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Abstract. An improved (G′

G
)-expansion method is proposed for extracting more general solitary wave

solutions of the nonlinear fractional Cahn-Allen equation. The temporal fractional derivative is taken in
the sense of Jumarie’s fractional derivative. The results of this article are generalized and extended version
of previously reported solutions.

1 Introduction

The subject of fractional calculus shows glorious developments in the various phenomena in many natural and social
science fields, like economics, engineering, geology, meterology, chemistry, control theory and physics. In recent years,
it turned out that many physical phenomena are successfully modeled by the use of fractional-order derivatives.
Fractional differential equations have become important in recent decades as mathematical models of processes that
exhibit such properties as long-term memory and self-similarity. Finding a variety of exact solutions of nonlinear
fractional partial differential equations is an important work because these equations explain the exact description of
nonlinear phenomena of various real life problems. Problems in fractional calculus are not only important but quite
challenging.

In recent decades, with the developments in symbolic computations, a variety of new techniques have been proposed
to solve the nonlinear partial differential equations (PDEs) exactly. Some of those techniques including the solitary
wave Ansatz approach [1–3], the first integral method [4,5], Exp-function method [6], the (G′

G )-expansion method [7–9],
Lie symmetry analysis [10], Kudryashov method [11], residual power method [12], sine-Gordon expansion method [13–
15], extended Fan sub-equation method [16], exp(−φ(ξ))-expansion method [17], power series method [18], fractional
sub-equation method [19], complex envelop function ansatz [20,21], and so on, have been applied to construct the
exact solutions of not only integer-order PDEs but also fractional-order PDEs as well.

In this article, exact travelling wave solutions are obtained for time-fractional Cahn-Allen equation using the
improved (G′

G )-expansion method [22,23] via fractional complex transform. The fractional complex transform often is
used to convert fractal time-space to continuous time-space. We consider the fractional complex transform in the sense
of Jumarie’s modified Riemann-Liouville derivative, which can convert fractional partial differential equations into its
equivalent ordinary differential equations.

The rest of the article is arranged as follows: In sect. 2, some preliminaries and notations dealing with the fractional
calculus theory are briefly described. Section 3 presents the algorithmic approach to the improved (G′

G )-expansion
method. The exact solutions of the nonlinear Cahn-Allen equation with temporal fractional evolution via proposed
method are constructed, along with graphical representation, in sect. 4.

2 Preliminaries and notations

Riemann-Liouville, Grunwald-Letnikov and Caputo derivatives are basic definitions and notations of the fractional
calculus theory. Jumarie [24] presented a modification of the Riemann-Liouville definition which appears to provide
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a framework for fractional calculus. In this article, the fractional evolution terms of the evolution equation are in the
form of Jumarie’s point of view. In this section, we give the definitions and some properties of the Jumarie’s modified
Riemann-Liouville derivative which are further used in this paper.

Definition. Assume that f : R → R, x → f(x) denote a continuous (but not necessarily differentiable) function. The
Jumarie’s modified Riemann-Liouville derivative of order β is defined, as

∂βf(x)
∂xβ

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
Γ (−β)

∫ x

0

(x − ζ)−β−1[f(ζ) − f(0)]dζ, β < 0,

1
Γ (1 − β)

d
dx

∫ x

0

(x − ζ)−β [f(ζ) − f(0)]dζ, 0 < β < 1,

(f (n)(x))(β−n), n ≤ β ≤ n + 1, n ≥ 1.

(1)

Some useful formulas and properties of the modified Riemann-Liouville derivative can be summarized, as

∂βxγ

∂xβ
=

Γ (1 + γ)
Γ (1 + γ − β)

xγ−β , γ > 0, (2)

∂β(u(x)v(x))
∂xβ

= v(x)
∂βu(x)

∂xβ
+ u(x)

∂βv(x)
∂xβ

, (3)

∂βf [u(x)]
∂xβ

= f ′
u[u(x)]

∂βu(x)
∂xβ

, (4)

∂βf [u(x)]
∂xβ

=
∂βf [u(x)]

∂uβ
(u′

x)β . (5)

The function u(x) is non-differentiable in eqs. (3) and (4) and is differentiable in eq. (5). Thus, formulas (3)–(5) should
be applied carefully.

The fractional complex transformation [25], defined as

u(x1, x2, x3, t) = u(ζ),

ζ =
kxβ

1

Γ (1 + β)
+

lxγ
2

Γ (1 + γ)
+

mxδ
3

Γ (1 + δ)
+

ctβ

Γ (1 + β)
, (6)

reduces the nonlinear partial differential equation of fractional order to a nonlinear ordinary differential equation
(ODE), where k, l,m are arbitrary constants, the localized wave solution u = u(ζ) travels with speed c and ζ is the
amplitude of the travelling wave.

