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Abstract. This paper is focused on the search for new anisotropic analytic solutions to Einstein’s field
equations for a spherically symmetric and static stellar distribution by means of the gravitational decou-
pling realized via the Minimal Geometric Deformation (MGD) approach. Firstly, a Buchdahl perfect fluid
inside the stellar distribution is considered and the Einstein’s field equations are used in order to obtain
the explicit form of the pressure and density for the perfect fluid. Then, the matching conditions for stellar
distributions are used to find the constants involved in the Buchdahl solution in order to ensure the geo-
metric continuity at the stellar surface. Finally, the Buchdahl solution is deformed to obtain the anisotropic
solution and the matching conditions are used to find the constants involved in the new solution. The result
is a new analytic and well-behaved anisotropic solution, in which all their physical parameters, such as
the effective density, the effective radial and tangential pressure, fullfill each of the requirements for the
physical acceptability available in the literature. Therefore, this solution can give a satisfactory description
of realistic astrophysical compact objects like stars.

1 Introduction

Stellar distributions have been studied ever since the first solution of Einstein’s field equations for the interior of an
astrophysical compact object was obtained by Schwarzschild in 1916. He solved the field equations for the interior
region by assuming a perfect fluid, and also for the outside vacuum region. The interior solution has the geometry of
a three-sphere, which was noticed in 1919 by Weyl [1]. The search for the exact isotropic and anisotropic solutions
describing static and spherically symmetric stellar distributions has attracted the interest of physicist. However,
there are very few exact interior isotropic and anisotropic solutions of the field equations satisfying the required
general physical conditions inside the star. The study of the interior of stellar distributions via finding exact solutions
of the field equations is still a field of research. Fodor [2] has proposed an algorithm to generate any number of
interior isotropic solutions for spherically symmetric and static distributions. Also, Schmidt and Homann [3] discussed
numerical solutions of Einstein’s field equations describing a static and spherically symmetric photon star.

Since the pioneering work of Bowers and Liang [4] there is extensive literature devoted to the study of anisotropic
solutions of Einstein’s field equations. Harko and Mak [5,6] have shown that nuclear matter may be anisotropic in
high density ranges, or from the point of view of the Newtonian gravity spherical galaxies can have anisotropic matter
distribution. In addition, Harko and Mak argue that the interior of a star must fulfills the general physical conditions
that describes a well-behaved isotropic or anisotropic solution. The theoretical investigations of Ruderman [7] about
more realistic stellar models show that the nuclear matter may be anisotropic at least in certain very high density
ranges (ρ > 1017 kg/m3), where the nuclear interactions must be treated relativistically. The anisotropic behaviour
occurs when the pressure is split in two different contributions, the radial and tangential pressure.

Anisotropies in fluid usually arise due to the presence of a mixture of fluids of different types, rotation, viscosity,
the existence of a solid core, the presence of type 3A superfluid [8], different kinds of phase transitions [9], a magnetic
field or by other physical phenomena. The sources of anisotropies have been widely studied, particularly for different
highly compact astrophysical objects such as compact stars or black holes, either in 4 dimensions [10] as well as
in the context of braneworld solution in higher dimensions [11]. In a recent paper [12], the first simple, systematic
and direct approach to decoupling gravitational sources in general relativity (GR) was developed from the so-called
Minimal Geometric Deformation (MGD) approach. The MGD was originally proposed [13,14] in the context of the
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Randall-Sundrum braneworld [15,16] (for some earlier works on MGD, see, for instance, refs. [17–20], and for some
recent applications refs. [21–30]).

