among the two sets of attractors and we show that it applies to all quantum Markov processes (including trace-
nonincreasing processes and quantum Markov dynamical semigroups) equipped with a subinvariant faithful state
(a generalization of faithful invariant states for trace-nonincreasing QMPs). This family is generated by operator
monotone functions and each its instance provides a dual basis of the attractor space allowing to express the asymptotic
evolution for any initial state. We present two important examples of operator monotone functions, each giving rise
to a useful (and convenient) characterization of stationary states (respectively, asymptotic states) via integrals of
motion (respectively, Hermitian attractors) of given QMP. Their importance is twofold. First, it avoids problems
with positivity of the dynamics induced density operator which arises if we construct stationary or asymptotic states
directly from attractors. Second, these states strongly resemble Gibbs states well known from statistical physics [38].
We expect that this link might have further applications in quantum processing.

The second goal of the paper is to examine how the inner structure of Markovian generator determines attractor
spaces of QMPs in the Schrödinger and the Heisenberg picture. Using relations between attractors in both pictures
we generalize previously known results for QMCHs [34] and derive algebraic equations determining attractors of
continuous QMDSs in both pictures in terms of their Hamiltonian, Lindblad operators and eventually an optical
potential [11]. The obtained results apply to all discrete QMCHs as well as continuous QMDSs, which are equipped
with a subinvariant faithful state. We stress that these QMPs may not be trace-preserving and therefore allow for
analysis of physical situations where part of the dynamics is not known [11] or is gradually lost, e.g. evolution with
a sink [22,39,40]. Based on the obtained algebraic equations we analyze the algebraic structure of attractors in both
pictures and specify the type of evolution running inside the asymptotic space. In both, discrete and continuous, cases
it is shown that the asymptotic dynamics is reversible. With a properly redefined Hilbert-Schmidt scalar product it
might be seen as an unitary evolution. In particular, we show that a quantum channel capable to reverse the evolution
inside the attractor space of QMCH is the so-called Petz recovery map [41]. For QMDSs, we derive a master equation
driving the dynamics inside the attractor space.

Both emphasized goals are motivated by the effort to develop techniques capable to provide an explicit form of
asymptotic dynamics for important classes of QMPs, e.g. many-body quantum systems with repeated local interactions.
An advantage of such an approach is the possibility to analyze asymptotic evolution in the limit of large number of
interacting subsystems.

We briefly describe the structure of the paper. In sect. 2 we provide settings and important definitions that are
used throughout the whole paper. The aim of sect. 3 is to introduce the concept of quantum Markov processes,
describe them in terms of their generators and specify their asymptotic regime. Section 4 is devoted to studies of the
mutual relationships between attractors of QMPs in the Schrödinger and the Heisenberg picture. Employing operator
monotone functions we construct dual basis for both, continuous and discrete, QMPs. Finally two important cases
of operator monotone functions are discussed. In sect. 5 we prove the structure theorem for attractors of QMPs in
both pictures and reveal their algebraic properties. Two useful characterizations of asymptotic and stationary states
are given in sect. 6. The description of the dynamics inside the attractor space is investigated in sect. 7. Finally, we
examine two examples in sect. 8 and conclude in sect. 9.
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2 Preliminaries and definitions

Throughout the whole paper we assume a quantum system associated with a finite N -dimensional Hilbert space H
equipped with a scalar product 〈·, ·〉. Let B(H ) be the associated Hilbert space of all operators acting on H and
we denote its corresponding Hilbert-Schmidt product as (A,B) = Tr{A†B} and corresponding Hilbert-Schmidt norm
‖A‖HS =

√
(A,A) with A,B ∈ B(H ) (A† denotes the adjoint operator of A).

A state of a quantum system is described by a density operator, a positive operator with unit trace. Let us denote the
set of all states as S(H ). The most general physical state change is given by a quantum operation T : B(H ) → B(H ),
a linear completely positive map (CP) which admits decomposition into Kraus operators {Aj}k

i=1 ⊆ B(H )

T (·) =
k∑

j=1

Aj(·)A†
j . (1)

Moreover, any quantum operation is supposed to be trace-nonincreasing and thus satisfying T †(I) ≤ I or equivalently
expressed in terms of Kraus operators as

∑k
i=1 A†

iAi ≤ I. Note that the adjoint map T † of a quantum operation T
is also a completely positive map with Kraus operators {A†

j}k
i=1, but it does not represent a quantum operation in

general because the map T † is not necessarily trace-nonincreasing. Let us introduce a little more terminology used in
the context of quantum operations. If T †(I) =

∑
j A†

jAj = I we call the quantum operation T a channel or a trace-
preserving quantum operation. A quantum operation which leaves the maximally mixed state unchanged is called
unital and satisfies T (I) =

∑
j AjA

†
j = I. A prominent example of unital channels are random unitary operations

(random external fields). In the less restrictive cases when P(I) =
∑

j AjA
†
j ≤ I the quantum operation is called

sub-unital.
From a different perspective quantum operations are linear maps acting on operators and for this reason they are

called superoperators. Other examples of superoperators, we exploit in our analysis, are the left (respectively, right)
multiplication operator defined as LP (X) = PX (respectively, RP (X) = XP ), where P is a positive operator from
B(H ). From these two superoperators one can construct the relative modular operator

ΔQ,P = LQR−1
P ,

where P is assumed to be strictly positive and following R−1
P = RP−1 [42].

A convenient tool for our analysis of mutual relationships between attractors in Schrödinger and Heisenberg picture
are operator monotone functions, which can be introduced as follows. Assume a function f defined on a real interval I
and a self-adjoint operator A with its spectrum lying in the interval I. Invoking its spectral decomposition A = UDU †

with diagonal matrix D = diag(λ1, λ2, . . .) one can introduce the operator f(A) = Uf(D)U†, where f(D) is the
diagonal matrix f(D) = diag(f(λ1), f(λ2), . . .). A function k : [0,+∞) → [0,+∞) is called an operator monotone if
any two operators A,B such that A ≥ B ≥ 0 implies k(A) ≥ k(B). Interestingly, Löwner has shown that all operator
monotones can be characterized by an integral representation [43].

Theorem 1. k : [0,+∞) → [0,+∞) is an operator monotone if and only if there is a positive finite measure μ such that

k(y) = α + βy +
∫ +∞

0

y(1 + s)
s + y

dμ(s), (2)

with α = k(0) ≥ 0 and β = limt+∞
f(t)

t ≥ 0.