2.1 The improved (G′

G
)-expansion method

Suppose that a nonlinear fractional partial differential equation has the form

P
(
u,Dβ1

t u,Dβ2
x1

u,Dβ3
x2

u,Dβ4
x3

u, · · · ,Dβn+1
xn

u,Dβ1
t Dβ1

t u,Dβ1
t Dβ2

x1
u, · · ·

)
= 0, (7)

where u = u(t, x1, x2, x3, · · · , xn) is an unknown function, 0 < β1, β2, β3, · · · , βn+1 ≤ 1 and P is a polynomial in u
and its various partial fractional derivatives in which highest-order derivatives and nonlinear terms are involved. The
summary of the improved (G′

G )-expansion method can be presented in the following steps.

Step 1

The fractional complex transformation defined in eq. (6) permits us to transform eq. (7) into the following nonlinear
ordinary differential equation:

Q (u, u′, u′, u′′, · · · ) = 0, (8)

where prime denotes the derivatives with respect to ζ and Q is a polynomial in variable u(ζ) and its derivatives.
Equation (8) can be integrated as many times as possible and taking the constants of integration as zero for simplicity.
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Step 2

Assume that the solution of eq. (8) can be expressed by a polynomial in (G′

G ) as

u(ζ) =
i=m∑

i=−m

ai

(
G′

G

)i

. (9)

The function G = G(ζ) is the solution of auxiliary linear ordinary differential equation,

G′′(ζ) + νG′(ζ) + σG(ζ) = 0, (10)

where G′ = dG
dζ , ν and σ are real constants. The positive integer m can be determined by considering the homogeneous

balance between the highest-order derivatives and the nonlinear terms appearing in eq. (8).

Step 3

Substituting eq. (9) together with eq. (10) yields an algebraic equation involving powers of (G′

G ). Equating the coeffi-
cients of each power of (G′

G ) to zero gives a system of algebraic equations for ai (i = 0, 1, · · · ,m), ki (i = 0, 1, 2, · · · , n)
and L.

Step 4

Substituting ai (i = 0, 1, 2, · · · ,m), ki (i = 0, 1, 2, · · · , n), L and general solution of eq. (10) into eq. (9). Depending
on the sign of the discriminant (ν2 − 4σ), the solution of eq. (7) can be obtained.

3 Exact solution of the nonlinear fractional Cahn-Allen equation

The famous models of phase fields arising from the theory of phase transitions, namely the Cahn-Allen equation,
Cahn-Hilliard equation, the Penrose-Fife system and the Caginalp system, have gained much interest [26]. The most
familiar employed phase-fields models are the Cahn-Allen and Cahn-Hilliard theories. The equation that is going to
be discussed in this article is the Cahn-Allen equation. It describes the process of phase separation in iron alloys [27]
and is commonly used in solidification and nucleation problems. The nonlinear Cahn-Allen equation with temporal
evolution is given as

Dβ
t u − uxx + u3 − u = 0, t > 0, 0 < β ≤ 1, (11)

where β is a parameter describing the order of the temporal fractional derivative. Hariharan [28] has obtained the
analytical solution of Cahn-Allen equation with the Haar wavelet method. Tascan and Bekir [29] constructed the
periodic and solitary wave solutions of the Cahn-Allen equation using the first integral method. The fractional sub-
equation method was used to obtained the exact solutions for the spacetime fractional Cahn-Allen equation [30]. New
exact solutions of Cahn-Allen equation were obtained using the modified simple equation method and results were
also compared with Tascans results [31]. Bekir [32] implemented the double exp-function method and constructed the
one-soliton and two-soliton solutions of the Cahn-Allen equations. Ozkan Güner et al. [33] determined a variety of
exact solutions for the time-fractional Cahn-Allen equation.

In this article, the improved (G′

G )-expassion method is used to extract the soliton solutions of Cahn-Allen equation.
The following traveling wave variable is considered to transform eq. (11) into an ordinary differential equation:

u(x, t) = u(ζ),

ζ = kx − Ltβ

Γ (1 + β)
, (12)

which leads to
−Lu′ − k2u′′ + u3 − u = 0. (13)

Suppose that the solutions of eq. (13) can be expressed by a polynomial,

u(ζ) = a−1

(
G′

G

)−1

+ a0 + a1

(
G′

G

)

. (14)
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Substituting eq. (14) into eq. (13) along with eq. (10), setting the coefficients of (G′

