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Abstract. This paper studies soliton perturbation in optical metamaterials, with anti-cubic nonlinearity,
by implementing three integration schemes. Bright, dark and singular soliton solutions are retrieved. The
existence criteria of these solitons in metamaterials are also presented.

1 Introduction

The study of solitons in optical metameterials is trending as a hotspot in the field of optical materials. There has
been a substantial amount of results that are reported in this field. However, there is still a long way to go. There
are more unanswered questions than answers. This paper will quench this thirst partially. In the past, solitons in
optical metamaterials have been studied with various forms of non-Kerr laws of nonlinearity where several integration
schemes have been implemented [1-20]: this paper is going to revisit the study of solitons in optical metamaterials for
a specific form of nonlinear medium: this is of anti-cubic (AC) type. There are three forms of integration algorithms
that will be applied to extract soliton solutions to metamaterials with AC nonlinearity. These schemes will retrieve
bright, dark and singular soliton solutions that will be very important in the study of optical materials. These solitons
will appear with constraint conditions that are otherwise referred to as existence criteria of the soliton parameters.
After a quick introduction to the model, the integration techniques will be applied and the details are enumerated in
the subsequent sections.

2 Governing model

The nonlinear dynamics that describes the propagation of pulses in optical metamaterials (MMs) is given by the
nonlinear Schrédinger equation (NLSE). In the presence of parabolic law nonlinearity, with an additional anti-cubic
nonlinear term and perturbation terms that include inter-modal dispersion (IMD), self-steepening (SS) as well as
nonlinear dispersion (ND), the governing equation reads [2,19]

i + aqea + (b1lgl ™t + balgl® + bslg*) ¢ = i {agz + B (lal*q)  + v (ld*), a} + 61 (|al*q) ,, + 0219 Goa + 03075, (1)

In eq. (1), the unknown or dependent variable g(x,t) represents the wave profile, while = and ¢ are the spatial and
temporal variables, respectively. The first and second terms are the linear temporal evolution term and group velocity
dispersion (GVD), while the third term introduces the anti-cubic nonlinear term, the fourth and fifth terms account
for the parabolic law nonlinearity, and the sixth, seventh and eighth terms represent IMD, SS and ND, respectively.
Finally, the last three terms with 6; for [ = 1,2, 3 appear in the context of metamaterials [4,5].
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2.1 Mathematical analysis

In order to solve eq. (1), the starting hypothesis is [4,5]

q(z,t) = U(¢) exp [ig(x, 1)] 2)
where
¢ = k(z —ot), (3)
and the phase component ¢ is given by
d(x,t) = —kx + wt + 6. (4)

In egs. (2) and (3), U(x,t) represents the amplitude portion of the soliton, and k and v are the inverse width and
velocity of the soliton. From (4),  is the frequency of the soliton, w is the wave number of the soliton and finally
6 is the phase constant. Inserting (2) into (1) and then decomposing into real and imaginary parts yields a pair of
relations. The imaginary part gives
v=—a—2akK (5)
and
38+ 2v —2k(301 + 02 — 035) =0, (6)

while the real part leads to

ak?U" — (w +ar? + om) U+bU 3+ (bg — Bk + K201 + K205 + n293) Ul

+b3U® — (3k%01 + k20> + k%05) U?U" — 6k*6,U(U")? = 0. (7)
To obtain an analytic solution, the transformations 6; = 0 and 6, = —605 are applied in eq. (7), and give
ak?U" — (w + ak? + ar) U + 01U > + (by — kB)U° + b3U® = 0, (8)
where
30+ 2v + 4kb5 = 0. 9)

In order to obtain closed-form solutions, we employ the transformation given by
U=Vs, (10)
that will reduce eq. (8) into the ODE
ak® {2VV" — (V')2} +4by — 4 (w + ar® + ar) V2 + 4(by — kB)VE + 4b3V* = 0. (11)

The extended G’/G-expansion method [8,10,11,20], the extended Jacobi’s elliptic function expansion scheme [1,3,7,
11,12,15,17] and the exp(—®(())-expansion approach [9,13,16,18] will now be applied, in the subsequent sections, to
eq. (11) to retrieve bright, dark and singular soliton solutions to the NLSE with AC nonlinearity (1).