Regarding decoupling gravitational sources, Ovalle proposed to solve the Einstein’s field equations by solving the
field equations for each gravitational source individually (see ref. [12]), namely,

Ĝμν = −k2 Ψ̂μν , to find {ĝμν , Ψ̂μν} (1)

and then
G�

μν = −k2 Φ�
μν , to find {g�

μν , Φ�
μν}, (2)

where k2 = 8π. Once the two metrics are found by eqs. (1) and (2), namely, ĝμν and g�
μν , they can be combined

to derive the complete solution for the total system. The remarkable of the MGD decoupling is that one isotropic
solution is deformed and it is produces a new solution that preserves spherical symmetry. Therefore, we could choose
isotropic well-behaved and spherically symmetric solutions and then research if the new solution is still well-behaved.
Regarding this, from 127 published isotropic solutions analyzed in Delgaty and Lake [31] only 16 are well-bahaved.
In particular, one interesting isotropic well-behaved and spherically symmetric solution is the Buchdahl solution [32].
Since Einstein field equations are non-linear, the MGD decoupling proposed by J. Ovalle represents an advance to
search for new anisotropic solutions especially for situations beyond the trivial cases, such as self-gravitating systems
with gravitational sources more realistics than perfect fluid [33,34].

MGD decoupling does not only give physically acceptable interior solutions for different isotropic perfect fluid in GR,
but it could be applied in a large number of relevant cases, such as the Einstein-Maxwell [35] and Einstein-Klein-Gordon
system [36–39], for higher derivative gravity [40,41], f(R) theories of gravity [42–48], Hořava-aether gravity [49–51],
and polytropic spheres [52–54]. In this respect, the simplest practical application of the MGD decoupling consists
in extending known isotropic and physically acceptable interior solutions for spherically symmetric self-gravitating
systems into the anisotropic domain, at the same time preserving physical acceptability, which is a highly non-trivial
problem [55]. For obtaining anisotropic solutions in a generic way, see refs. [56,57].

This paper is organized as follows: In sect. 2, we review the MGD gravitational decoupling of Einstein field equations
and the matching procedure for spherically symmetric and static stellar distributions. In sect. 3, we derive the explicit
form of the physical parameters (p, ρ) for the Buchdahl perfect fluid solution. In sect. 4, the MGD decoupling is
implemented in order to extend the perfect fluid solution in the anisotropic domain. In sect. 5 the concluding remarks
are outlined with the perspectives.

2 MGD gravitational decoupling of Einstein field equations

To begin with, we must write the well-known Einstein field equations

Rμν − 1
2

R gμν = −k2 Ψ (tot)
μν , (3)

with
Ψ (tot)

μν = (ρ + p)uμ uν − p gμν + β Φμν , (4)

where β is a coupling constant and uμ is the four-velocity of a perfect fluid with density ρ and isotropic pressure
p. The term Φμν in eq. (4) describes any additional source like scalar, vector and tensor fields which can produce
anisotropies in the fluid [58]. Divergence-free if one of the features of the Einstein tensor, hence the total energy-
momentum tensor (4) must satisfy the conservation equation ∇ν Ψ (tot)μν = 0. In standard coordinates xμ = (t, r, θ, φ)
the general line element for a spherically symmetric space-time takes the form

ds2 = eν(r) dt2 − eλ(r) dr2 − r2(dθ2 + sin2 θ dφ2), (5)

where ν = ν(r) and λ = λ(r) are functions of the radial coordinate r, ranging from the star center (r = 0) to the star
surface (r = R), and the fluid four-velocity is given by uμ = e−ν/2 δμ

0 . The general metric (5) must satisfy the Einstein
field equations (3), which can be broken down as follows:

k2(ρ + β Φ 0
0 ) =

1
r2

− e−λ

(
1
r2

− λ′

r

)
, (6)

k2(p − β Φ 1
1 ) = − 1

r2
+ e−λ

(
1
r2

+
ν′

r

)
, (7)

k2(p − β Φ 2
2 ) =

e−λ

4

(
2 ν′′ + ν′2 − λ′ ν′ + 2

ν′ − λ′

r

)
. (8)
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From the system (6)–(8), we can identify an effective density ρ̃ = ρ+β Φ 0
0 , an effetive radial pressure p̃r = p−β Φ 1

