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Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables,
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Abstract. Accurate estimation of solar radiation is the major concern in renewable energy applications.
Over the past few years, a lot of machine learning paradigms have been proposed in order to improve the
estimation performances, mostly based on artificial neural networks, fuzzy logic, support vector machine
and adaptive neuro-fuzzy inference system. The aim of this work is the prediction of the daily global solar
radiation, received on a horizontal surface through the Gaussian process regression (GPR) methodology.
A case study of Ghardäıa region (Algeria) has been used in order to validate the above methodology. In
fact, several combinations have been tested; it was found that, GPR-model based on sunshine duration,
minimum air temperature and relative humidity gives the best results in term of mean absolute bias error
(MBE), root mean square error (RMSE), relative mean square error (rRMSE), and correlation coefficient
(r). The obtained values of these indicators are 0.67 MJ/m2, 1.15MJ/m2, 5.2%, and 98.42%, respectively.

1 Introduction

Solar energy is the source of most energy available on the Earth. It is expected to play a very important role in
the nearest future, particularly in the developing countries. In this context, several nations have adopted strategies
and visions for the development of renewable sources, in order to meet their energy needs and supplies. We can cite
the 2030 plan of Algeria and Tunisia for the production of 40% of electricity needs from renewables, the 2020 plan
of Morocco and Egypt for a production of 42% and 20%, respectively, from renewable sources [1]. Indeed, knowing
the available solar energy amount in a specific location is of primary importance for sizing solar systems. Although,
solar radiation is relatively constant at the top of atmosphere of Earth’s atmosphere, local climate influences can
cause huge variations in available insolation on the Earth’s surface. Controlling the random nature of energy sources
such as solar radiation on the ground could allow power system operators to better integrate them. This calls for
the estimation of available solar energy, which involves the prediction of solar energy. The best way to quantify
the amount of solar energy at a given region is the installation of many measuring stations in several places on the
region under consideration, and keeps to their maintenances and their records. Unfortunately, for many developing
countries, there are no long time series of solar radiation data due to the limited number of measuring stations, cost
and maintenance of devices. Nevertheless, the use of approaches and methods for forecasting and estimating the solar
radiation amount and its characteristics will be paramount.

In the literature, some empirical formulas have been proposed by many researchers in the purpose to estimate the
surface solar radiation, based on the available meteorological parameters such as relative humidity, air temperature,
wind speed, sunshine duration, etc. The best accurate estimate is expected when employing sunshine duration based
models [2–12]. The reference formula in this category is that proposed by Angström-Prescott [13], which establishes
a simple relationship between global solar radiation and sunshine duration. Using air temperature and humidity as
predictors is also widely investigated. Although, when high precisions are needed, these models become inappropriate
for the reason that the majority of them are site dependent. Here, to overcome this shortcoming, the requirement for
accurate approaches such as artificial intelligence (AI) or machine learning techniques becomes even more important.
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Among these approaches, we can cite artificial neural networks (ANN), support vector machine (SVM) [14], generalized
fuzzy models and extreme learning machine (ELM) [15].