3 Extended G’/G-expansion method

Suppose that the solution to eq. (11) can be expressed by

V(C)zaﬁi a<g>+ﬂ<g)_l o<1+i<g>2>+w<g>_i+&m o (12)

i=1
where g, o, B, Vi, 0; (i = 1,..., M) are constants to be determined later, o = £1, M is a positive integer, and
G = G(() satisfies the following second-order linear ordinary differential equation:

G" +uG =0, (13)
where p is a constant to be determined later. According to the homogeneous balance method, eq. (11) has the solution

in the form

V() =ao+ o (g) + By |0 (1 +i <g>2> +m (g)l + 61 m +1i(6§)2) : (14)

Substituting (14) along with eq. (13) into eq. (11), and equating the coefficients of (%)J and (%)j, Jo{l+ ﬁ(%)Q}

to zero, we obtain a set of over-determined algebraic equations and, by solving it, we find the following results.
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Set 1:
o 3(ﬁl€ — bg)
Qo = 87&’37
ikv/3a
o =+ ——,
2/bs
ﬁl = ’)/1 = 61 = O’
L 16b3[ak?p — 2k(a + ar)] — 9(by — BK)?
- 3203 ’
3[3(by — BK)? — 16abzk?u)?
! 409603 19)
Set 2:
_ 3(ﬂli — bg)
T TRy,
iku\/%
Y1 = + )
2v/b3
a1 = 51 = 51 = 0,
 16bs[ak?p — 2k (o + ak)] — 9(by — Bk)?
W= 3203 ’
3[3(by — Bk)? — 16absk>u)?
b = — . ].
! 409603 (o)
Set 3:
_ 3(Bk —b2)
Qo = 8b3 )
ikv3a./1
br=ft——F7—,
2vbs\/o
a1 =71 = 51 = 0,
_ 8bg[dk(a + ak) + akPp] 4 9(by — k)
- 3203 ’
27(by — BK)* + 144absk*u(by — Br)*
by = — . : (17)
409652
Set 4:
- 3(ﬁl<6 - bg)
o = 8b3 )
o — - V3a
1=+ 2\/@ 9
iku3a
Y1 = + K 5
2v/b3
51 = 51 = 07
9(by — Br)?
= — 2 2 - T
w k(o + ak) + 2ak“p by
_ 2 _ ¢4 2,12
by = — BB = B — Ghaby 2y (19

409663
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Set 5:
3 ﬂlﬁ - b2
o= 2000,
zk\/?)ia
a1 = 4\/—
Zk\/?)iaf
B = W7
7 =61 =0,
4bslak?u — 8k(a + ar)] — 9(by — Br)?
- 3203 ’
2 2,12
by ~3[3(ba 6396b§4a63k #] ’ (19)

where x and p are arbitrary constants.

As a consequence, substituting the solution sets (15)—(19) along with the general solutions of eq. (13) into egs. (10)
and (14), and inserting the result into the wave transformation (2), we obtain exact solutions to (1) in the following
forms.

When p < 0, hyperbolic traveling wave solutions are

3( ﬂ/-e —by) | kB [Al sinh(y/=ji€) + Aj cosh(y/=ji¢ )} }5 expli (—r +wt +0)] (20

2\/5 Aj cosh(y/—pu() + Az sinh(y/—uQ)

3 6/<; —bo) k\/Sau {Al sinh(y/=uC) + A cosh(y/=u()

—1) 2
r e e v }GXP“(”“””Q”’ @)

1

Alcosh F()+A281nh(FC):| } exp [i (—kz + wt + 6)], (22)

{ 5n—b2 km \/ Ay sinh(y/=7i¢) + As cosh(y/=JiC)

3 5/<; —bs)  kv/3ap ( {Al sinh(y/=7¢) + As cosh(mg)}

2\/6 Aj cosh(y/=uC) + Ag sinh(y/—u()