1 ,
and an effective tangential pressure p̃t = p− β Φ 2

2 . These physical parameters shows that the source Φμν generates an
anisotropy inside the stellar distribution given by

Δ ≡ p̃t − p̃r = β(Φ 1
1 − Φ 2

2 ). (9)

The system of eqs. (6)–(8) describes an anisotropic fluid [59], which requires to consider the two metric functions, ν(r)
and λ(r), and the effective physical parameters ρ̃, p̃r, and p̃t. A method to solve eqs. (6)–(8) is the Minimal Geometric
Deformation (MGD) gravitational decoupling [60]. The method produces corrections to perfect fluid solutions providing
physically plausible and spherically symmetric stellar distributions. Firstly, let us start by considering a perfect fluid
solution {ξ, μ, ρ, p} to eqs. (6)–(8), namely, the solution corresponding to β = 0. The metric (5) now has the following
form:

ds2 = eξ(r) dt2 −
(
μ(r)

)−1 dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (10)

where

μ(r) = 1 − 2m(r)
r

(11)

is the standard general relativity (GR) expression for the radial metric component, being m(r) = k2

2

∫ r

0
x2ρdx the

GR mass function. In the stellar surface the mass function m(R) is the total mass of the stellar distribution (M0).
For the metric of eq. (5) be a solution of eq. (3), a geometric deformation over the perfect fluid geometry {ξ, μ} in
eq. (10) is proposed (see ref. [12]), namely, ξ �→ ν = ξ + βγ and μ �→ e−λ = μ + βη, where γ and η are functions
parametrizing the geometric deformation. From all possible deformations γ and η, the so-called minimal geometric
deformation corresponds to γ = 0 and η = η�. Then, in this particular case, the metric in eq. (10) is minimally
deformed by the source Φμν and its radial metric component acquires the form

μ(r) �→ e−λ(r) = μ(r) + β η�(r), (12)

whereas the temporal metric component eν does not change. Now, by introducing eq. (12) in the Einstein equations (6)–
(8), the system is divided as follows:

I) the Einstein equations for a perfect fluid, whose metric is given by eq. (10), with ξ(r) = ν(r)

k2ρ =
1
r2

− μ

r2
− μ′

r
, (13)

k2 p = − 1
r2

+ μ

(
1
r2

+
ν′

r

)
, (14)

k2 p =
μ

4

(
2ν′′ + ν′2 +

2ν′

r

)
+

μ′

4

(
ν′ +

2
r

)
; (15)

II) the equations that contain the source Φμν

k2 Φ 0
0 = −η�

r2
− η�′

r
, (16)

k2 Φ 1
1 = −η�

(
1
r2

+
ν′

r

)
, (17)

k2 Φ 2
2 = −η�

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− η�′

4

(
ν′ +

2
r

)
. (18)

According to [60], each sector is separately conserved, which means that there is no exchange of energy momentum
between them. Hence, the interaction between the two sectors is gravitational only. Also, it is important to remark that
once a perfect fluid solution is chosen, the first sector {ν;μ; ρ; p} is solved, then once the second sector {η�;Φ0

0;Φ
1
1;Φ

2
2}

is solved, we can to obtain directly the effective physical variables ρ̃, p̃r, and p̃t. In general, MGD decoupling can be
extended for more than one additional sources Φμν (more details in reference [12]), but in this paper we considered
one extra gravitational source only.