3 Homogeneous quantum Markov processes

Let us recall the concept of Markovian evolution and specify its form in quantum domain. In general, a stochastic
process is called Markov if the future evolution of any present state is independent on its past. Its future is given solely
by the action of a propagating map onto the present state. In the context of quantum mechanics it follows that the
Markov evolution during any possible finite time interval 〈t1, t2〉 is given by some quantum operation T (t1, t2). Here
we stress that we allow changes which are trace-nonincreasing. If any state change driven by quantum Markov process
depends solely on the length of the time interval �t = t2 − t1, i.e. T (t1, t2) = T (�t), the quantum Markov process
is called homogenous. Thus to describe a state change under a homogenous quantum Markov process one does not
even need to know the initial time of interval in which the state change takes place. In this work we investigate only
homogenous quantum Markov processes and thus, to simplify notation, we use the notion quantum Markov process
(QMP) to identify homogenous quantum Markov process.
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We distinguish two classes of quantum Markov processes. The first one are discrete quantum Markov chains
(QMCHs). Their one step of evolution is governed by a generating quantum operation T taking the state ρ(n) emerging
from previous n iterations to the state ρ(n + 1) = T (ρ(n)). Thus, within n iterations the system initially prepared in
the state ρ(0) evolves into the state ρ(n) = T n(ρ(0)). In the Heisenberg picture we have, instead of evolving states,
evolving observables. A consistence of both descriptions requires that each initial observable A(0) and initial state
ρ(0) fulfil mean value condition at any step of QMCH

〈A(0)〉T n(ρ(0)) = 〈T ′
n(A(0))〉ρ(0). (3)

T ′
n denotes the propagator describing the n steps of QMCH evolution in the Heisenberg picture and mean values

are defined with respect to the Hilbert-Schmidt scalar product, i.e. 〈A〉ρ = Tr[A†ρ]. From (3) it follows that QMCH
evolution in the Heisenberg picture is generated by the adjoint map T † with respect to the Hilbert-Schmidt scalar
product, which is completely positive, unital and takes the form

T †(·) =
k∑

j=1

A†
j(·)Aj . (4)

The second class of QMPs is comprised of quantum Markov dynamical semigroups (QMDSs) i.e. quantum oper-
ations Tt transforming the state ρ(t1) at time t1 into the state ρ(t2) = Tt2−t1ρ(t1) at time t2. Assuming uniformly
continuous QMDSs, Tt takes the form

Tt = exp(Lt). (5)

Due to Lindblad original work [8] the generator L : B(H ) → B(H ) of QMDS can be written as

L(X) = V(X) − KX − XK†, (6)

with V being a completely positive map with Kraus operators {Lj} and K is an element of B(H ). Splitting K into
its Hermitian and anti-Hermitian part K = iH + 1

2V†(I)+G with Hamiltonian H and an optical potential G [11], the
generator of QMDS takes the form

L(X) = i[X,H] +
∑

j

LjXL†
j −

1
2
{L†

jLj ,X} − GX − XG. (7)

Here, the Lindblad operators Li, Hamiltonian H and the optical potential G can be chosen arbitrarily, provided that
G is positive to ensure that the generated QMDS is trace-nonincreasing. The corresponding evolution under a QMDS
is described by the Markov master equation

dρ(t)
dt

= L(ρ). (8)

In case that QMDS Tt is trace-preserving, we find L†(I) = 0 implying G = 0 and the generator may be cast into the
well-known Lindblad form for trace-preserving QMDSs

L(X) = i[X,H] +
∑

j

LjXL†
j −

1
2
{L†

jLj ,X}. (9)

Analogously as in the discrete case, the evolution of observables is given by the dynamical semigroup T †
t whose

generator takes the form
L†(A) = V†(A) − K†A − AK. (10)

If QMDS is trace-preserving the generator (10) can be written with the help of the Hamiltonian as

L†(A) = −i[X,H] +
∑

j

L†
jXLj −

1
2
{L†

jLj ,X}. (11)

QMPs are frequently used to model a simplified or effective evolution of open quantum systems. In comparison with
the class of closed quantum evolutions an additional severe obstacle arises, if we start to analyze its evolution. This is
due to the fact that both generators of QMPs generally do not commute with their adjoint map, i.e. they are neither
Hermitian nor normal. Consequently, this makes the generated dynamics much more involved and harder to solve as
the standard method of spectral decomposition is not available usually. Let us list the implicit unpleasant consequences
in detail. First, such generator of a QMP may not be diagonalizable and then we are left with Jordan normal form
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given only in the basis of some generalized eigenvectors [44]. Second, we miss a relationship between eigenvectors or
generalized eigenvectors of the generator and its adjoint map. Consequently, corresponding (generalized) eigenvectors
may be nonorthogonal and a construction of the important dual basis becomes a hard task.

However, if we are interested in the asymptotic dynamics of QMPs solely, the solution of its behavior is one step less
complicated. Indeed, it has been shown [34] that the corresponding part of the generator responsible for asymptotic
dynamics of QMP can always be diagonalized. The space B(H ) can be decomposed into two parts, i.e. B(H ) = Atr⊕Y
with attractor space Atr supporting the asymptotic dynamics of a given QMP and a dying operator space Y whose
elements gradually vanish during the QMP. Both operator spaces Atr and Y are closed under the action of a given
QMP. As the spectra of generators of discrete and continuous QMPs differ, definitions of their attractor spaces differ
slightly as well. Let us start with discrete QMCHs in the Schrödinger picture, where the attractor space is given as

Atr(T ) =
⊕

λ∈σas

Ker(T − λI), (12)

with asymptotic spectrum σas containing all eigenvalues of the generator T with modulo one. Assuming Xλ,i form basis
of each individual eigenspace Ker(T − λI) and Xλ,i form the corresponding dual basis, i.e. (Xλ1,i,X

λ2,j) = δλ1λ2δij ,
we can write down the asymptotic dynamics of the given QMCH

ρ(n  1) =
∑

λ∈σas,i

λnXλ,i Tr{ρ(0)(Xλ,i)†}. (13)

In the Heisenberg picture the attractor space is given analogously as

Atr(T †) =
⊕

λ∈σas

Ker(T † − λI), (14)

and the asymptotic evolution of observables is written in the corresponding dual basis of the attractor space

A(n  1) =
∑

λ∈σas,i

λn(Xλ,i)† Tr{A(0)Xλ,i}. (15)

A special attention belongs to attractors associated with eigenvalue one. They are also called fixed points because
they do not evolve during a given evolution. While fixed points of QMCH in the Schrödinger picture Fix(T ) contain
all stationary states, fixed points of QMCH in the Heisenberg picture Fix(T †) contain all integrals of motion. Both
sets are nonempty and contain at least one positive operator.

Similarly, the attractor space of QMDSs is composed of the corresponding kernels of the generator L

Atr(T ) =
⊕

λ∈σas

Ker(L − λI), (16)

where, in the continuous case, the asymptotic spectrum σas contains only purely imaginary eigenvalues of the generator
L. This can be deduced from the fact that X is an eigenoperator of the generator L, i.e. L(X) = aX, if and only if X is
an eigenoperator of the quantum operation Tt = exp(Lt) associated with the eigenvalue exp(at) for any positive time
t. Hence, eigenoperator X of L associated with eigenvalue a is an attractor of QMDS generated by L iff | exp(at)| = 1
for any t ≥ 0. Provided we find the dual basis Xλ,i for some chosen basis Xλ,i of the attractor space, the asymptotic
dynamics in the Schrödinger picture takes the form

ρ(t  1) =
∑

λ∈σas,i

exp(λt)Xλ,i Tr{ρ(0)(Xλ,i)†}. (17)

As we have already mentioned, compare to closed unitary evolution we miss a relationship between eigenvectors of
the generator and its adjoint map. Therefore we cannot be sure whether the operator spaces Atr and Y are mutually
orthogonal and also different kernels forming the attractor space may be in general nonorthogonal. In addition, finding
the dual basis of the attractor space becomes a nontrivial problem. Thus, without such relation we lose a connection
between the asymptotic dynamics of QMP in the Schrödinger and the Heisenberg pictures. One of our aims is to
show that for a broad class of QMPs these obstacles can be removed and we can enjoy the benefits of an analogous
theory we have got to use for closed unitary evolutions. Some relation between eigenvectors of the generator and its
adjoint map were already revealed for QMCHs [34]. Here we intend to show that there is a deep connection between
eigenvectors of evolution generators in both pictures. The previously found results are an example of this connection
and we generalize findings presented in [34] and extend their validity also to QMDSs. As will be shown, it helps to
uncover algebraic properties of attractors, especially algebraic properties of integrals of motion and stationary states of
quantum Markov processes. Such results are essential for the complete understanding of equilibria and their formation.
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4 Relations between eigenvectors of QMPs in the Schrödinger and the Heisenberg picture

This part is devoted to spectral properties of the generator responsible for the asymptotic dynamics of a given QMP.
We first focus on QMCHs, a generalization to QMDSs is straightforward.