. {Al sinh(y/=7¢) + Az cosh(mC)} B ) } ) exp [i (—kz 4 wt + 0)],

Ay cosh(y/ i) + A sinh(y/ () 2
o) = 3(Bk — b2) kv/3au n Ay sinh(y/=uQ) + Az cosh(y/—uQ)
’ TN Aj cosh(y/=uQ) + Az sinh(y/=pu()
. Ay sinh(v=HC) + Az cosh(v=O) 1?1 17
—|—Z\/1— |:A1COSh(\/TM<)+AQSiDh(HC):| } exp [i (—kx + wt + 0)], (24)

where Ay and A are arbitrary constants, ( = k{z + (« + 2ak)t} and w are given by the solution sets (15)—(19),
respectively. It should be noted that these solitons are valid for absu > 0.

If, however, p > 0, the trigonometric traveling wave solutions are

[ 3(Bk —by) k\/ —3ap [ Aq cos(\/uC) — Agsin(,/1() ox P

alw,t) = { 8bs3 2v/bs {Al sin(y/n¢) + Az cos(y/11¢ )} } pli(=he +wt+6)], (25)
) 3Bk —b2) | kyv/=3ap [ A cos(\/1i¢) — Az sin(\/1C) .

q(z,t) = { 0 + SN Lh Sin(y/C) + Az cos(y/JiC )] } exp [i (—kx + wt + 6)], (26)
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) 3(Br —bo) k\/w A1 cos(\/n¢) — Ag sin(y/11C) 21° )
alw, ) = { 8bs3 - A1 sin(\/pQ) + Az COS(\/.EC)} } i (o +wi+0)], 27

[N

8bs T 2v/bs Ay sin(\/p€) + Az cos(y/1C) Ay sin(\/pQ) + Az cos(y/1C)
x exp [i (—kx + wt + 0)], (28)

(2,1) = 3(Bk — ba) n kv/=3apu :i:Al cos(\/i¢) — Ag sin(y/11C) 1y [Al cos(y/fC) — Az sin(\/ﬁg)]
KA 8b3 4+/bs Ay sin(y/u¢) + Az cos(/11€) Ay sin(\/p€) + Az cos(y/1C)

x exp [i (—kx + wt + 0)], (29)

q(z,t) = {3(55 —bo) _ kv/—3au <A1 cos(y/p¢) — Az sin(y/1i() B [Al cos(/fi¢) — Az Sin(\/ﬁC)j| —1> }

[ V)

where Ay and A are arbitrary constants, ¢ = k{z + (« + 2ak)t} and w are given by the solution sets (15)—(19),
respectively. These trigonometric traveling wave solutions will exist provided the constraint condition holds: absu < 0.
Finally, when p = 0, the plane wave solutions are the following.
By using the results in egs. (15) and (18), we have

_ [3(Bk —b2) | kV—3a Ay
q(””t)_{ 8 ovh, <A14+A2

where Ay and A, are arbitrary constants, ( = k{z + (« + 2ak)t} and w is given by the solution set (15).
By using the results in eq. (19), we have

)}ixp (et 0t 10)], @)

C(3(Br—by)  kvT3a [ A I
q(x,t)—{ 8, + N <A1§+A2>} exp [i (—kz + wt + 6)], (31)

where A; and Ay are arbitrary constants, ¢ = k{x + (a+2ak)t} and w is given by the solution set (19). The constraint
condition for the existence of the solutions (30) and (31) is abs < 0.

The special cases are as follows.

When p < 0 and A% > A%, then we deduce the following optical soliton solutions from (20)—(24), respectively:

_ {308k~ by) |, ky/3az
q(x’t)_{ W

tanh [kv/—p{z + (a + 2ar)t} + (o] }2

16b3 [ak?p — 2 + —9(by —
X exp |14 —Kkx + 3 [k = 20l + ar)] (b2 = 5r)* t+46 (32)
3203
which is a dark soliton solution. The singular soliton solution is given by
1
3 —b k+/3 2
q(z,t) = { (ﬁ,;bg 2) F 2\/%“ coth [kv/=p{z + (a + 2ar)t} + go]}
16b3 [ak?p — 2 —9(bg — 2
X exp |14 —KT + 3 [0 — 2n(a + ar) (b2 = Br) t+0 (33)
3203
and the bright soliton is
—b k/—3an 3
q(x,t) = {3(6;}3 2) T 2\/215# sech [k\/—u {z+ (a+ 2ar)t} + CO} }
8bs |4 k? 9(by — 2
xexp[z’{—nx—( 3[n(a+an)§;1b ] +9(bz 6H)>t+9} (34)
3

together with another singular soliton solution

q(z,t) = {3@;(; x + k\/\/? coth [2kv/=p {z + (o + 2ar)t} + 2¢o] }

X exp [i{—mc—&- (—n(a—i—am) + 2ak*p — W) t+6H (35)

Nl
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and a complexiton solution

~ [3(Br —b2) | k\/Bap

+isech [kyv/=p{z + (o + 2ar)t} + (o)) }

X exp [z {—mc + <4b3 [ak?p — 8“(‘)‘;2;”)] —9(b2 — ﬂﬁ)Q) t+ 9}
3

( tanh [kv/=p{z + (a + 2ar)t} + (o]

N

(36)

where () = tanhfl(Ag/Al). Also, setting A1 =0, Ay 0 or Ay =0, A; # 0 in (20)—(24), we can obtain more solitary
wave solutions which are omitted.
If, however, © > 0, we obtain singular periodic waves from (25)—(29), respectively,

(3(Br—bs) kv S
q(x,w{ o) R

N

tan [k/p{x + (o + 2ak)t} — Co}}

. [ {_m N (161)3 [ak? — %(agb:m)] —9(b2 — 5@2) . 9} (37
(. t) = {3(5*;,)3 b) & ’fﬂ cot b (o + (a-+ 2000} — o]}

e [l {_m . (16b3 [ak?p — 2ﬁ(a3;rbzﬁ)] —9(by — 6n)2> - 9} (38)
gz, t) = {3(5';)3 b2) 4 k\;g sec [ky/i {x + (o + 2ar)t} — (o] }é

NN STt R S
oz, t) = {3(5’;; b2) o W\;? cot [2k/ { + (a + 2ar)t} — 2] }

X exp {i{—ﬁx—k (—H(a+am) + 2ak?p — W) t+6H , (40)
o) = {20 BRI a4 (a4 2000} — o

1 sec [k {z + (o + 2am)t} — o)) }é

X exp [Z {—m + <4b3 [k SK(O‘;Zj)} — 92 = ﬁ@g) t+ 9} (41)

where (y = tan~!(A;/A3). Also, setting A} =0, Ay # 0 or Ay = 0, A; # 0 in (25)—(29), we can obtain more periodic
wave solutions which are omitted.

4 Extended Jacobi’s elliptic function expansion scheme

Suppose that the structure solution of (11) is given by
N ‘ N ‘
V(z,t)=V() = a;snf ¢+ Bisn/, (42)
3=0 j=1

where ag, aj, 85 (j = 1,2,...,N) are constants to be determined. Balancing the order of VV” and V* in eq. (11), we
have N = 1. Therefore, eq. (11) has a solution in the form

V(¢) =ao+arsn+pisn ' (. (43)
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Then, substituting eq. (43) into (11) and equating the coefficients of the exponents of sn ¢ to zero, one obtains a system

of nonlinear algebraic equations; by solving it, one recovers the following.

Set 1:
ﬂl = Oa
o 3(5% — bg)
Qo = 8b3 )
tkmy/3a
ay = £ VST
2vb3
_ (b2 — BK)? + 8bsak?(1 + m?) + dak + dar?]
B 3203 ’
p, — _ 27(b2 = Gk + L4daby k(1 m?)(by — Bs)? + T682D3k'm?
409663 '
Set 2:
a1 = Oa
- 3(5& — bg)
T TRy
ikv/3a
pr=+——,
2v/b3
_ 92 — Br)? + 8bs[ak? (1 + m?) + dak + dak?]
B 32b3 '
p, —  27(b2 = 5"+ L4daby k(1 m?)(by — Bs)? + T682D3k'm?
409663 '
Set 3:
o — 3(ﬁ;‘£ — b2)
0 8b3 )
ikmy/3a
a) = + VoG
2vb3
ikv/3a
By =0V
2vb3
~9(b2 — Br)? + 8bs[ak?(1 + m(6 +m)) + dak + dar?]
32b3 ’
270> = Br)* 4 144absk(1 4 m(6 + m)) (by — Bs)? + 30720° 03k m(1 +m)?