2.1 Matching procedure for spherically symmetric self-gravitating systems

In the study of stellar distributions the matching conditions at the star surface between the interior and the exterior
space-time geometries plays an important role [61,62]. In our case, the interior space-time geometry is given by the
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MGD metric (eq. (5) along with eq. (12)):

ds2 = eν−(r) dt2 −
(

1 − 2 m̃(r)
r

)−1

dr2 − r2(dθ2 + sin2 θdφ2), (19)

where the interior mass function is given by m̃(r) = m(r) − r
2βη�(r), with m given by the GR mass function and

η� the minimal geometric deformation. The internal metric (19) must be matched with the external metric which is
assumed to be the vaccum Schwarzschild metric due to there is no isotropic fluid and such a region just contains the
field Φμν . The external metric have the general form

ds2 = eν+(r) dt2 − eλ+(r) dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (20)

where the metric functions ν+ and λ+ are obtained by solving the exterior Einstein equations Rμν − 1
2Rgμν = −k2Φμν .

The continuity of the first fundamental form at the star surface Ω (defined by r = R) is given by

[ds2]Ω = 0, (21)

which yields

ν−(R) = ν+(R) (22)

and

1 − 2M0

R
+ β η�

R = e−λ+(R), (23)

where M0 is the total mass of the stellar distribution and η�
R is the minimal geometric deformation at the star surface.

The superindices stand for the region from where we approach the stellar surface, either from inside with a minus
sign, or from outside using the plus sign.

Also, we must take into account the Israel-Darmois [61,62] matching condition at the stellar surface Ω that gives
the continuity of the second fundamental form

[Gμν rν ]Ω = 0, (24)

where rν is a unit radial vector. Using eq. (24) and eq. (3), we find

[
Ψ (tot)

μν rν
]

Ω
= 0, (25)

which leads to

pR − β (Φ 1
1 )−R = −β (Φ 1

1 )+R, (26)

where pR ≡ p−(R). By using eq. (17) for the internal and external geometry in the condition (26), the second
fundamental form can be written as

pR + β
η�

R

k2

(
1

R2
+

ν′
R

R

)
= β

h�
R

k2

[
1

R2
+

2MS
R3

(
1 − 2MS

R

)−1
]

, (27)

where ν′
R ≡ ∂rν

−|r=R, h� is the geometric deformation for the external Schwarzschild solution due to the source
Φμν and MS is the Schwarzschild mass (see ref. [60]). At this point, we can remark that eqs. (22), (23) and (27)
are the necessary and sufficient conditions for the matching of the interior MGD metric (19) to an external deformed
Schwarzschild metric (see ref. [60]). Moreover, by considering an external geometry describes by the exact Schwarzschild
metric (see ref. [60]), eq. (27) leads to the condition

p̃R ≡ pR + β
η�

R

k2

(
1

R2
+

ν′
R

R

)
= 0. (28)

This expression suggests that the stellar distribution will be in equilibrium if the effective radial pressure at the surface
vanishes.
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3 Interior isotropic solution: The Buchdahl solution

In order to solve eqs. (6)–(8) for the interior of a self-gravitating system by the MGD decoupling, the physical
parameters {ρ̃, p̃r, p̃t} and the two metric functions {ν, λ} in eq. (5) will be derived. The first step is to turn off β and
find a solution for the perfect fluid Einstein equations (13)–(15). In particular, we can choose a known solution with
physical relevance, like the well-known Buchdahl solution {ν, μ, ρ, p} for perfect fluids (see ref. [32]), namely,

eν(r) = A
[
(1 + Cr2)3/2 + B

√
2 − Cr2

(
5 + 2Cr2

)]2

, (29)

μ(r) =
2 − Cr2

2(1 + Cr2)
, (30)

ρ(r) =
3C(3 + Cr2)

16π(1 + Cr2)2
(31)

and

p(r) =
9C

16π(1 + Cr2)

[√
(1 + Cr2)(2 − Cr2)(1 − Cr2) − B(2 + 3Cr2 − 2C2r4)√
(1 + Cr2)(2 − Cr2)(1 + Cr2) + B(10 − Cr2 − 2C2r4)

]
. (32)

The constants A, B, and C in eqs. (29)–(32) are determined from the matching conditions in eqs. (21) and (24)
between the above interior solution and the exterior metric which we choose to be the Schwarzschild space-time. This
yields

C =
4M0

R2(3R − 4M0)
, (33)

B =

√
(1 + CR2)(2 − CR2)(1 − CR2)

2 + 3CR2 − 2C2R4
, (34)

A =
R − 2M0

R
[√

1 + CR2(1 + CR2) + B
√

2 − CR2(5 + 2CR2)
]2 , (35)

with the compactness M0/R < 4/9, and M0 = m(R) the total mass of the stellar distribution. The expressions in
eqs. (33)–(35) ensure the geometric continuity at r = R and will change when we add the source Φμν .