The artificial neural network model (ANN) is one of the earliest machine learning methods and it is considered in
the first rank. It is processed by many authors for solar components (Global, Direct and diffuse) assessment. Dorvio
et al. [16] have estimated solar radiation through radial basis functions (RBF) and multi-layer perceptron (MLP)
networks, using data of eight stations from Oman. They concluded that both RBF and MLP models agree with the
observed data, where an RMSE of (0.83MJ/m2/day) was achieved by using the RBF-model and (1.01MJ/m2/day) was
found for the MLP-model. Banghanem et al. [17] used the RBF neural network to estimate daily global solar radiation
in Al-Madina site (Saudi-Arabia). In their studies, they developed four RBF models using a set of meteorological
parameters as inputs. It was found that the RBF model based on sunshine duration and air temperature gives high
performances (R2 = 98.8%). The MLP model has been developed by Senkal et al. [18] for global solar radiation
prediction on horizontal surfaces, in 12 areas in Turkey. Different inputs have been used (latitude, altitude, longitude,
month, mean diffuse radiation and mean beam radiation). Accordingly, they showed that, the developed MLP model
gives better predictions with an RMSE of 91W/m2, compared to the physical methods (RMSE = 125W/m2). Sozen
et al. [19] proposed the ANN model for predicting global solar radiation based on geographical coordinates (latitude,
longitude and altitude), meteorological data (sunshine duration and mean temperature) and the corresponding month
of the year, from 17 stations in Turkey. The mean absolute percentage error (MAPE) was found to be less than 6.7%
and the correlation coefficient reaches 99.89% for testing stations. Mellit et al. [20] proposed a hybrid model that
combines Markov chain with neural network called ANN-MTM (Markov Transition Matrix). They used geographic
coordinates as inputs to the proposed model while the output is the daily global solar radiation. The obtained results
indicate an RMSE lower than 8% and the correlation coefficient is between 90 and 92%. Gani et al. [21] proposed the
use of nonlinear autoregressive (NAR) model as a new methodology for daily global solar radiation prediction on a
horizontal surface, over seven cities with different climate conditions in Iran. In their work, they used only the day of
the year as the input to the proposed prediction model. They found that the adaptive neuro-fuzzy inference system
(ANFIS) achieves high performance and outperforms the proposed NAR in term of statistical indicators. Zeng et al. [22]
applied an RBF-model for the short-term prediction of hourly global solar radiation in three different regions. They
used data recorded from 1991 to 2005 which include transitivity, relative humidity, wind speed, sky cover and hourly
global solar radiation. In their work, they used a new concept based on 2-D representation of hourly solar radiation
and instead of direct prediction of hourly global solar radiation they predicted firstly the transmissivity, which was
then used to calculate solar radiation through extraterrestrial radiation. The achieved results were compared to those
of linear regression models, local linear regression (LLR) and autoregressive (AR) model as a benchmark model. They
found that the RBF model outperforms the AR and LLR methods in terms of the prediction accuracies. Mohamed
et al. [23] proposed a simple model based on neural networks for forecasting the average daily global solar radiation,
over five cities in Kuwait. The suggested MLP-model was tested based on five years (2007–2011) of measurements.
The obtained results in terms of MAPE and correlation coefficients (R2) are 85.6 and 94.75%, respectively.

Some researchers use kernel based machine learning methods, especially the support vector machine (SVM), for esti-
mating solar radiation components. Bektas [24] investigated a least squares support vector machines (LS-SVM) method
to forecast the next day global solar radiation, taking the daily mean temperature, the daily maximum temperature,
sunshine duration and the solar insolation of the previous day as inputs. The attained results show that the LS-SVM
is a good method for modeling solar insolation with a correlation coefficient of about 99.294%. Support vector machine
regression was applied by Chen et al. [14] in order to estimate the global solar radiation components in China. There-
fore, seven SVM models have been developed, using different combinations. All SVM models give high precisions and
outperform empirical methods. The best model is observed when the sunshine duration is used as input. Lanre et al. [25]
proposed a hybrid model that combined the fire-fly algorithm (FFA) with the SVM model for global solar radiation
prediction, using meteorological parameters. The proposed FFA-SVM model was compared to the ANN and genetic
algorithm (GA) approaches. They showed that the proposed FFA-SVM model outperforms the ANN and GA model in
terms of statistical indicators (RMSE = 1.87MJ/m2/day, R2 = 72.80%, r = 85.32%, and MAPE = 1.52MJ/m2/day).

Recently, another machine learning algorithm called extreme learning machine (ELM), has obtained considerable
attention in the scientific area, due to its performance, fast training and easy implementation. Shamshirband et al. [26]
used kernel extreme learning machine (KELM) for modeling daily global solar radiation. They developed three KELM
models based on maximum and minimum air temperature. Several tests have been carried out, and the achieved
results reveal that the KELM model achieves higher accuracy, especially when Tmax and Tmax-Tmin are used as inputs
(MABE = 1.35MJ/m2, RMSE = 2.02MJ/m2, RRME = 11.25MJ/m2, R2 = 90.57%).

New models are continuously proposed, such as combined approaches between different techniques in the goal to im-
prove the precision. Cao et al. [27] proposed a new method for forecasting diffuse horizontal solar irradiation (DHI) using
the combination of recurrent back propagation network and wavelet transform (WT), for Shanghai region (China). The
obtained RMSE (MJ/m2) with and without wavelet analysis are 0.7193 and 2.8168, respectively. The ANFIS model is
used by Rahoma et al. [28] aiming the prediction of the daily global radiation in Egypt. Data of ten years (1991–2000)
have been employed for developing the model. The mentioned method is the combination of fuzzy logic and neural
network techniques; the obtained results clarified that the fuzzy model gives better accuracy (R2 = 96%,RMSE < 6%).
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Fig. 1. Mean yearly global solar radiation received on horizontal surface [31].