409603

Thus, we recover the following Jacobi elliptic function solutions to the model given by (1):

otot) = {20 L BV ot 0ok 2y ]|
[, { <9(b2 — BK)? + 8b3 [ak? (1 4+ m?) + dak + dar?]
X exp |44 —KkT —
3205

_ [3(BK —b3) | kvV—3a

ns [k {z + (o + 2ak) t}]}2

) 9(by — Br)? + 8bs [ak? (1 +m?) + dak + 4ar?]
X exp |i{ —Kkx — 320,



Page 8 of 11 Eur. Phys. J. Plus (2018) 133: 204

(msn[k{z+ (o + 2ar) t}] + ns [k {z + (a + 2ak) t}])} i

oo, t) = {3(6,% —by) L kv/=3a

8b3 21/bs
X oxp [z {—/m B <9(b2 — Bk)% + 8bs [ak2(13—;bm(6 +m)) + dak + 4ar?| > - 9}] 7 (49)
3

for abs < 0. When the modulus m — 1 in eqgs. (47)—(49), the following soliton solutions emerge:

tanh [k {z + (o + 2ak) t}] } 2

oo t) = {3(5/{ —by) n kv/—3a

8b3 2v/bs
9(by — 2 4 16b3 [ak? + 2 2ak>
X exp [i{—nx—( (b — )" + 332[; hant Cm})t-i—@}], (50)
3

which is a dark soliton solution and the following two are singular soliton solutions,

3k —ba) | V=34 ok te (4 2an) t}]} 2

Q(I7t) = { b3 2\/@

— Br)? ak? + 2ak + 2ak?
X exp [i{—/m— <9(62 el +16b§2[b3k 2n 2 ]>t+9H (51)
and
q(z,t) = {3(@;[; b2) + i \/%ja coth2 [k{z + (a4 2ak) t}]} i
— Br)? ak?® + ak + ax?
X exp [i{—/@x— (9(b2 br) +32232£j Morant ]>t+9}1 . (52)

However, if m — 0 in egs. (48) and (49), the following singular periodic solutions emerge:

csc [k {z + (o + 2ak) t}]} 2

_ [3(Bk —b2) | kvV—3a
q(x’t)_{ s T 2,

< oxp ll {/{x B (9(1)2 — Br)? + 8bs [ak? + dak + 4ar?] ) . 0}] . (53)

3203

5 The exp(—®(¢))-expansion approach

To start off with the exp(—®(())-expansion approach, the initial assumption of the solution structure of (11) is made:

N
V()= A (exp[-2(Q)))’ (54)
=1

where A; for i = 0,1,..., N are constants to be determined later, such that Ay # 0, while the function ®(¢) is the
solution of the ordinary differential equation

P'(¢) = exp[~P(Q)] + pexp[@(Q)] + . (55)

It is well known that eq. (55) has solutions in the following forms.
If 4 # 0 and A% — 4y > 0,

VA2 — 4y tanh (VA;M(C + C)> +A
_ o

() = In



Eur. Phys. J. Plus (2018) 133: 204 Page 9 of 11

For pu # 0 and A% — 4 < 0,

&(¢)=1n o (57)
However, when =0, A # 0 and A\? —4u > 0,
A

20 =~ (e ey 1) o

Whenever it # 0, A # 0 and A% — 44 = 0,

2(\ C)+2

@@)zln(—(§;¥+i;-)>. (59)

Finally, if 4 =0, A =0 and A\ —4p =0,
&(¢) =In(¢+C). (60)

Here, it is important to note that C' is the integration constant. Balancing VV” with V4 in eq. (11) yields N = 1. The
exp(—P(¢))-expansion scheme allows us to employ the substitution