The conditions of physical acceptability for isotropic solutions are well known [63]. In order that both pressure (p)
and density (ρ) be positive definite at the origin and monotonically decreasing to the boundary, the constant C must
be equals 1 and the constant B must be equals 1/2(see ref. [31]). When choosing C = 1 and B = 1/2, we obtain from
eq. (34), R = 1/

√
6. Then, from eq. (33), we obtain M0 = 0.044. Finally, from eq. (35), A = 0.03. Using these values,

fig. 1 shows the behaviour of all physical parameters for the inner space, as the density ρ, the pressure p, the speed of
sound v2

s = dp
dρ and the pressure-density ratio p/ρ. The results are in agreement with the criterion listed in refs. [31,

63] for a well-behaved isotropic fluid sphere. Also, since the final aim in finding the interior solutions is to model the
astrophysical configurations, it is also necessary to check the four energy conditions (weak, null, strong and dominant).
The energy conditions are a set of constraints which are usually imposed on the energy-momentum tensor in order to
avoid exotic matter sources (see ref. [22]). The energy conditions are shown as follows: a) the Null Energy Condition
(NEC), TμνKμKν ≥ 0 for any null vector Kμ. For a perfect fluid, this condition implies ρ+p ≥ 0. b) the Weak Energy
Condition (WEC), TμνXμXν ≥ 0 for any time-like vector Xμ, which, for a perfect fluid, yields ρ ≥ 0 and ρ + p ≥ 0.
c) the Dominant Energy Condition (DEC), Tμ

νXν = −Y μ, where Y μ must be a future-pointing causal vector. For
a perfect fluid, this means ρ > |p|. Finally, d) the Strong Energy Condition (SEC), (Tμν

1
2 T gμν)XμXν ≥ 0, or, for a

perfect fluid, ρ + p ≥ 0 and ρ + 3p ≥ 0. All of the above conditions are satisfied.

4 Interior anisotropic solution by MGD decoupling

Now lets turn on the coupling constant β in the interior. The temporal and radial metric components are given by
eqs. (29) and (12) respectively, where the interior deformation η�(r) and the source Φμν are related through eqs. (16)–
(18). In the following, one new, exact and physically acceptable interior solution will be generated.

From the matching condition (28) we see that the exterior geometry describes by the exact Schwarzschild exterior
metric will be compatible with the interior geometry describes by the MGD metric as long as β (Φ 1

1 )−R ∼ pR. The
choice should be

Φ 1
1 (r) = p(r), (36)
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Fig. 1. Pressure p and density ρ for the Buchdahl perfect fluid solution as an gravitational source in a spherically symmetric
space-time. Any perfect fluid solution can be consistently extended to the anisotropic domain via the MGD decoupling.

which, according to eq. (14), can be written as

k2 Φ 1
1 = − 1

r2
+ μ(r)

(
1
r2

+
ν′

r

)
. (37)

From eq. (17) we can see that the mimic constraint in eq. (36) is equivalent to

η�(r) = −μ(r) +
1

1 + r ν′(r)
. (38)

Hence the radial metric component reads

e−λ(r) = (1 − β)μ(r)

+ β

( √
(1 + Cr2)(2 − Cr2)(1 + Cr2) + B(2 − Cr2)(5 + 2Cr2)√

(1 + Cr2)(2 − Cr2)(1 + 6C + Cr2) + B[(2 − Cr2)(5 + 2Cr2) + 6C(1 − 2Cr2)]

)
, (39)

where the expressions in eqs. (12) and (29) have been used. The interior metric functions given by eqs. (29) and (39)
represent the Buchdahl solution minimally deformed by the source Φμν . We can see that the limit β → 0 in eq. (39)
leads to the standard Buchdahl solution for a perfect fluid.