Mellit et al. [29] have applied an adaptive ANFIS model for estimating the monthly mean clearness index (Kt) sequences
and the daily global solar radiation in Algeria, based on some geographical and meteorological parameters. Also, a com-
parison to the ANN technique has been done using statistical indicators (RMSE and MAPE). The outcomes indicate
that the ANFIS model gives better performance against ANN architectures (RBFN, MLP and RNN). Mohammadi et
al. [30] have also used the ANFIS approach to identify the most relevant input parameters over three cities (Isfahan,
Kerman and Tabass) in Iran. They considered in their study, three cases with 1, 2 and 3 inputs. In this respect, 9
ANFIS-models were developed to evaluate each case in terms of RMSE, MABE and correlation coefficient (R2). For the
first case, the sunshine hour and maximum possible sunshine hour have been identified as the relevant input parameters,
while in the second case, they have recognized sunshine duration, extraterrestrial solar radiation and maximum possible
sunshine hour as the appropriate inputs. In the last case and in addition to the inputs mentioned in the previous cases,
they observed that maximum temperature (Tmax) can be added as an input, especially for Isfahan and Kerman sites.

In the present work, the purpose of our attempt is the estimation of the daily global solar radiation by means of
the Gaussian process regression (GPR) model. We have developed this approach using data of four years, recorded
from January, 1 (2005) to August, 31 (2008). Data were collected in Ghardäıa region, Algeria. The data used in
this work in order to validate the proposed GPR model include daily global solar radiation (DHR), minimum air
temperature (Tmin), maximum air temperature (Tmax), mean air temperature (Tmean), minimum relative humidity
(RHmin), maximum relative humidity (RHmax), mean relative humidity (RHmean), sunshine duration (S).

The paper is organized as follows: sect. 2 describes devices, data collection and site location. Section 3, deals with
model performance. Results and discussion of the proposed model are covered in sect. 4. Finally, the last section is
dedicated to the conclusion of the work.

2 Material and methods

2.1 Experimental setup

Algeria is located in the center of North Africa along the Mediterranean coast, between the latitudes of 19◦ and 38◦
North and longitudes of 8◦ West and 12◦ East. Its southern region comprises a large part of the Sahara (nearly 86% of
the total area of the country, which represents 2048297 km2). Its geographical position in the solar belt and favorable
climatic conditions (abundant sunshine duration throughout the year), make Algeria a strategic actor in the field of
solar technology; it is even considered one of the countries with the highest levels of solar radiation in the world with
an estimated solar potential of more than 5 billion GWh/year [31].
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Fig. 2. Monthly mean sunshine duration in Ghardäıa site.

Fig. 3. Radiometric station: (1) Pyranometer for global solar radiation measurement on horizontal surface; (2) pyranometer for
global solar radiation measurement on inclined surface; (3) pyranometer for diffuse solar radiation measurement on horizontal
surface; (4) peryheliometer for DNI measurement.

The case of study considered in this paper is the Ghardäıa site. It is an arid area located in the south of Algeria
about 600 (km) far from the capital city (latitude of 32.6◦ N, longitude of 3.8◦ E and altitude of 450m). Ghardäıa is
labeled by an exceptional sunshine duration (more than 3000 (hours/year)) and significant insolation where the mean
daily global solar radiation received on a horizontal surface is about 6000Wh/m2 (figs. 1, 2).

The experimental data used in this work have been performed every 10 minutes by an EKO radiometric station
with high precision, installed on the roof of the Applied Research Unit for Renewable Energies URAER (fig. 3). The
station has the following parts:

– A fixed one consists of two EKO MS-64 pyranometers for the measurement of global solar radiation received on a
horizontal plane and on an inclined surface at the latitude of the site.

– A moving part, able to track the sun from sunrise to sunset and it is equipped with an EKO MS-101D pyrheliometer,
for measuring the direct normal irradiance DNI component.
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Table 1. Technical specifications of used instruments.

Pyranometer MS-64 Pyrheliometer MS-101D

Directional response < ±10 W/m2 < ±10 W/m2

Temperature response < ±1% < ±1%

Non-linearity < ±0.2% < ±0.2%

Tilt response < ±0.2% –

Operating temperature range (◦C) −40–+80 −20–+60

Wavelength range (nm) 305–2800 200–4000

 

 
Fig. 4. Daily evolution of the global horizontal radiation.

Another EKO MS64 pyranometer is considered for the measurement of the diffuse component on a horizontal surface,
equipped with a shadow band for hiding the radiant flux coming directly from the sun. Meteorological sensors are also
included with this station for the measurement of the following parameters: air temperature, atmospheric humidity,
wind speed and direction, atmospheric pressure (table 1).

More technical specifications of used radiometer are reported in table 1. We have used measurements of the daily
global solar radiation recorded during four years (2005 to 2008), and the behavior of global solar radiation, sunshine
duration and sunshine fraction are illustrated in figs. 4, 5 and 6, respectively.