V(¢) = Ag + Ay exp[—2(C)]. (61)

Substituting (61) along with (55) into eq. (11) and equating all the coefficients of powers of exp(—®(()) to be zero,
one obtains a system of algebraic equations. Solving this system by Mathematica yields

3ﬂl<6 - 3b2 + 2k>\\/ —3&63

Ay —
0 8bs
k 3a
Ay =+—4/——
1 2 b3 )
" ~9(b2 — Br)? + 4bs[8ak + a(8k% + k2(\2 — 4pu)))
B 32bs ’
3[3(ba — Br)? + 4absk?(\? — 4p))?
- 2
b1 409663 ’ (62)

where X\ and p are arbitrary constants. Substituting the solution set (62) into (61), the solution formula of eq. (11)
can be written as follows:

30Kk — 3bg £ 2kA\/—3ab: k
vig = n = B3 L B30 o a(c)) (63)
8b3 2 b3
Consequently, one gains exact solutions to the model as follows:
1
2
30k — 3by £ 2kA/—3abs _ k 3a 2u
alw.t) = s 3V 5 ;
s # | /A2 —4ptanh < k(x4 {a + 2ar}t) +C)) +A
9(by — 2 1 4b3[8 8k2+ k% (N2 -4
X eXp |44 —KT — (b2 — fr)” + dbs [Sar + a (8s7 + K% ( #)] t+0 (64)
32b3
which is a singular soliton solution
1
2
oz t) = 383Kk — 3by & 2k:/\\/—3ab3 3a 20
T 8b \/ by Van2
8 3 4 — A2 tan ( W2 (k(x + {a + 2aK}t) + C)) —A
9(by — 2 4 4b3 [8 8k? + k% (N2 —4
X exp |f{mn< (b2 — fr)” + dbs | ozl-@3—2|—ba( G M))]>t+9} (65)
3
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and this is a periodic-singular solution along with the following bright-singular combo soliton,

[ 38K — 3by £ 2kA\/=3abs  k 3a A 3
q@i)—{ 8b3 :i2¢_@zQWMA®@+{a+2M}ﬂ+O»—1>}

9(by — 2+ 4bs[8 8k2+ k% (N2 -4
X exp |14 —KT — (b2 — Br)? + 4bs [Sar +a (847 + K7 ( )] t+6 (66)
32bs
and, finally, the remainder ones are plane waves as
oty — {33 AT,k [TBa (X k(e + {0+ 2ax) 1) 4 ) 2
1ot = 803 TV b \2(00(k(z + {a + 2ar) ) + O) + 2)
9(by — 2 1 4b5 (8 82+ k% (N2 —4
X exp |19 —KT — (b2 — Pr)? + 4by [Sar +a (847 + K2 ( )] t+60,1|, (67)
32bs
() {305 =30 £ 2N Babs k. [Ba 1 :
N0 = 8b3 2 by k(z + {a+2ax}t) + C
9(by — 2 4 4bs (8 8k2 + k% (N2 -4
X exp li{—fﬂ;—( (b = Br)” + 3[0[&3—22&( kil M”)t—i—@} . (68)
3

Here, it should be emphasized that these solitons exist for abs < 0.

6 Conclusions

This paper secured soliton solutions to optical metamaterials that maintained AC nonlinearity. The governing model
was studied with a few perturbation terms all of which are of Hamiltonian type. Bright, dark and singular solutions are
recovered together with the required constraint conditions for their existence. As a byproduct, singular periodic solu-
tions emerged with the reverse constraints. These periodic solutions are a byproduct of the integration methodologies.
The results of this paper are extremely important and carry a lot of weight to the optical materials community where
the study of solitons in the context of metamaterials is essentially new. The results of this paper carry a lot of further
research prospects in this area. Later, the study will be extended to other types of perturbation terms. These include
stochastic perturbation, non-local perturbations and several others. Additional forms of nonlinear metamaterials will
also be considered. These are quadratic-cubic type, log-law nonlinearity and several others. Those results are currently
awaited and will be reported in the future.
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