Now we want to match our interior metric in eq. (5) with metric functions (29) and (39) with the exterior
Schwarzschild solution (see ref. [60]). We can see that, for a given distribution of mass M0 and radius R, we have four
unknown parameters {A,B,C} from the interior solution in eqs. (29) and (39), and the Schwarzschild mass MS .

The continuity of the first fundamental form given by eqs. (22) and (23) leads to

A
[
(1 + CR2)3/2 + B

√
2 − CR2(5 + 2CR2)

]2

= 1 − 2MS
R

(40)

and

(1 − β)μ(R)

+ β

( √
(1 + CR2)(2 − CR2)(1 + CR2) + B(2 − CR2)(5 + 2CR2)√

(1 + CR2)(2 − CR2)(1 + 6C + CR2) + B[(2 − CR2)(5 + 2CR2) + 6C(1 − 2CR2)]

)
= 1 − 2MS

R
, (41)

whereas continuity of the second fundamental form in eq. (26) yields

pR − β (Φ 1
1 )−R = 0. (42)
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By using the mimic constraint in eq. (36) in the condition (42), we obtain

pR = 0, (43)

which, according to eq. (32), leads to

B =

√
(1 + CR2)(2 − CR2)(1 − CR2)

2 + 3CR2 − 2C2R4
. (44)

On the other hand, by using the condition in eq. (41), we obtain for the Schwarzschild mass

2MS
R

=
2M0

R
+ β

(
1 − 2M0

R

)

− β

( √
(1 + CR2)(2 − CR2)(1 + CR2) + B(2 − CR2)(5 + 2CR2)√

(1 + CR2)(2 − CR2)(1 + 6C + CR2) + B[(2 − CR2)(5 + 2CR2) + 6C(1 − 2CR2)]

)
, (45)

where the expression in eq. (11) has been used. Finally, by using the expression in eq. (45) in the matching condi-
tion (40), we obtain

A
[
(1 + CR2)3/2 + B

√
2 − CR2(5 + 2CR2)

]2

= (1 − β)
(

1 − 2M0

R

)

+ β

( √
(1 + CR2)(2 − CR2)(1 + CR2) + B(2 − CR2)(5 + 2CR2)√

(1 + CR2)(2 − CR2)(1 + 6C + CR2) + B[(2 − CR2)(5 + 2CR2) + 6C(1 − 2CR2)]

)
, (46)

which then allows to determine the constant A.
Equations (44)–(46) are the necessary and sufficient conditions to match the interior solution with the exterior

Schwarzschild space-time. By using the mimic constraint in eq. (36), the effective radial pressure p̃r reads

p̃r(r, β) =
9(1 − β)C

16π(1 + Cr2)

[√
(1 + Cr2)(2 − Cr2)(1 − Cr2) − B(2 + 3Cr2 − 2C2r4)√
(1 + Cr2)(2 − Cr2)(1 + Cr2) + B(10 − Cr2 − 2C2r4)

]
, (47)

where the constant B is given by eq. (44). The expression in eq. (47) shows that the effective radial pressure mimics
the perfect fluid pressure p(r) in eq. (32). On the other hand, the effective density and effective tangential pressure
are given, respectively, by

ρ̃(r, β) = ρ − β

(
p(r2ν′′ − 2rν′ − 3) − rp′(1 + rν′)