3 Performance measurements

The performance of the GPR model is evaluated using different statistical indicators such as mean absolute bias error
(MABE), root mean square error (RMSE), relative mean square error (rRMSE) and correlation coefficient (r) [23,30,
31].

The MABE gives the mean absolute value of the bias error. Its expression is given by:

MABE =
1
n

n∑

i=1

|H̀ − H|, (1)

where H̀ is the estimated value and H is the measured one.
The RMSE represents the difference between predicted and measured values. In fact, RMSE identifies the model’s

accuracy. It is calculated by

RMSE =

√√√√ 1
n

n∑

i=1

(H̀ − H)2. (2)
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Fig. 5. Daily evolution of the sunshine duration.

 
Fig. 6. Sunshine fraction.

The rRMSE is calculated, dividing the RMSE by the average of the measured data

rRMSE =

√
1
n

∑n
i=1(H̀ − H)2

1
N

∑n
i=1 H

× 100. (3)

The performance of the model is defined by the rRMSE range as follows [31,32]:

– Excellent, if rRMSE < 10%.
– Good, if 10% < rRMSE < 20%.
– Fair, if 20% < rRMSE < 30%.
– Poor, if rRMSE > 30%.

The R2 and r indicate the strength of a linear relationship between the measured and the predicted values. They are
calculated as follows:

r =
∑n

i=1 (H̀ − H́) · (H − H)√∑n
i=1(HP − H́) ·

∑n
i=1(H − H)

. (4)
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Fig. 7. Clearness index (Kt) evolution.

4 Results and discussion

As mentioned above, the main objective of this paper is the assessment of the GPR method for daily global solar
radiation prediction, using the available meteorological parameters (e.g. air temperature, sunshine ratio, relative
humidity). In this context, several GPR-models are developed based on different inputs. The target output is the
clearness index (Kt = GHR

GH0R
) which is defined in the appendix. The behavior of Kt is shown in fig. 7.

For the first model, air temperature, relative humidity and the mixture between them have been considered
(Tmin, Tmax, (Tmax-Tmin), Tmean, RHmin;RHmax, (RHTmax-RHmin), RHmean):

Kt = GPR1{T,RH}.

The second model uses only the sunshine ratio as input parameters

Kt = GPR2{SS}.

The third GPR model takes into account the sunshine ratio and air temperature as input parameters

Kt = GPR3{T, SS}.

The fourth model takes both relative humidity and sunshine ratio as inputs

Kt = GPR4{RH,SS}.

The last one considers all available data (sunshine duration, air temperature and relative humidity) as input parame-
ters:

Kt = GPR5{T,RH,SS}.

The collected data are divided into two subsets: the first one is dedicated for training (540 samples) and the second
subset is used for the test phase. The achieved statistical results are presented in table 2. In this stage, we can deduce
the following observations:

– When several inputs have been used, the model accuracy has been influenced.
– The models which use air temperature as an input has reached high performance, compared to those based on

relative humidity.
– The model performance doesn’t improve significantly when combining air temperature and relative humidity.
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Table 2. The studied GPR models with different input attributes.

Models Input parameters
MABE RMSE

rRMSE
r

(MJ/m2) (MJ/m2) (%)

GPR models-1

(RHmax, RHmin) 2.01 3.028 13.69 88.70

(RHmax, RHmax-RHmin) 2.00 3.036 13.72 88.64

(RHmin, RHmax-RHmin) 1.99 2.93 13.26 89.38

(RHmax, RHmax-RHmin, RHmin) 2.01 2.99 13.55 88.92

(RHmax, RHmean) 2.00 2.88 13.02 89.73

(RHmin, RHmean) 1.97 2.84 12.86 90.00

(RHmin, RHmean, RHmax) 2.01 2.95 13.36 89.23

(RHmax, RHmean, RHmax, RHmax -min) 2.00 2.94 13.28 89.34

(Tmax, Tmin) 1.82 2.62 11.86 91.60

(Tmin, Tmax-Tmin) 1.80 2.60 11.75 91.75

(Tmax, Tmax-Tmin) 1.82 2.62 11.85 91.6

(Tmax, Tmin, Tmax-Tmin) 1.82 2.62 11.84 91.62

(Tmax, Tmean) 2.04 2.84 12.85 90.14

(Tmin, Tmean) 1.78 2.58 11.67 91.86

(Tmax, Tmean, Tmax) 1.78 2.57 11.63 91.92

(Tmax, Tmean, Tmax, Tmax-Tmin) 1.77 2.56 11.58 91.99

(Tmax, RHmax) 1.99 2.744 12.40 90.94

(Tmin, RHmin) 1.97 2.756 12.46 90.75

(Tmean, RHmean) 2.03 2.81 12.73 90.31

(Tmax, Tmin, RHmax, RHmin) 1.82 2.58 11.65 92.65

(Tmax, Tmin, Tmax-Tmin, TRHmax, RHmin, RHmax-RHmin) 1.82 2.60 11.77 91.81

(Tmax, Tmin, Tmean, Tmax-Tmin,
1.81 2.60 11.73 91.85

TRHmax, RHmin, RHmean, RHmax-RHmin)