G )i, (i = −1,−2,−3, 0, 1, 2, 3) to
zero, the following algebraic equations are obtained:

a3
1 − 2a1k

2 = 0,

La1 − 3k2a1ν + 3a0a
2
1 = 0,

La1ν − 3a1a
2
0 − 2k2a1σ − a1k

2ν2 + 3a2
1a−1 − a1 = 0,

La1σ − La−1 − a1k
2νσ − a−1k

2ν + a3
0 + 6a0a1a−1 − a0 = 0,

−La−1ν − a−1k
2ν2 − 2a1k

2σ + 3a1a
2
−1 + 3a−1a

2
0 − a−1 = 0,

−La−1σ − 3k2a−1νσ + 3a0a
2
−1 = 0,

a3
−1 + 2k2a−1σ

2 = 0.

After solving these algebraic equations the following sets of solutions are obtained.

Set a) L = − 3k√
2

, a0 = − (1+
√

2kν)
2 , a1 = −

√
2k, σ = −1+2k2ν2

8k2 , a−1 = 0

Using eq. (14) and the solution of eq. (10), three types of traveling wave solutions of eq. (11) can be calculated.
If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u1(ζ) = −1
2
− 1

2

[
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

]

. (15)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u2(ζ) = −1
2
− ι

2

[
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

]

. (16)

If ν2 − 4σ = 0, the rational function solution is obtained as

u3(ζ) = −1
2
−
√

2k

(
C2

C1 + C2ζ

)

, (17)

where ζ = k(x + 3tβ
√

2Γ (1+β)
).

In particular, if A1 �= 0 and A2 = 0 in eq. (15), it turns out that the kink wave solutions are

u4(ζ) = −1
2
− 1

2
tanh

(
x

2
√

2
+

3tβ

4Γ (1 + β)

)

.

Set b) L = − 3k√
2

, a0 = 1+
√

2kν
2 , a1 =

√
2k, σ = −1+2k2ν2

8k2 , a−1 = 0

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u5(ζ) =
1
2

+
1
2

[
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

]

. (18)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u6(ζ) =
1
2

+
ι

2

[
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

]

. (19)
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If ν2 − 4σ = 0, the rational function solution is obtained as

u7(ζ) =
1
2

+
√

2k

(
C2

C1 + C2ζ

)

, (20)

where ζ = k(x + 3tβ
√

2Γ (1+β)
).

In particular, if A1 �= 0 and A2 = 0 in eq. (18), it turns out that the kink wave solutions are

u8(ζ) =
1
2

+
1
2

tanh
(

x

2
√

2
+

3tβ

4Γ (1 + β)

)

.

Set c) L = 3k√
2

, a0 = −(1+
√

2kν)
2 , a1 = −

√
2k, σ = −1+2k2ν2

8k2 , a−1 = 0

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u9(ζ) =
1
2
− 1

2

[
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

]

. (21)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u10(ζ) =
1
2
− ι

2

[
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

]

. (22)

If ν2 − 4σ = 0, the rational function solution is obtained as

u11(ζ) =
1
2
−
√

2k

(
C2

C1 + C2ζ

)

, (23)

where ζ = k(x − 3tβ
√

2Γ (1+β)
).

In particular, if A1 �= 0 and A2 = 0 in eq. (21), it turns out that the kink wave solutions are

u12(ζ) =
1
2
− 1

2
tanh

(
x

2
√

2
− 3tβ

4Γ (1 + β)

)

.

Set d) L = 3k√
2

, a0 = 1−
√

2kν
2 , a1 = −

√
2k, σ = −1+2k2ν2

8k2 , a−1 = 0

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u13(ζ) = −1
2

+
1
2

[
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

]

. (24)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u14(ζ) = −1
2

+
ι

2

[
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

]

. (25)

If ν2 − 4σ = 0, the rational function solution is obtained as

u15(ζ) = −1
2

+
√

2k

(
C2

C1 + C2ζ

)

, (26)

where ζ = k(x − 3tβ
√

2Γ (1+β)
).