(1 + rν′)2

)
, (48)

p̃t(r, β) = p̃r(r, β) − βrp′(2 + 3rν′ + r2ν′2)
4(1 + rν′)2

, (49)

where p = p(r) is given by eq. (32), ν′ ≡ ∂rν(r) is given by

ν′ =
6Cr(

√
(1 + Cr2)(2 − Cr2) + B(1 − 2Cr2))√

(1 + Cr2)(2 − Cr2)(1 + Cr2) + B(2 − Cr2)(5 + 2Cr2)
(50)

and p′ ≡ ∂rp is given by

p′ =
3C

16π

(
2(Z ′

2 + Z ′
3)(Z4 + Z5) − 2(Z2 + Z3)(Z ′

4 + Z ′
5) − Z ′

1(Z4 + Z5)2

(Z4 + Z5)2

)
, (51)
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where

Z ′
1 ≡ −2Cr

(1 + Cr2)2
,

Z2 ≡ (1 + Cr2)1/2(2 − Cr2)3/2,

Z ′
2 ≡ Cr(1 + Cr2)−1/2(2 − Cr2)3/2 − 3Cr(1 + Cr2)1/2(2 − Cr2)1/2,

Z3 ≡ B(1 − 2Cr2)(2 − Cr2),

Z ′
3 ≡ −2BCr(5 − 4Cr2),

Z4 ≡ (1 + Cr2)5/2(2 − Cr2)1/2,

Z ′
4 ≡ 5Cr(1 + Cr2)3/2(2 − Cr2)1/2 − Cr(1 + Cr2)5/2(2 − Cr2)−1/2,

Z5 ≡ B(2 − Cr2)(1 + Cr2)(5 + 2Cr2),

Z ′
5 ≡ 2BCr((1 − 2Cr2)(5 + 2Cr2) + 2(1 + Cr2)(2 − Cr2))

and ν′′ ≡ ∂rν
′ is given by

ν′′ =
(Q′

1 + Q′
5)(Q2Q3 + Q4) − (Q1 + Q5)(Q′

2Q3 + Q2Q
′
3 + Q′

4)
(Q2Q3 + Q4)2

, (52)

where

Q1 ≡ 6C(2r2 + Cr4 − C2r6)1/2,

Q′
1 ≡ 6C(2 + 2Cr2 − 3C2r4)

(2 + Cr2 − C2r4)1/2
,

Q2 ≡ 1 + Cr2,

Q′
2 ≡ 2Cr,

Q3 ≡ (2 + Cr2 − C2r4)1/2,

Q′
3 ≡ Cr(1 − 2Cr2)

(2 + Cr2 − C2r4)1/2
,

Q4 ≡ B(10 − Cr2 − 2C2r4),

Q′
4 ≡ −2BCr(1 + 4Cr2),

Q5 ≡ 6BCr(1 − 2Cr2),

Q′
5 ≡ 6BC(1 − 6Cr2).

Equations (29) and (39) along with eqs. (47)–(49) represent an exact Buchdahl analytic solution to the system of
eqs. (6)–(8) minimally deformed by the gravitational source Φμν . According to eq. (9), the source Φμν generates an
anisotropy given by

Δ(r, β) = −βrp′(2 + 3rν′ + r2ν′2)
4(1 + rν′)2

. (53)

Figure 2 shows the behaviour of the effective quantities for different values of the coupling constant. The isotropic
solution corresponds to coupling constant equal to zero. As in the case of the isotropic solution, we will check the
four energy conditions for the anisotropic solution (see ref. [22]). The energy conditions are shown as follows: a) the
Null Energy Condition (NEC), TμνKμKν ≥ 0 where the null vector Kμ can be written as Kμ = e−ν/2δμ

0 + e−λ/2δμ
1 ,

yields TμνKμKν = eν ρ̃K0K0 + eλp̃rK
1K1 = ρ̃ + p̃r ≥ 0. b) The Weak Energy Condition (WEC), TμνXμXν ≥ 0

for any time-like vector Xμ, yields ρ̃ ≥ 0, ρ̃ + p̃r ≥ 0 and ρ̃ + p̃t ≥ 0. c) the Dominant Energy Condition (DEC),
Tμ