4.1 Quantum Markov chains

Throughout the rest of paper we assume a generating quantum operation T equipped with a subinvariant faithful
T -state σ ∈ B(H ) which means that σ is strictly positive and satisfies T (σ) ≤ σ. We call such state T -state. This
definition generalizes the concept of faithful invariant states [28,45] for QMPs which are not trace-preserving, i.e.
they may decrease trace of input operators. The starting point of the following considerations is the theorem which
establishes a basic relation between eigenvectors of quantum operation T and its adjoint map (for proofs, exploiting
different techniques, see [32,34,46]).

Theorem 2. If λ is from the asymptotic spectrum of quantum operation T then for any attractor X associated with the
eigenvalue λ we have

1) X ∈ Ker(T − λI) ⇔ R−1
σ (X) ∈ Ker(T † − λI),

2) X ∈ Ker(T − λI) ⇔ L−1
σ (X) ∈ Ker(T † − λI).

Employing this theorem we can find a broad family of linear bijections mapping individual kernels Ker(T − λI) of
the attractor space onto itself. It can be formulated as follows.

Theorem 3. Let λ be an element of asymptotic spectrum of quantum operation T and σ1, σ2 two, not necessarily dif-
ferent, T -states. Then any operator monotone function k establishes a well-defined bijection k(Δσ1,σ2) onto attractors
(in both the Schrödinger and the Heisenberg picture) associated with the eigenvalue λ.

Proof. From theorem 2 we can deduce that the relative modular operator Δσ1,σ2 is strictly positive and defines a
bijection onto the attractor subspace Ker(T −λI) as well as onto the attractor subspace Ker(T †−λI). This is true also
for the map sI + Δσ1,σ2 and its existing inverse, where s is nonnegative and I stands for the identity map. Moreover,
all these maps commute mutually and thus for any finite measure μ(s) we observe that also the map

k(Δσ1,σ2) =
∫ +∞

0

Δσ1,σ2(1 + s)
sI + Δσ1,σ2

dμ(s) + αI + βΔσ1,σ2 (18)

with β ≥ 0 is a strictly positive bijection onto the individual attractor subspaces Ker(T − λI) and Ker(T † − λI).
According to theorem 1 we conclude that any operator monotone function k defines strictly positive bijection k(Δσ1,σ2)
onto these attractor subspaces in both pictures. �

We have found a broad and important family of linear bijections of attractor spaces of quantum operation T and
its adjoint map. In sect. 6 we employ two particular examples of these bijections to reveal two inequivalent forms
of asymptotic states of QMPs. An apparent advantage of our construction is the fact that each operator monotone
function defines a linear bijection of attractor spaces independently of the underlying Hilbert space, i.e. its dimension.
In a similar way one can construct maps which are not bijections but map attractor spaces back into the same attractor
space. Moreover by combining theorems 2 and 3, we receive a general relationship between attractors of QMCH in the
Schrödinger and Heisenberg picture.

Corollary 1. Let λ be an element of the asymptotic spectrum of a quantum operation T generating QMCH and σ1, σ2

its two, not necessarily different, T -states. If k is an operator monotone function then

X ∈ Ker(T − λI) ⇔ R−1
σ2

k(Δσ1,σ2)(X) ∈ Ker(T † − λI). (19)

Note that in corollary 1 we could use also the superoperator (Rσ1)
−1k(Δσ1,σ2), which apparently does the same job.

However, our choice is due to the advantage that maps R−1
σ2

and k(Δσ1,σ2) commute and consequently their product
is again a strictly positive operator. This allows us to define a new scalar product on the space B(H ) for any choice
of operator monotone function k

(X,Y )k = (X,R−1
σ2

k(Δσ1,σ2)(Y )). (20)

Then we say that two operators X and Y are k-orthogonal if (X,Y )k = 0. Similarly, two sets in B(H ) are k-orthogonal
if any two elements from these two sets are mutually k-orthogonal. The direct consequence of the corollary 1 are the
following k-orthogonality relations.
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Theorem 4. Let λ1 and λ2 be different elements of the asymptotic spectrum of quantum operation T generating QMCH
and σ1, σ2 its two, not necessarily different T -states. If k is an operator monotone function then

1) attractor subspaces Ker(T − λ1I) and Ker(T − λ2I) are k-orthogonal,

2) attractor subspace Ker(T − λ1I) and range Ran(T − λ1I) are k-orthogonal.

Proof. Assume Xi ∈ Ker(T − λiI). Then

(X1,X2)k =
1
λ2

(X1, R
−1
σ2

k(Δσ1,σ2)(T (X2)))

=
1
λ2

(T †(R−1
σ2

k(Δσ1,σ2)(X1)),X2)

=
λ1

λ2
(R−1

σ2
k(Δσ1,σ2)(X1),X2) =

λ1

λ2
(X1,X2)k

following from the strict positivity of the operator R−1
σ2

k(Δσ1,σ2) and we find (X1,X2)k = 0. In order to prove the
second statement consider X ∈ Ker(T − λ1I) and Y ∈ Ran(T − λ1I). Hence there exists 0 �= Z ∈ B(H ) such that
Y = T (Z) − λZ and one can check

(X,Y )k = (X,R−1
σ2

k(Δσ1,σ2)(T (Z) − λ1Z))

= (T †(R−1
σ2

k(Δσ1,σ2)(X)), Z) − λ(X,R−1
σ2

k(Δσ1,σ2)(Z))

= λ[(R−1
σ2

k(Δσ1,σ2)(X), Z) − (X,R−1
σ2

k(Δσ1,σ2)(Z))] = 0.