(Tmax, Tmin, Tmean, TRHmax, RHmin, RHmean) 1.83 2.58 11.66 91.97

(Tmax, Tmean, TRHmax, RHmean) 1.98 2.73 12.35 91

(Tmin, Tmean, RHmin, RHmean) 1.85 2.60 11.76 91.74

GPR models-2 (SS) 0.80 1.24 5.59 98.23

GPR models-3

(SS, Tmax, Tmin) 0.73 1.196 5.40 98.32

(SS, Tmax, Tmin, Tmean) 0.726 1.179 5.33 98.36

(SS, Tmax, Tmin, Tmax-Tmin) 0.73 1.195 5.40 98.33

(SS, Tmax, Tmin, Tmax-Tmin, Tmean) 0.72 1.17 5.32 98.37

(SS, Tmax-Tmin, Tmean) 0.74 1.92 5.39 98.33

(SS, Tmax-Tmin) 0.77 1.20 5.43 98.28

(SS, Tmean) 0.73 1.20 5.43 98.31

GPR models-4

(SS, RHmax, RHmin) 0.80 1.23 5.58 98.29

(SS, RHmax, RHmin, RHmean) 0.80 1.23 5.58 98.27

(SS, RHmax, RHmin, RHmax-RHmin) 0.81 1.24 5.60 98.28

(SS, RHmax, RHmin, RHmax-RHmin, RHmean) 0.80 1.24 5.59 98.27

(SS, RHmax-RHmin, RHmean) 0.81 1.25 5.64 98.24

(SS, RHmax-RHmin) 0.82 1.24 5.62 98.21

(SS, RHmean) 0.80 1.23 5.56 98.25

GPR models-5

(SS, Tmax, RHmax) 0.71 1.18 5.34 98.35

(SS, Tmin, RHmin) 0.67 1.15 5.2 98.42

(SS, Tmean, RHmean) 0.68 1.16 5.26 98.39

(SS, Tmax-Tmin, RHmax-RHmin) 0.76 1.19 5.39 98.31

(SS, Tmean, Tmax-Tmin, RHmax-RHmin, RHmean) 0.68 1.16 5.25 98.40

(SS, Tmax, Tmin, Tmean, Tmax-Tmin,
0.68 1.15 5.22 98.42

RHmax, RHmin, RHmax-RHmin, RHmean)

(SS, Tmax, Tmin, Tmean, RHmax, RHmin, RHmean) 0.68 1.15 5.2 98.43
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Fig. 8. Measured global radiation versus estimated GPR model (RHmin, RHmean).

Fig. 9. Measured global radiation versus estimated GPR model (Tmin, Tmean, Tmax).

Another important remark is when using only sunshine ratio as an input, high performance is obtained due to the
strong correlation between the sunshine ratio and the clearness index. Therefore, combining sunshine duration with air
temperature and relative humidity boosts the model performances. In order to analyze the performance of three GPR
models: GPR{RHmin, RHmax}, GPR{Tmin, Tmax, Tmax-Tmin} and GPR{SS}, the dispersion between the estimated
and measured data values is shown in figs. 8, 9 and 10, respectively. As can be seen from these plots, the dispersions
in the first and the second cases are strong where the correlation coefficients reach 90% and 91.92%. In the third case,
GPR3{SS}, the dispersion of the scatter plot is very weak (r = 98.21%).

The second experiment aims at making a comparison of the best GPR model thus found with other AI methods.
That is way the GPR model is compared to two ANN architectures, namely the radial basis function (RBF) and
the multi-layer perceptron (MLP). The best combination {S, Tmin, RHmin} has been chosen as the input for the
mentioned networks. Moreover, before building the RBF and MLP, the database is subdivided into learning (training
and validation) and test sets. As we know, the GPR is a nonparametric method in which the validation data are not
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Fig. 10. Measured global radiation versus estimated GPR model (SS).

Table 3. Performance of the GPR model versus neural networks models.