νXν = −Y μ, yields ρ̃ ≥ p̃r and ρ̃ ≥ p̃t. Finally, d) the Strong Energy Condition (SEC), (Tμν
1
2 T gμν)XμXν ≥ 0,

leads to

ρ̃ + p̃r + 2p̃t = ρ + 3p − β

(
p(r2ν′′ − 2rν′ − 3) − rp′(1 + rν′)

(1 + rν′)2
+ 3p +

rp′(2 + 3rν′ + r2ν′2)
2(1 + rν′)2

)

= ρ + 3p − β

(
rp(rν′′ + 4ν′ + 3rν′2)

(1 + rν′)2
+

rp′

2

)
> 0.
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Fig. 2. Effective quantities for different values of β for a stellar distribution with compactness M0/R = 0.1. The solid black line
represents the Buchdahl solution for a perfect fluid given by β = 0; β = 0.15 (dashed line) and β = 0.3 (dotted line) represent
two anisotropic analytic solutions. The second graph shows a comparision between the effective radial and tangential pressure
for β = 0.2. The anisotropy causes the pressures values to drift apart.

All of the above effective conditions are satisfied. This means that there are no negative effective pressures comparable
in magnitude or larger than the effective density ρ̃, and therefore the geometric deformation on the isotropic solution
is not strong enough to put in risk the physical acceptability of the system.

5 Conclusions

Using the MGD decoupling, it was shown in detail how to extend an interior isotropic solution for a static and
spherically symmetric self-gravitating system in order to include an additional gravitational source. For this purpose,
it was shown that the Einstein’s field equations in eqs. (6)–(8) can be decoupled in a sector for a perfect fluid Ψ

(m)
μν

shown in eqs. (13)–(15), and the sector describe by the equations associated with the additional gravitational source
Φμν shown in eqs. (16)–(18). There is only gravitational interacction between these two sectors, and there is not
exchange of energy momentum between them. The matching conditions at the star surface have been studied in detail
for an outer Schwarzschild space-time. In particular, the continuity of the second fundamental form in eq. (28) yields
the important result that the effective radial pressure p̃R = 0. The effective pressure contains both the isotropic
pressure of the gravitational source Ψ

(m)
μν and the geometric deformation η�(r) induced by the energy-momentum

tensor Φμν . The physical acceptability of the found anisotropic solution is inherited from their isotropic parent. In
particular, it was shown that the source Φμν always reduces the effective radial pressure p̃R inside the self-gravitating
system. Variations in the geometric deformation parameter (β) between the isotropic and the anisotropic sector reveals
consistent evolution of the effective quantities giving to the MGD gravitational decoupling a prove of validity.

The MGD decoupling could be an efficient way to deal with complex physical problems. For instance, for extending
isotropic solutions in General Relativity to solutions of the Einstein-Klein-Gordon system. In such a system, the source
Φμν would represent the Klein-Gordon scalar field. In addition, the MGD decoupling could be useful for systems whose
spherical symmetry is preserved during a sufficiently slow temporal evolution.

Any known perfect fluid solution can be extended to generate new anisotropic solutions. In principle, for each
perfect fluid solution there will be as many anisotropic solutions as independent constraints can be imposed on the
system (16)–(18). This approach simplifies the study of self-gravitating systems, which can be developed sector by
sector under the MGD decoupling. Finding analytic and physically acceptable solutions for the interior of a self-
gravitating system minimally coupled to any gravitational source Φμν seems a difficult task to carry out. Nevertheless,
using the MGD decoupling, we can start with an exact and physically acceptable perfect fluid solution, and then focus
on the sector represented by the additional gravitational source Φμν . Finally, for future work we need to find out the
MGD decoupling validity for time-dependent solutions, and extensions beyond the spherical symmetry.
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