�

Theorem 4 simply tells that attractors associated with different eigenvalues from asymptotic spectrum of generating
quantum operation T are k-orthogonal and they are also k-orthogonal to the in time dying space Y. In turn it means
that we have found a dual basis Xλ,i of eigenvectors Xλ,i. Assuming k is a given operator monotone function, the dual
basis Xλ,i reads

Xλ,i =
R−1

σ2
k(Δσ1,σ2)(Xλ,i)

(Xλ,i, R
−1
σ2 k(Δσ1,σ2)(Xλ,i))

. (21)

4.2 Quantum Markov dynamical semigroups

So far we have considered asymptotic evolution of discrete QMCHs. Let us show that the same theory applies to
continuous QMDSs as well. Apparently, it is sufficient to prove theorem 2 for QMDSs. In order to proceed we need to
define an analogy of T -state for QMDSs. We call a faithful state σ, i.e. σ > 0, T -state if Tt(σ) = exp(Lt)(σ) ≤ σ holds
for any positive time t. This definition is more involved, especially when it comes to the point if a given QMDS satisfies
it. However, in fact it is sufficient to check whether this condition is fulfilled for times from some right neighborhood of
zero. Moreover, if the studied QMDS is trace-preserving, the definition of a T -state σ simply reduces to the condition
L(σ) = 0. With this modification, theorem 2 and all of the follow-up theory applies to QMDSs.

Theorem 5. Let σ be a T -state of QMDS Tt = exp(Lt). If λ is from the asymptotic spectrum of a QMDS Tt then for
any attractor X associated with the eigenvalue λ we have

1) X ∈ Ker(L − λI) ⇔ R−1
σ (X) ∈ Ker(L† − λI),

2) X ∈ Ker(L − λI) ⇔ L−1
σ (X) ∈ Ker(L† − λI).

Proof. If X ∈ Ker(L − λI) then X ∈ Ker(Tt − exp(λt)I) for any positive t. Due to theorem 2 we have R−1
σ (X) ∈

Ker((Tt)† − exp(λt)I) for any positive t which in turn, by differentiation with respect to time at t = 0, means that
R−1

σ (X) ∈ Ker(L† − λI). Other implications can be proven in the same way. �

We have established a general theory for analyzing the attractor spaces of discrete and continuous QMPs in both
pictures. In the following we employ two examples of operator monotone functions which provide an additional insight
into the inverse evolution restricted onto the asymptotic space and into the structure of asymptotic and stationary
states.
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4.3 Operator monotone function k(y) = yα

One of the well-known operator monotones is k(y) = yα for α ∈ (0, 1]. Its integral representation [47] is given as

k(y) = yα =
∫ +∞

0

ysα−1

y + s

sin(απ)
π

ds. (22)

Taking into account theorem 2 (or theorem 5 in the case of QMDSs) the action of linear bijection onto individual
subspaces composing the whole attractor space is given as k(Δσ1,σ2)(X) = σα

1 Xσ−α
2 for α ∈ (0, 1]. Since the considered

map is a bijection, we can generalize this result by iteration and inverse to any real α. Consequently, for any real α
the superoperator

R−1
σ2

k(Δσ1,σ2)(X) = σα
1 Xσ−α−1

2 (23)

defines a one-to-one correspondence between attractors Ker(T − λI) and Ker(T † − λI) (analogously for QMDSs).
Attractors associated with different eigenvalues are mutually k-orthogonal with respect to the scalar product (X,Y )k =
(X,σα

1 Y σ−α−1
2 ) ≡ (X,Y )α.

Moreover, each of these new scalar products defines an associated adjoint map of the quantum operation T . The
case α = 1/2 deserves a special attention. Indeed, choosing σ1 and σ2 equal to σ we find that the adjoint map to
quantum operation T with respect to the scalar product (X,Y )1/2 = (X,σ−1/2Y σ−1/2) takes the form

T ‡(X) =
∑

k

σ1/2A†
kσ−1/2Xσ−1/2Akσ1/2. (24)

Apparently, this is again a completely positive trace-nonincreasing map. As will be shown later, it is a quantum
operation capable to reverse the evolution running inside the attractor space.

This type of bijections reveal an interesting structure of attractor spaces. One could naively infer that any T -
state must commute with all attractors, which would significantly decrease the complexity of the attractor structure.
However this is not true as we demonstrate in sect. 8.

4.4 Operator monotone function k(y) = log(1 + y)

As another example we apply the derived theory to the operator monotone function k(y) = log(1+y) with its integral
representation [47]

k(y) = log(1 + y) =
∫ +∞

1

ys−1

y + s
ds. (25)

There follows that both operators log(I+Δσ1,σ2) and log(I+(Δσ1,σ2)
−1) are bijections which map individual attractor

spaces, in both pictures, associated with a given eigenvalue onto itself. Employing the following identity:

log(I + Δσ1,σ2) = log(I + (Δσ1,σ2)
−1) + log(Δσ1,σ2) (26)

we find that the operator log(Δσ1,σ2) is not necessary a bijection but it also maps individual attractor spaces, in
both pictures, back to the original individual attractor space. A straightforward calculation reveals that log(Δσ1,σ2) =
Llog(σ1) − Rlog(σ2), which proves the following interesting statement.

Corollary 2. Let λ be an element of the asymptotic spectrum of quantum operation T and σ1, σ2 two, not necessarily
different, T -states. Then the map Llog(σ1) − Rlog(σ2) is an endomorphism onto the attractor space Ker(T − λI) of the
quantum operation T .

This statement provides a key ingredient for a characterization of all asymptotic states of QMPs (for details see
sect. 6).

5 Structure theorems for quantum Markov processes

This part is devoted to the analysis how an inner structure of a generator governs the attractors of the resulting
QMPs. Thus in this part we presume that either Kraus operators {Ai} of quantum operation generating QMCH or
operators {Li,H,G} in (7) defining QMDS are known. The ultimate goal is to uncover how these operators determine
attractors of QMPs. The structure theorem for quantum Markov chains was already derived in [34].



Eur. Phys. J. Plus (2018) 133: 310 Page 9 of 17

Theorem 6. Let T : B(H ) → B(H ) be a quantum operation (1) equipped with a T -state σ. If X is an attractor of
QMCH in the Schrödinger picture generated by T associated with eigenvalue λ then it necessary satisfies the following
set of equations:

AjXσ−1 = λXσ−1Aj , A†
jXσ−1 = λXσ−1A†

j ,

Ajσ
−1X = λσ−1XAj , A†

jσ
−1X = λσ−1XA†

j , (27)

for all j’s. If X is an attractor of QMCH in the Heisenberg picture associated with eigenvalue λ then it necessary
satisfies the set of eqs. (27) for σ = I.

Moreover, if quantum operation T is either trace-preserving or T -state σ is additionally invariant then the converse
statement applies as well.

The importance of theorem 6 is twofold. First, it significantly simplifies the calculation of asymptotic behavior
of QMCHs. We should stress that this can be done analytically in many cases, especially if the studied evolution
possess some sort of symmetry. Second, it also reveals the algebraic structure of attractors. We shall discuss this point
simultaneously for discrete and continuous QMPs later.

In the following we show that QMDSs follow a similar structure theorem for their attractors. Similar formulas for
attractors of trace-preserving QMDSs in Heisenberg picture can be found in [35].

Theorem 7. Let Tt : B(H ) → B(H ) be a quantum Markov dynamical semigroup with generator L (7) equipped with a
T -state σ. If X ∈ B(H ) is an attractor of QMDS in the Schrödinger picture associated with eigenvalue λ = ia then
the following set of equations holds:

[Lj ,Xσ−1] = [Lj , σ
−1X] = [L†

j ,Xσ−1] = [L†
j , σ

−1X] = 0, (28)

[Xσ−1, G] = [σ−1X,G] = 0, (29)

[σ−1X,H] = aσ−1X, [Xσ−1,H] = aXσ−1 (30)

for all j’s. If X ∈ B(H ) is an attractor of QMDS in the Heisenberg picture associated with eigenvalue λ = ia then it
must satisfy all eqs. (28), (29) and (30) with σ = I.