Models Input parameters
MABE RMSE

rRMSE
r

(MJ/m2) (MJ/m2) (%)

GPR {S, Tmin, RHmin} 0.67 1.15 5.20 98.42

RBF {S, Tmin, RHmin} 0.70 1.17 5.23 98.38

MLP {S, Tmin, RHmin} 0.73 1.242 5.61 98.17

needed. Indeed, 540 samples are used for training and the rest for testing. In neural networks models (RBF and MLP),
540 samples are used for the learning phase and the rest for the test. The learning subset is divided into training data
(380 samples) and validation phase (180 samples).

It is worth highlighting that the optimal parameters of the RBF and MLP are obtained using the cross-validation
scheme. After several trials, an RBF model with 6 neurons in the hidden layer and optimal width of all kernel functions
equal to 0.7 has been found (we assume that all kernel functions have the same width σ). For the MLP neural network,
the optimal architecture is one hidden layer containing 9 neurons and the learning rate equal to 1, using the Levenberg-
Marquardt algorithm for training. From table 3, we can observe that the three models revealed significant results.
However, the proposed model exhibits slight improvements against the compared methods.

As can be seen from figs. 11 and 12, it is clearly observed that even due to the random nature of the daily global solar
radiation, the estimated values obtained by GPR{SS, Tmin, RHmin} follow the measured ones with great correlation.

In the third experiment, the performance of the three models has been considered against the number of training
samples and the processing time. From tables 4–6, the following remarks can be drawn:

– In the case where the number of training equals 10 samples, the RBF model loses its generalization capacity, unlike
MLP and GPR models (figs. 13, 14). In addition, the GPR is very fast in the training phase (0.2 s) but both models
require a calculation time equal to 92 and 95.63 s.

– In the case of 50 samples, the MLP gives good results in terms of RMSE and r with a processing time equal to
230 seconds, followed by GPR with fast training time (0.286 s).

– Starting from 100 samples, the GPR model is more efficient in terms of both statistical indicators and processing
time.

– From 250 days, the performance of the three models is closer, with a slight dominance for the GPR.
– If we take the case of 550 days, the GPR needs only 35 seconds for training, while the MLP and RBF need 410

and 689 seconds, respectively, to achieve their calculations.

As a consequence, we can conclude that the GPR model has proved its efficiency daily global solar radiation prediction.
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Fig. 11. Measured global radiation versus estimated GPR model (SS, Tmin, RHmin).

 

Fig. 12. Measured global radiation versus estimated best GPR model.

5 Conclusion

In this study, a new GPR model was proposed for estimating the daily global solar radiation on a horizontal surface. The
main advantage of this approach is related mainly to its simplicity of implementation, fast training speed and accuracy.
Five GPR models were developed using different input attributes including: Tmin, Tmax, Tmax-Tmin, RHmin, RHmax,
RHmax-RHmin and SS. The estimated values have been assessed against the measured data using five statistical
indicators. The conducted examination showed the appreciable effect of input parameters on the precision of GPR
models. It has been demonstrated that H = GPR{SS, Tmin, RHmin} provide better accurate precision than the other
proposed GPR models. It should be noted that the fraction of sunshine duration SS is the most relevant parameter
which assures high prediction accuracies.

In order to emphasize the GPR precision, its predictions are compared with two neural networks models, namely,
MLP and RBF. The experimental results show an improvement in the predictive accuracy and in the capability
of generalization. However, the statistical indices (MABE = 0.67MJ/M2, RMSE = 1.15MJ/m2, rRMSE = 5.20,
r = 98.42%) proved that the GPR model gives best accuracies when compared to the MLP and RBF architectures.
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Fig. 13. Performance of GPR models against number of training samples in terms of correlation coefficient.

Fig. 14. Performance of GPR models against number of training samples in terms of RMSE.

The comparison between observed and estimated values clearly show that the proposed GPR proves remarkable
improvement in the accuracy of the prediction for the day-by-day global solar radiation. Accordingly, it can be used
also in regions that have a similar climate. Furthermore, other cases with different climate conditions will be considered
in the future investigations.

Appendix A.

The Gaussian process regression has become increasingly a powerful tool for data-driven modeling and forecasting. GPR
models are a Bayesian non parametric approach that can be applied to solve a serious competitor for real supervised
learning applications. It has been used to response surface modeling [32], system identification [33], calibration of
spectroscopic analyzers [34,35] and ensemble learning [36].

The main idea behind the GPR theoretical is to place a prior directly on the space of functions. It can be defined
by its mean function and covariance function, written as

f(x) ∼ GP(m(x), k(x, x̀)). (A.1)
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Table 4. Best GPR model performance against number of training samples.