In particular, if A1 �= 0 and A2 = 0 in eq. (24), it turns out that the kink wave solutions are

u16(ζ) = −1
2

+
1
2

tanh
(

x

2
√

2
− 3tβ

4Γ (1 + β)

)

.
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Set e) L = −3k√
2

, a0 = ± 1
2 , a1 = 0, a−1 = ± 3

√
2

8k , σ = 3
8k2 , ν = −

√
2

k

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u17(ζ) = ±1
2
± 3

4
√

2k

[

− 1√
2k

+
1

2
√

2k

(
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

)]−1

. (27)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u18(ζ) = ±1
2
± 3

4
√

2k

[

− 1√
2k

+
ι

2
√

2k

(
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

)]−1

. (28)

If ν2 − 4σ = 0, the rational function solution is obtained as

u19(ζ) = ±1
2
± 3

4
√

2k

[

− 1√
2k

+
C2

C1 + C2ζ

]−1

. (29)

Set f) L = 3k√
2

, a0 = ± 1
2 , a1 = 0, a−1 = ∓ 3

√
2

8k , σ = 3
8k2 , ν = −

√
2

k

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u20(ζ) = ±1
2
∓ 3

4
√

2k

[

− 1√
2k

+
1

2
√

2k

(
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

)]−1

. (30)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u21(ζ) = ±1
2
∓ 3

4
√

2k

[

− 1√
2k

+
ι

2
√

2k

(
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

)]−1

. (31)

If ν2 − 4σ = 0, the rational function solution is obtained as

u22(ζ) = ±1
2
∓ 3

4
√

2k

[

− 1√
2k

+
C2

C1 + C2ζ

]−1

. (32)

Set g) L = −3k√
2

, a0 = −1
2 , a1 = 0, a−1 = ± 1

4
√

2
, σ = − 1

8k2 , ν = 0

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u23(ζ) = −1
2
± 1

2

[
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

]−1

. (33)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u24(ζ) = −1
2
± 1

2ι

[
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

]−1

. (34)

If ν2 − 4σ = 0, the rational function solution is obtained as

u25(ζ) = −1
2
± 1

4
√

2k

(
C2

C1 + C2ζ

)−1

. (35)
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Set h) L = 3k√
2

, a0 = ± 1
2 , a1 = 0, a−1 = ∓ 1

4
√

2
, σ = − 1

8k2 , ν = 0

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u26(ζ) = ±1
2
∓ 1

2

[
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

]−1

. (36)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u27(ζ) = ±1
2
∓ 1

2ι

[
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

]−1

. (37)

If ν2 − 4σ = 0, the rational function solution is obtained as

u28(ζ) = ±1
2
∓ 1

4
√

2k

(
C2

C1 + C2ζ

)−1

, (38)

where ζ = k(x − 3tβ
√

2Γ (1+β)
).

Set i) L = 3k√
2

, a0 = ± 1
2 , a1 = ∓

√
2k, a−1 = ∓ 1

16
√

2
, σ = − 1

32k2 , ν = 0

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u29(ζ) = ±1
2
∓ 1

4

[
A1 sinh( ζ

4
√

2k
) + A2 cosh( ζ

4
√

2k
)

A1 cosh( ζ

4
√

2k
) + A2 sinh( ζ

4
√

2k
)

]−1

∓ 1
4

[
A1 sinh( ζ

4
√

2k
) + A2 cosh( ζ

4
√

2k
)

A1 cosh( ζ

4
√

2k
) + A2 sinh( ζ

4
√

2k
)

]

. (39)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u30(ζ) = ±1
2
± ι

4

[
−A1 sin( ιζ

4
√

2k
) + A2 cos( ιζ

4
√

2k
)

A1 cos( ιζ

4
√

2k
) + A2 sin( ιζ

4
√

2k
)

]−1

∓ ι

4

[
A1 sinh( ζ

4
√

2k
) + A2 cosh( ζ

4
√

2k
)

A1 cosh( ζ

4
√

2k
) + A2 sinh( ζ

4
√

2k
)

]

. (40)

If ν2 − 4σ = 0, the rational function solution is obtained as

u31(ζ) = ±1
2
∓ 1

16
√

2k

(
C2

C1 + C2ζ

)−1

∓ 1
16
√

2k

(
C2

C1 + C2ζ

)

. (41)

Set j) L = 3k√
2

, a0 = ± (1−
√

1+8k2σ)
2 , a1 = 0, a−1 = ±

√
2kσ, ν = −

√
1+8k2σ√

2k

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u32(ζ) = ±1 −
√

1 + 8k2σ

2
±
√

2kσ

[√
1 + 8k2σ

2
√

2k
+

1
2
√

2k

(
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

)]−1

. (42)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u33(ζ) = ±1 −
√

1 + 8k2σ

2
±
√

2kσ

[√
1 + 8k2σ

2
√

2k
+

ι

2
√

2k

(
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

)]−1

. (43)