If QMDS Tt is either trace-preserving or T -state σ is stationary then the converse statement applies as well.

Proof. We first derive the necessary conditions which follow from the assumption that operator X is an attractor of
QMDS, i.e. L(X) = iaX. The generator L maps Hermitian operators back to Hermitian operators and thus also X†

is an attractor, i.e. L(X†) = iaX†. Employing theorem 5 we find that

L†(σ−1X) = −iaσ−1X, L†(σ−1X†) = iaσ−1X†, L†(X†σ−1) = iaX†σ−1, (31)

which can be equivalently rewritten as
∑

i

L†
iσ

−1XLi = −iaσ−1X + K†σ−1X + σ−1XK,

∑

i

L†
iσ

−1X†Li = iaσ−1X† + K†σ−1X† + σ−1X†K,

∑

i

L†
iX

†σ−1Li = iaX†σ−1 + K†X†σ−1 + X†σ−1K,

∑

i

L†
iLi ≤ K + K†. (32)

The last inequality expresses the fact that QMDS is trace-nonincreasing. In order to proceed, an additional inequality
is needed. From theorem 5 we have for each positive t

T †
t (σ−1X) = e−iatσ−1X, T †

t (X†σ−1) = eiatX†σ−1.

Using the Schwarz operator inequality [48,49] for subunital quantum operations T †
t we obtain

T †
t (σ−1XX†σ−1) ≤ T †

t (σ−1X)T †
t (X†σ−1) = σ−1XX†σ−1,

As this applies to all positive t we find L†(σ−1XX†σ−1) ≤ 0 or, equivalently,
∑

i

L†
iσ

−1XX†σ−1Li ≤ K†σ−1XX†σ−1 + σ−1XX†σ−1K. (33)
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Let us set Vi = Xσ−1Li − LiXσ−1. Equipped with relations (32) and (33) we receive

∑

i

V †
i Vi =

∑

i

L†
iσ

−1XX†σ−1Li −
(

∑

i

L†
iσ

−1XLi

)

Xσ−1

− σ−1X†

(
∑

i

L†
iXσ−1Li

)

+ σ−1X†

(
∑

i

L†
iLi

)

Xσ−1 ≤ 0.

This inevitably means that all operators Vi are equal to zero and consequently [Li,Xσ−1] = 0. Due to theorem 5 the
operator X̃ = σ−1Xσ is an attractor satisfying L(X̃) = iaX̃ which proves the commutation relation [Li, X̃σ−1] =
[Li, σ

−1X] = 0. Both sets of these commutation relations are also valid for the attractor X†. Taking the adjoint of
these equations we obtain the last two commutation relations [L†

i ,Xσ−1] = [L†
i , σ

−1X] = 0.
In order to prove commutation relations (29) and (30) we will first derive commutation relations with the operator K

for which we have to prove two useful equalities. Using commutation relations (28) we can rewrite equation L(X) = iaX
into the form

Z1 ≡ Xσ−1KX† − KXσ−1X† − iaXσ−1X† = Xσ−1

[
∑

i

Kσ + σK† − LiσL†
i

]

σ−1X†.

As σ is a T -state, it follows that operator Z1 is positive. On the other hand, using

L†(Xσ−1) =
∑

i

L†
iXσ−1Li − K†Xσ−1 − Xσ−1K = −iaXσ−1,

we find

Tr Z1 = Tr

{[
∑

i

L†
iLi − K† − K

]

Xσ−1X†

}

= Tr{L†(I)Xσ−1X†}

= Tr{L(Xσ−1X†)} ≤ 0.

As a positive operator with a nonpositive trace must be equal to the zero operator, we have Z1 = 0.
In order to obtain the second required equality we start from the equation L†(Xσ−1) = −iaXσ−1. Employing (28)

we find that

Z2 ≡ σ−1X†KXσ−1 − σ−1X†Xσ−1K + iaσ−1X†Xσ−1 = σ−1X†

[
∑

i

K + K† − LiL
†
i

]

Xσ−1.

Operator Z2 is obviously positive but on the other hand its trace can be rewritten using

L†(σ−1X†) =
∑

i

L†
iσ

−1X†Li − K†σ−1X† − σ−1X†K = iaσ−1X†,

into the inequality

Tr Z2 = Tr

{[
∑

i

L†
iLi − K† − K

]

σ−1X†Xσ−1

}

= Tr{L†(I)σ−1X†Xσ−1}

= Tr{L(σ−1X†Xσ−1)} ≤ 0.

Hence we conclude that Z2 = 0.
Assume now operator W = KXσ−1/2 − Xσ−1Kσ1/2 + iaXσ−1/2. Based on the obtained equalities its Hilbert-

Schmidt norm can be expressed as

‖W‖2
HS = Tr{Xσ−1KσK†σ−1X† − KXK†σ−1X† − iaXK†σ−1X†}

+ Tr{KXσ−1KX†K† − Xσ−1KX†K† + iaXσ−1X†K†}
+ Tr{iaXσ−1KX† − iaKXσ−1X†K† + a2Xσ−1X†}

= −Tr{Z2σK†} − Tr{Z1K
†} + iaTr{Z1} = 0.
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Thus we get W = 0, yielding the commutation relation [Xσ−1,K] = iaXσ−1. This commutation relation must be
valid also for attractors σ−1Xσ, and X† which provides commutation relations [σ−1X,K] = iaσ−1X, [Xσ−1,K†] =
−iaXσ−1 and [σ−1X,K†] = −iaσ−1X. Now using K = iH+ 1

2V†(I)+G we finally arrive at commutation relations (29)
and (30).

If QMDS is trace-preserving the commutation relations (28) and (30) constitute sufficient conditions for X being
an attractor. Indeed, a straightforward calculation shows

L†(Xσ−1) =
∑

i

L†
iXσ−1Li − K†Xσ−1 − Xσ−1K

= Xσ−1

[
∑

i

L†
iLi − K† − K

]

− iaXσ−1

= Xσ−1L†(I) − iaXσ−1 = −iaXσ−1.

Hence Xσ−1 is an attractor in the Heisenberg picture and consequently due to theorem 5 is X an attractor satisfying
L(X) = iaX.

Similarly, if T -state σ is stationary, i.e. L(σ) = 0, we get due to (28) and (30)

L(X) =
∑

i

LiXL†
i − KX − XK† = Xσ−1L(σ) + iaX = iaX,

confirming that X is an attractor following L(X) = iaX.
Analogous statements for attractors in the Heisenberg picture follow directly from 5. Assuming L†(X) = iaX we

have L(Xσ) = −iaXσ and L(σX) = −iaσX and thus eqs. (28), (29) and (30) have to be fulfilled for operators Xσ
and σX. �

Note that Lindblad operators and the optical potential are involved in the selection of attractors only. The corre-
sponding asymptotic spectrum is fully determined by the Hamiltonian.