GPR models Number of training samples
MABE RMSE

rRMSE
r Time

(MJ/m2) (MJ/m2) (%) (s)

Input parameters

10 samples 3.25 4.36 16.41 90.82 0.206

{S, Tmin, RHmin}

50 samples 3.86 4.90 18.20 91.74 0.286

100 samples 1.38 1.38 2.27 96.10 0.304

150 samples 1.08 1.91 7.20 97.20 0.375

200 samples 1.04 1.89 7.25 97.15 0.477

250 samples 1.00 1.82 7.03 97.52 0.710

300 samples 0.95 1.8 6.80 97.64 0.793

350 samples 1.00 1.82 6.80 97.39 1.10

400 samples 1.00 1.83 6.62 97.06 1.60

450 samples 0.99 1.87 6.76 97.10 1.65

500 samples 0.90 1.68 6.11 97.76 2.39

550 samples 0.82 1.40 5.26 98.42 3.01

Table 5. RBF model performance against number of training samples.

RBF models Number of training samples
MABE RMSE

rRMSE
r Time

(MJ/m2) (MJ/m2) (%) (s)

Input parameters

10 samples 5.99 7.68 28.92 73.40 92

{S, Tmin, RHmin}

50 samples 5.24 8.12 30.21 70.94 185

100 samples 4.06 5.94 22.08 89.06 199

150 samples 1.15 2.03 7.64 96.74 213

200 samples 1.15 2.08 7.97 96.52 212

250 samples 1.07 1.96 7.57 97.25 221

300 samples 1.03 1.85 7.10 97.50 220

350 samples 0.98 1.82 6.81 97.41 223

400 samples 0.99 1.84 6.65 97.05 240

450 samples 0.998 1.90 6.83 97.09 297

500 samples 0.90 1.68 6.13 97.78 350

550 samples 0.83 1.43 5.34 98.38 410

Let us consider a regression of input data x containing d variables. In the machine-learning approach, the main
objective is to learn the functional relationship between the inputs of d-dimensional x ∈ R

d and the desired output
variable y,

y = f(x), (A.2)

where R denotes the real space and f the unknown function.
The unknown function f can be estimated by means of the following linear combination of basic functions:

f̂(x,w) =
M∑

j=1

WJφJ(X), (A.3)

{φj(X)}M
j=1 represents a set of basis functions which can be linear or nonlinear and w = [w1, . . . , wM ]T is the unknown

vector for M basis function of f :

y =
M∑

j=1

wjφj(x) + ε, (A.4)

where ε represents the error term.
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Table 6. MLP model performance against number of training samples.

MLP models Number of training samples
MABE RMSE

rRMSE
r Time

(MJ/m2) (MJ/m2) (%) (s)

Input parameters

10 samples 2.72 4.26 16.05 88.78 95.63

{S, Tmin, RHmin}

50 samples 2.50 3.10 11.5 94.66 230

100 samples 1.67 2.52 9.37 95.80 260

150 samples 1.47 2.55 9.62 95.62 287

200 samples 1.01 1.76 6.75 97.59 350

250 samples 1.045 1.84 7.10 97.46 398

300 samples 1.05 1.83 7.02 97.52 420

350 samples 1.03 1.85 6.97 97.32 486

400 samples 1.04 1.85 6.70 97.05 510

450 samples 0.99 1.88 6.79 97.08 564

500 samples 0.92 1.70 6.24 97.74 643

550 samples 0.89 1.48 5.57 98.23 689

In most linear and nonlinear regression models, a set of training data D = {X,Y }N
i=1 of N observation is needed

to estimate the unknown weights w, and the basis function φj(X) can be defined as the projection of the data from
the original space into high-dimensional space which is not the case in the proposed GPR models.

In the work of Rasmussen et al. [37], they mentioned that the basic block of the GPR is a GP that assumes
Gaussian priors for function values specified which is identified by its second-order statistics:

f(x) ∼ GP (m(x), k(x, x̀)), (A.5)

where m(x), K(x, x́) represent the mean and the covariance function of f . By definition GP is a collection of finite
sets of random variables which follow Gaussian distribution [33]. Under GP, the prior distribution of f is a Gaussian

p(f |X, θ) ∼ N (0,K), (A.6)

where θ represents hyper parameters.
Equation (A.6) states that a Gaussian distribution with zeros mean and the N ∗ N K is a covariance matrix of f .
If the error term ε in eq. (A.4) is assumed to be independent and follows Gaussian distribution, the likelihood

function of the training target is also Gaussian:

p{y|f, σ2} ∼ N (f, σ2I), (A.7)

where σ2 and I represent the variance and identity matrix, respectively, of the error model. Then the posterior
distribution of f can be formulated using Bayes’ rule:

p(f |y,X, θ, σ2) =
p(y|f, σ2)p(f |X, θ)

p(y|X, θ, σ2)
. (A.8)