If ν2 − 4σ = 0, the rational function solution is obtained as

u34(ζ) = ±1 −
√

1 + 8k2σ

2
±
√

2kσ

(√
1 + 8k2σ

2
√

2k
+

C2

C1 + C2ζ

)−1

. (44)
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Set k) L = 3k√
2

, a0 = ± (1+
√

1+8k2σ)
2 , a1 = 0, a−1 = ±

√
2kσ, ν =

√
1+8k2σ√

2k

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u35(ζ) = ±1 +
√

1 + 8k2σ

2
±
√

2kσ

[

−
√

1 + 8k2σ

2
√

2k
+

1
2
√

2k

(
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

)]−1

. (45)

If ν2 − 4σ < 0, the trigonometric function solution as

u36(ζ) = ±1 +
√

1 + 8k2σ

2
±
√

2kσ

[

−
√

1 + 8k2σ

2
√

2k
+

ι

2
√

2k

(
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

)]−1

. (46)

If ν2 − 4σ = 0, the rational function solution is obtained as

u37(ζ) = ±1 +
√

1 + 8k2σ

2
±
√

2kσ

(

−
√

1 + 8k2σ

2
√

2k
+

C2

C1 + C2ζ

)−1

. (47)

Set l) L = − 3k√
2

, a0 = ± (1+
√

1+8k2σ)
2 , a1 = 0, a−1 = ∓

√
2kσ, ν = −

√
1+8k2σ√

2k

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u38(ζ) = ±1 +
√

1 + 8k2σ

2
∓
√

2kσ

[√
1 + 8k2σ

2
√

2k
+

1
2
√

2k

(
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

)]−1

. (48)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u39(ζ) = ±1 +
√

1 + 8k2σ

2
∓
√

2kσ

[√
1 + 8k2σ

2
√

2k
+

ι

2
√

2k

(
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

)]−1

. (49)

If ν2 − 4σ = 0, the rational function solution is obtained as

u40(ζ) = ±1 +
√

1 + 8k2σ

2
∓
√

2kσ

(√
1 + 8k2σ

2
√

2k
+

C2

C1 + C2ζ

)−1

. (50)

Set m) L = − 3k√
2

, a0 = ± (1−
√

1+8k2σ)
2 , a1 = 0, a−1 = ∓

√
2kσ, ν =

√
1+8k2σ√

2k

If ν2 − 4σ > 0, the hyperbolic function solution is obtained as

u41(ζ) = ±1 −
√

1 + 8k2σ

2
∓
√

2kσ

[

−
√

1 + 8k2σ

2
√

2k
+

1
2
√

2k

(
A1 sinh( ζ

2
√

2k
) + A2 cosh( ζ

2
√

2k
)

A1 cosh( ζ

2
√

2k
) + A2 sinh( ζ

2
√

2k
)

)]−1

. (51)

If ν2 − 4σ < 0, the trigonometric function solution is obtained as

u42(ζ) = ±1 −
√

1 + 8k2σ

2
∓
√

2kσ

[

−
√

1 + 8k2σ

2
√

2k
+

ι

2
√

2k

(
−A1 sin( ιζ

2
√

2k
) + A2 cos( ιζ

2
√

2k
)

A1 cos( ιζ

2
√

2k
) + A2 sin( ιζ

2
√

2k
)

)]−1

. (52)

If ν2 − 4σ = 0, the rational function solution is obtained as

u43(ζ) = ±1 −
√

1 + 8k2σ

2
∓
√

2kσ

(

−
√

1 + 8k2σ

2
√

2k
+

C2

C1 + C2ζ

)−1

, (53)

where ζ = k(x ± 3tβ
√

2Γ (1+β)
).
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Fig. 1. Plot of the solution u4 with β = 0.5.

Fig. 2. Plot of the solution u8 with β = 0.5.

Fig. 3. Plot of the solution u12 with β = 0.75.
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Fig. 4. Plot of the solution u16 with β = 0.5.

Fig. 5. Comparison of solutions for different values of β.

3.1 Graphical representation of the solutions

In this section, the numerical simulations of time-fractional Cahn-Allen equation are presented. The proposed method
provides more general and abundant new kink wave solutions with some free parameters. The kink wave are the type
of solitary waves that maintain its shape when travelling down and do not change their shape during the propagation.
Kink waves are travelling waves which rise or descend from one asymptotic state to another. Graphical illustrations of
the solutions u4, u8, u12 and u16 are illustrated in figs. 1–5 for β = 0.5 and β = 0.75. The other exact solutions could
be obtained from the remaining solution sets.

4 Conclusion

This study depicts that the improved (G′

G )-expansion method is quite efficient for extracting the exact travelling wave
solutions of the nonlinear Cahn-Allen equation. The reliability of the method and reduction in size of the computational
domain give this method a wider applicability. Also it is quite capable and almost well suited for constructing exact
travelling wave solutions of other fractional nonlinear evolution equations in mathematical physics.
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