Both structure theorems provide an insight into the algebraic structure of attractor spaces. It is already well known
that if X is an eigenvector of QMP associated with eigenvalue λ then X† is an eigenvector associated with eigenvalue
λ [48]. Employing theorems 6 and 7 it follows for trace-preserving QMP or QMP with invariant T -state σ that if X1

and X2 are attractors of QMP associated with eigenvalue λ1 and λ2 then X1σ
−1X2, or any permutation of these three

operators, is also attractor associated with eigenvalue λ1λ2. Similarly, we have the same statement for attractors in
the Heisenberg picture with σ = I. Consequently, while attractors in the Schrödinger picture do not form algebra, for
attractors in the Heisenberg picture we can formulate the following corollary.

Corollary 3. Assume a QMP which is either trace-preserving or whose T -state σ is stationary. Then the whole attractor
space in the Heisenberg picture and its subspace of fixed points form C∗ algebras.

This statement combined with theorem 3 gives us a useful characterization of all stationary states or even all
asymptotic states.

6 Asymptotic and stationary states of trace-preserving QMPs

Due to their structure and algebraic properties, the description of the asymptotics in terms of attractors is elegant.
However, we have to face the fact that the attractors are not states. They constitute building blocks, operators, from
which asymptotic states (13) and (17) are constructed. The range of coefficients Tr{ρ(0)(Xλ,i)†} occuring in these
formulas is largely unknown and makes a complete characterization of asymptotic states quite involved and in many
cases unfeasible. In this part we present two characterizations of asymptotic states and its subset of stationary states
of trace-preserving QMPs allowing a glance on the asymptotics.

The first characterization relies on C∗ algebraic structure of attractors in the Heisenberg picture. Obviously, the
exponential map

exp(A) =
+∞∑

k=0

Ak

k!
(34)

maps any Hermitian operator A from the attractor space in the Heisenberg picture (respectively, any integral of
motion A) to a strictly positive operator from the attractor space in the Heisenberg picture (respectively, to a strictly
positive integral of motion). Using the bijection (23) with α = −1/2 between attractors in both pictures we find for
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any Hermitian operator A from the attractor space in the Heisenberg picture (respectively, any integral of motion A)
that the operator

σ1/2 exp(A)σ1/2 (35)

corresponds, to a strictly positive asymptotic state (respectively, to a strictly positive stationary state). Because the
identity operator is an integral of motion we can always choose operator A in a way that (35) is properly normalized.

However, we have a more ambitious inverse task in mind, namely to show that any asymptotic state (respectively,
any stationary state) may be written as (35). To proceed we employ the following analytic formula for the logarithmic
map

log(I + A) =
+∞∑

k=1

(−1)k+1

k
Ak, (36)

which converges for any Hermitian operator with its spectrum within the interval (−1, 1]. Assume a strictly positive
asymptotic state (respectively, a strictly positive stationary state) ρ. Then ω = γσ−1/2ρσ−1/2 is a strictly positive oper-
ator from the attractor space in the Heisenberg picture (respectively, a strictly positive integral of motion) normalized
by γ = 1/Tr(σ−1/2ρσ−1/2). Consequently,

log(ω) = log(I + (ω − I)) =
+∞∑

k=1

(−1)k+1

k
(ω − I)k (37)

is well defined and yields a Hermitian operator from the attractor space in the Heisenberg picture (respectively, an
integral of motion). Indeed, the identity I is an integral of motion ensuring trace-preservation of the given QMP and
the attractor space as well as the space of fixed points of quantum Markov evolution in the Heisenberg picture is closed
under all algebraic operations involved in (37). Thus, any strictly positive asymptotic state takes the form (35). We
can generalize this statement to all asymptotic states, because strictly positive asymptotic states constitute a dense
set inside all asymptotic states. Indeed, starting with an asymptotic state ρ, we can define a set of strictly positive
asymptotic states

ω(s) ≡ (1 − s)ρ + sσ = σ1/2 exp(A(s))σ1/2 (38)

with s ∈ (0, 1]. Apparently,
ρ = lim

s→0+
ω(s) = lim

s→0+
σ1/2 exp(A(s))σ1/2. (39)

A convenient way to express this limit is to choose a Hermitian base {Zi} (with Z†
i = Zi) of all asymptotic operators.

As the attractor space in the Heisenberg picture is enclosed under the adjoint map, such basis always exist. Hence any
asymptotic state ρ can be written as

ρ = lim
s→0+

σ1/2 exp

(
∑

i

βi(s)Zi

)

σ1/2. (40)

Note that if {Zi} constitute a Hermitian basis of fixed points of quantum Markov evolution in the Heisenberg picture
then (40) provides us with all stationary states of the given QMP. In fact, the limiting procedure (40) means that
some of these real coefficients βi(s) approach, in the limit lims→0+ , either plus or minus infinity, otherwise the state
ρ is strictly positive. This might appear counterintuitive, but in statistical physics we meet this situation frequently.
For example, one obtains a ground state of a canonical ensemble by taking the temperature limit T → 0+ which
corresponds to β ≡ 1/(kT ) → +∞ [38].

The second characterization of asymptotic and consequently also stationary states provides corollary 2. Assume
that σ is an invariant T -state and ρ is some strictly positive stationary state, i.e. ρ is an attractor associated with
eigenvalue one but it is also a T -state. According to the corollary the operator ρ log(ρ) − ρ log(σ) is an attractor in
the Schrödinger picture associated with eigenvalue one. Hence, the operator log(ρ) − log(σ) is a Hermitian attractor
of evolution in the Heisenberg picture associated with eigenvalue one, i.e. it is an integral of motion. By choosing a
Hermitian base {Yi} of integrals of motion we can write down any strictly positive stationary state ρ into the form

ρ = exp

(

log(σ) +
∑

i

γiYi

)

, (41)

where γi are real expansion coefficients of the operator log(ρ) − log(σ) in the base {Yi}.
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A generalization of (41) to all strictly positive asymptotic states follows from the fact that all asymptotic states (13)
(respectively, (17) in continuous case) are actually stationary states of the quantum operation

T̃ (ρ) =
∑

λ∈σas,i

Xλ,i Tr{ρ(Xλ,i)†}. (42)

Indeed, as the asymptotic spectrum σas of QMP contains a finite number of eigenvalues, we can choose an ascending
sequence of natural numbers nj in such a way [50] that

T̃ = lim
j→+∞

T nj , respectively, T̃ = lim
j→+∞

exp(Lnj). (43)

Therefore T̃ is quantum operation which projects all states onto the set of asymptotic states of the original QMP.
All attractors of the original QMP are fixed points of T̃ and because of positivity of the original QMP we have also
T̃ (σ) ≤ σ. Now, let ρ be a strictly positive asymptotic state of the original QMP. It is stationary state of T̃ and thus
it can be written as (41), where {Yi} is chosen as a Hermitian base of fixed points of T̃ and consequently it forms a
Hermitian base of the attractor space of the original QMP. Thus

ρ = exp

(

log(σ) +
∑

i

γiZi

)

, (44)

with a Hermitian basis {Zi} of the attractor space in the Heisenberg picture, describes all strictly positive asymptotic
states of the given QMP. Following the same recipe as in the first characterization we finally enlarge (41) to all
asymptotic states of the given trace-preserving QMP.