Under Gaussian process modeling, the posterior distribution of f is also Gaussian, since both prior and likelihood
function follow Gaussian distributions. The mean and covariance of the posterior function are given by [38]

μ = KT (K + σ2I)−1 , (A.9)

Σ = K − KT (K + σ2I)−1K. (A.10)

A central role for the GPR methodology is played by the covariance function k(·, ·) which embeds the geometrical
distribution of the training data. In GPR literature some commonly used kernel functions include squared exponential
or Gaussian kernel [38]:

k(x, x̀|θ) = σ2
f exp

(
− r2

2l2

)
, θ = {α, l, σ2

f} (A.11)
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and the family of covariance function is

k(x, x̀|θ) = σ2
f

21−v

Γ (υ)

(√
2vr

l

)υ

kυ

(√
2υr

l

)
, θ = {υ, l, σ2

f}. (A.12)

In eqs. (A.11) and (A.12), r = |x − x̀| denote the Euclidean distance between two points and θ represents the
hyper parameters associated with each covariance function. The marginal probability distribution can be estimated
by integration over the latent function f [38]:

p(y|X) =
∫

p(y|f, σ2)p(f |X, θ)df. (A.13)

The log marginal likelihood is obtained

log p(y|X) ∝ −1
2
yT (K + σ2I)−1y − 1

2
log |K + σ2I| − N

2
log(2π). (A.14)

Then the gradient-based algorithm is applied to estimate the unknown parameters (θ, σ2) can be estimated from
eq. (A.13) using the rule for conditioning Gaussian [38], predictive distribution of any test data x∗ can be evaluated:

p(f∗|x∗, y,X, θ, σ2), (A.15)

where the mean m and σ2 variance of the prior distribution p(y∗|y) can be derived by the following equation:

m(x∗) = φ(x∗)T μ = KT
∗ (K + σ2I)−1y, (A.16)

ϑ2(x∗) = φ(x∗)T ΣΦ(x∗) = K∗∗ − KT
∗ (K + σ2I)−1K∗, (A.17)

K∗ = [K(x∗, x1), . . . , K(x∗, xN )]T , K∗∗ = K(x∗, x∗), μ and Σ are the posterior mean and variance of f .
The prior mean which represents the best output estimate for the considered data and the variance which represents

the confident interval associated with the model.

Appendix B.

Clearness index Kt, which is the ratio of global solar radiation on horizontal surface (GHR) to the extraterrestrial
solar radiation on horizontal surface (GH0R).

The extra-terrestrial solar radiation (H0) is given as

GH0R =
24 ∗ 3600

π
I0f

(
cos λ cos δ sin ws +

π

180
ws sin λ sin δ

)
, (B.1)

where I0 is the solar constant equal to 1360W/m2, f is the eccentricity correction factor, λ is the latitude of the
region, δ is the solar declination and Ws is the mean sunrise hour angle:

f = 1 + 0.33
(

cos
360λ

365

)
, (B.2)

δ = 23.45 sin
[
360(284 + n)

365

]
, (B.3)

ws = arccos(− tan λ tan δ),

where n represents the number of days.
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Nomenclature

a-b: Angstrom-Prescott regression coefficients AI: Artificial intelligence
kt: Clearness index RBF: Radial basis function neural network
SS: Sunshine ratio MLP: Multi-layer perceptron
GHR: Global horizontal radiation (M · J/M2) LS-SVM: Least squares support vector machine
GHR0: Extra-terrestrial solar radiation (M · J/M2) ELM: Extreme learning machine
DHI: Diffuse horizontal solar irradiation (M · J/M2) FFA: Fire-fly algorithm
DNI: Direct normal irradiance (M · J/M2) ANN-MTM: Artificial neural networks Markov
I0: Solar constant (1360W/m2) transition matrix
f : Eccentricity correction factor ANFIS: Adaptive neuro-fuzzy inference system
Greek letters LLR: Local linear regression
λ: Latitude of the region (0) KELM: Kernel extreme learning machine
δ: Solar declination (0) WT: Wavelet transform
ωs: Mean sunrise hour angle (0) ARMA: Mixed auto-regressive moving average
Acronyms MBE: Mean absolute bias error
GPR: Gaussian process regression RMSE: Root mean square error
ANN: Artificial neural networks rRMSE: Relative mean square error
SVM: Support vector machine r: Correlation coefficient
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