We also stress that while the first characterization (40) is valid only for trace-preserving QMPs, the second charac-
terization of asymptotic states (44) applies to trace-nonincreasing QMPs as well provided there is a stationary strictly
positive state σ. We have found two expressions for asymptotic states of QMPs. They are, in general, different as we
show in examples 8. We expect that especially the asymptotic form (41) can be further exploited to study thermo-
dynamic properties of QMPs. It has also the advantage that it may apply to trace-nonincreasing QMPs also. Both
forms of asymptotic states (40) (41) remind of Gibbs states, the well-known family of macroscopic states in statistical
physics [38]. A detailed investigation of their intricate connection will be presented elsewhere.

7 Dynamics within attractor spaces of QMPs

From a different perspective, the attractor space is the part of the total Hilbert space B(H ) which is exempt from
effects of decay, decoherence and dissipation in dependence on the detailed features of the process. In principle,
any information encoded in this subspace should be fully retrieved. In order to recover this information we need to
understand in detail the type of evolution rules the asymptotic states of QMPs. It was shown [51] that asymptotic
states of random unitary operations undergo a unitary evolution. In general case of QMPs it is stated [32,26,35] that
the evolution inside the attractor space should be of unitary type as well, because all attractors during such evolution
acquire only its individual phase (13), (17). Using structure theorems 6 and 7 we show that for trace-preserving QMPs
equipped with a faithful invariant state it is in some sense true.

We start with discrete QMCHs. Let X be any operator from the attractor space in the Schrödinger picture, i.e.
X =

∑
λ,i cλ,iXλ,i. A straightforward calculation exploiting a quantum operation (24) gives us

T ‡T (X) = T ‡

⎛

⎝
∑

λ,i

cλ,i

∑

k

AkXλ,iσ
−1σA†

k

⎞

⎠ = T ‡

⎛

⎝
∑

λ,i

λcλ,iXλ,iσ
−1T (σ)

⎞

⎠

=
∑

λ,i

λcλ,iσ
1/2

(
∑

k

A†
kσ−1/2Xλ,iσ

−1/2Ak

)

σ1/2

=
∑

λ,i

|λ|2cλ,iXλ,iσ
−1/2T †(I)σ1/2 =

∑

λ,i

cλ,iXλ,i = X, (45)

where we use the fact that if Xλ,i is an attractor associated with eigenvalue λ of the map T . According to sect. 4.3
σ−1/2Xλ,iσ

−1/2 is an attractor associated with eigenvalue λ̄ of the map T † and thus satisfies theorem 6. Similarly, one
can readily find out T T ‡(X) = X. Hence, trace-preserving quantum operation T ‡ constitute a searched generator of
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the inverse evolution capable to correct an information inscribed into states from the asymptotic space of a given QMP.
In fact this is Petz recovery map [41], which is a special example of the reverse-time quantum Markov operation [52].
Moreover, T ‡ is adjoint map of the original generating quantum operation T with respect to the scalar product
(X,Y )1/2 = (X,σ−1/2Y σ−1/2). Thus, we can confirm that the asymptotic evolution is unitary, but in a different sense
then we are used to. First, it is an unitary evolution on the attractor subspace of operators from the Hilbert space
B(H ), i.e. there is no underlying unitary evolution on the Hilbert space H . Second, it is an unitary evolution with
respect to a different scalar product on the space B(H ).

In the case of trace-preserving QMDSs we derive a master equation governing their asymptotic dynamics. Let X
be an operator from the attractor space, i.e. according to theorem 7 the operator Xσ−1 commutes with all Lindblad
operators Li’s. The effect of the Lindblad generator (9) on X can be simplified as

L(X) = i[X,H] +
∑

j

LjXσ−1σL†
j −

1
2
{L†

jLj ,Xσ−1σ}

= i[X,H] + Xσ−1

⎛

⎝
∑

j

LjXL†
j −

1
2
{L†

jLj ,X}

⎞

⎠

= i[X,H] − iXσ−1[σ,H] = i[HX − Xσ−1Hσ],

where we use L(σ) = 0. Hence, the master equation takes the form

d(Xσ−1)
dt

=
dX

dt
σ−1 = L(X)σ−1 = i[Xσ−1,H]. (46)

Thus, instead of states, their multiplication with the operator σ−1 undergo an unitary evolution driven by Hamiltonian
H. In the same spirit, its inverse evolution is driven by Hamiltonian −H.

8 Examples

In this part we show two examples demonstrating different aspects of the presented theory. We have chosen two simple,
but nontrivial examples. The first refers to the creation of entanglement between two qubits and is motivated by the
creation of large scale entanglement in a network of many qubits. A full analysis of such a network goes beyond the
scope of our paper and is left for a future publication. The other example is motivated by studies of transport of
excitation in quantum systems. As in the first example we aim only at illustrating the power of the theory and a
complete analysis will be presented elsewhere.

8.1 Discrete random unitary process

Let us assume two qubits and two control NOT operations. U12 acts on the first qubit as controlled and on the second
qubit as target and U21 acts in reverse order

U12 =

⎛

⎜
⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎟
⎠

, U21 =

⎛

⎜
⎜⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎟
⎟
⎠

. (47)

Suppose these two unitary operations act randomly on both qubits with corresponding probabilities p12 and p21. The
resulting propagator determining one step of evolution is a random unitary map

T (ρ) = p12U12ρU†
12 + p21U21ρU21. (48)

As this is an unital Markov evolution, it has the same six-dimensional attractor space in both pictures [51]. It contains
five-dimensional attractor space associated with eigenvalue one, spanned by the identity operator I, |φ〉〈φ|, |ψ〉〈ψ|,
|φ〉〈ψ| and |ψ〉〈φ| with |φ〉 = |00〉 and |ψ〉 = 1/

√
3(|01〉+ |10〉+ |11〉). Moreover, there is also one-dimensional subspace

spanned by operator

X−1 =

⎛

⎜⎜
⎝

0 0 0 0
0 0 −1 1
0 1 0 −1
0 −1 1 0

⎞

⎟⎟
⎠ (49)

associated with eigenvalue −1.
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Let us assume T -state σ = 1/5(I + |φ〉〈φ|). This T -state does not commute with all attractors, e.g. [σ, |φ〉〈ψ|] =
1/5|φ〉〈ψ|. Consequently, two characterizations of stationary or asymptotic states provided in sect. 6 are not equivalent.
For example, stationary states ρ1 = 1/N1 exp(log(σ)+ |ψ〉〈φ|+ |φ〉〈ψ|) and ρ2 = 1/N2

√
σ exp(|ψ〉〈φ|+ |φ〉〈ψ|)√σ, with

properly chosen normalizations N1(2), are different.
In order to illustrate that asymptotic states can be obtain as a limit (40) let us assume the state

ρ =
1
2

(
I − |φ〉〈φ| − |ψ〉〈ψ| + i√

3
X−1

)
.

It is an asymptotic state which is not strictly positive. By choosing a T -state proportional to the identity operator, it
is easy to verify that it can be written as a limit of strictly positive asymptotic states

ρ = lim
s→+∞

1
N (s)

exp
[
−s√

2
(I − |φ〉〈φ| − |ψ〉〈ψ|) +

2is√
6
X−1

]
, (50)

with normalization constant N (s).

8.2 Continuous QMDS with jump Lindblad operators

In this example we assume a quantum system associated with a four-dimensional Hilbert space with orthonormal base
{|0〉, |1〉, |2〉, |3〉}. Its continuous Markov evolution is governed by Lindbladian L which acts as

L(ρ) = −i[H, ρ] + 2
(

h+ρh†
+ − 1

2
{h†

+h+, ρ}
)

+ h−ρh†
− − 1

2
{h†

−h−, ρ}, (51)

with
H = ε(|2〉 〈2| + |3〉 〈3|), h+ = |0〉 〈1| + |2〉 〈3| = h†

−. (52)

As it is shown below, the system is equipped with a T -state σ and thus our theory applies. The attractor space contains
subspaces corresponding to eigenvalues 0 and ±iε. The former is two-dimensional, spanned by operators {X1,X2} and
each of the latter is one-dimensional, spanned by operators X±. These operators read

X1 = 2 |0〉 〈0| + |1〉 〈1| , X2 = 2 |2〉 〈2| + |3〉 〈3| ,
X+ = 2 |0〉 〈2| + |1〉 〈3| , X− = 2 |2〉 〈0| + |3〉 〈1| .

As one can easily check, any linear combination α1X1 +α2X2 with αi �= 0 fulfils the requirements of a T -state and
our previous considerations are thus correct.

Consequently, the attractor space in the Heisenberg picture is also four-dimensional. It consists of two-dimensional
subspace of integrals of motion, which is spanned by the identity operator I and Hamiltonian H and two one-
dimensional subspaces corresponding to eigenvalues ∓iε. These subspaces are spanned by operators A∓, which read

A− = |0〉 〈2| + |1〉 〈3| , A+ = |2〉 〈0| + |3〉 〈1| .

It is convenient to define Hermitian operators AR = 1
2 (A+ + A−) and AI = 1

2i (A+ − A−) and to express the results
in the Hermitian basis {A1, A2, AR, AI}.

Let us have a closer look at the structure of the asymptotic/stationary states. As an example, we assume σ =
1
6 (X1 +X2) and one-parameter class of nonstationary asymptotic states ρ(s) = 1

6 (X1 +X2 + sX+ + sX−). Apparently
ρ(0) = σ and ρ(s) is strictly positive for any s ∈ (−1, 1) and nonstrictly positive for s = ±1. According to (44) one
can thus write for any s ∈ (−1, 1)

ρ(s) = N (s) exp[ln σ − β(s)H − γR(s)AR − γI(s)AI ]. (53)

The normalization parameter N (s) replaces the identity operator (integral of motion) and its corresponding multiplier.
Since ρ(s) is balanced in X1 and X2, we get β(s) = 0. Furthermore, ρ(s) is real and thus γI(s) = 0. By a straightforward
calculation, we get γR(s) = ln 1+s

1−s . Cases s = ±1 are resolved via the limit procedure

ρ(±1) = lim
s→±1

N (s) exp[ln(σ) − γR(s)AR] = lim
γR→±∞

N (γR) exp[ln(σ) − γRAR]. (54)
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Stationary states form a special class of asymptotic states. In this examined case all stationary states can be
expressed as a linear combination of operators X1 and X2. Thus, all stationary states commute with each other and
consequently all strictly positive stationary states can be written in equivalent forms

ρ = N exp[ln(σ) − βσH] = Nσ
1
2 exp[−βσH]σ

1
2 , (55)

with σ being an arbitrary T -state. As an example, let us take σ = 1
6 (X1 + X2). By direct calculation, one can show

that strictly positive stationary states can be represented as

exp[ln(σ) − βH] =
1

3 + 3e−βε
(X1 + e−βεX2), β ∈ R. (56)

Let us parametrize the stationary states as ρ(s) = 1
3 ((1− s)X1 + sX2). This linear combination is strictly positive

for s ∈ (0, 1) and nonstrictly positive for s ∈ {0, 1}. For s ∈ (0, 1), we can write

ρ(s) = N (s) exp[ln(σ) − β(s)H], (57)

where β(s) = ln s
1−s by direct calculation. Cases s ∈ {0, 1} are again resolved via the limit procedure

ρ(0) = lim
s→0

N (s) exp[ln(σ) − β(s)H] = lim
β→−∞

N (β) exp[ln(σ) − βH],

ρ(1) = lim
s→1

N (s) exp[ln(σ) − β(s)H] = lim
β→+∞

N (β) exp[ln(σ) − βH].

Both representations of stationary and asymptotic states (40) and (44) are in this case equivalent. However, if
we switch the Hamiltonian (52) off, i.e. we set H = 0, this statement is not anymore true. The size of the attractor
space remains unchanged, however all attractors now correspond to the eigenvalue 0. All asymptotic states are thus
stationary states. By making the choice σ = 1

12 (2X1+2X2+X++X−), we can show as an example that the stationary
states ρ1 = N1 exp[ln(σ)− γ(AR + AI)] and ρ2 = N2σ

1
2 exp[−γ(AR + AI)]σ

1
2 are not equal. For instance, γ = − ln(3)

yields ρ1 = 1
12 (2X1 + 2X2 − i(X+ + X−)) while ρ2 = 1

12 (2X1 + 2X2 + α(X+ + X−)), with Re(α) > 0.

9 Conclusion

Both types of quantum Markov processes (QMPs), discrete quantum Markov chains (QMCHs) and continuous quan-
tum Markov dynamical semigroups (QMDSs) are realistic classes of open-system dynamics describing a wide range
of processes of significant importance in physics. After introducing the needed formal frame we derived a number of
results describing the properties of the asymptotic dynamics of quantum discrete and continuous, in general trace-
nonincreasing, Markov processes. In this way we extend significantly the previously known theory for QMCHs and
generalize its application also to QMDSs [34]. We formulate and prove basic fundamental theorems concerning the
asymptotic dynamics and point out a number of its interesting properties. In particular, based on operator monotone
functions a general set of relations between attractors of QMPs in both pictures are revealed and specified for two
important cases. Consequently, it provides a dual basis of attractors in the Schrödinger picture and thus significantly
simplifies the task of finding the asymptotic dynamics for any initial state. Furthermore, we derive equations determin-
ing attractors of QMPs in both pictures. We showed that the asymptotic evolution of QMPs has a unitary character
if we redefine the relevant Hilbert-Schmidt scalar product. However, we stress that this unitary evolution may not
correspond to a unitary evolution on the original Hilbert space of pure states. Moreover, based on the developed theory,
two characterizations of asymptotic states are provided, both strongly resembling the form of Gibbs states known from
statistical physics. This feature will be the subject of further studies as it points out to an intimate relation between
the statistical character of the dynamics and the thermodynamic features of the asymptotic dynamics. Finally, we
provide two elementary examples to demonstrate how our theory works. The examples describe the simplest possible
nontrivial cases. The chosen models have natural extensions. However, they are much more involved and physically
more interesting. Their detailed studies will be presented elsewhere as the analysis goes clearly beyond the scope of
the present paper.
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40. İ Yalçinkaya, Z. Gedik, J. Phys. A 50, 155101 (2017).
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