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Abstract. In the case of steady flow of a fluid under the combined influence of external electric and mag-
netic fields, the fluid moves forward by forming an axial momentum boundary layer. With this end in view
a study has been performed here to investigate the problem of entropy generation during electroosmoti-
cally modulated flow of a third-order electrically conducting fluid flowing on a microchannel bounded by
silicon-made parallel plates under the influence of a magnetic field, by paying due consideration to the
steric effect. The associated mechanism of heat transfer has also been duly taken care of, by considering
Cattaneo-Christov heat flux. A suitable finite difference scheme has been developed for the numerical pro-
cedure. A detailed study of the velocity and temperature distributions has been made by considering their
variations with respect to different physical parameters involved in the problem. The results of numerical
computation have been displayed graphically. The computational work has been carried out by considering
blood as the working fluid, with the motivation of exploring some interesting phenomena in the context
of hemodynamical flow in micro-vessels. Among other variables, parametric variations of the important
physical variables, viz. i) skin friction and ii) Nusselt number have been investigated. The study confirms
that the random motion of the fluid particles can be controlled by a suitable adjustment of the intensity
of an externally applied magnetic field in the transverse direction. It is further revealed that the Nusselt
number diminishes, as the Prandtl number gradually increases; however, a steady increase in the Nusselt
number occurs with increase in thermal relaxation. Entropy generation is also found to be enhanced with
increase in Joule heating. The results of the present study have also been validated in a proper manner.

1 Introduction

Electro-kinetic phenomena constitute a class of some dissimilar types of effects, which are observed in a variety of
situations, for example, when fluid flows through porous media and in the case of movement of a fluid that contains solid
or liquid particles, or gaseous bubbles of micrometre (1×10−6 m) or nanometre (1×10−9 m) size. Electrophoresis and
electroosmosis are two of the several examples of electrokinetic phenomena (cf. Lyklema [1]). Electro-osmosis (electro-
osmotic flow) refers to the motion of a liquid in a porous medium subject to the action of an externally applied electric
field, while the motion of particles under the action of an external electric field is called electrophoresis. The Coulomb
force induced by an electric field in a solution is supposed to be the cause of electro-osmotic flow (EOF). An electrical
double layer (EDL), also simply called a double layer (DL) is associated with the phenomenon of electroosmosis and
also with other electro-kinetic phenomena. Electrical double layer refers to two parallel layers of charge that are formed
in the vicinity of the surface of an object when it is emerged in a liquid. In fact, the formation of electrical double layers
plays a fundamental role in electroosmotic flow of liquids. Another scientific term related to electroosmotic transport
is the zeta potential, which refers to the electric potential of interfacial double layer (DL). The stability of colloidal
dispersion is known to depend on zeta potential to a great extent. In the case of molecules and small particles, high
zeta potential offers better stability.
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Several studies on electroosmotic flows have been carried out by different researchers. Some of them also dwelt on
the applications of EOF studies in micro-reactors [2–4], heat transfer in electronic devices and biomedical sensors [5],
drug delivery [6,7], etc. Arifin et al. [8] studied the electrohydrodynamic flow of blood and discussed the separation
procedure of red blood cells from blood plasma in a miniaturized device. A study of rotational electro-hydrodynamic
microflows of a viscoelastic fluid considering electrical double layer effect was reported by Abhimanyu et al. [9]. A
problem relevant to the influence of Hall current and rotation of micro-particles on the boundary layer flow of an
electrically conducting fluid, e.g., blood was recently discussed by Chandra and Misra [10]. The estimate of flow in
bio-fluidic devices was reported by Misra et al. [11], on the basis of their study on the flow of a micropolar fluid in a
micro-channel under the influence of an alternating electric field. Another study on electro-osmotic flow of a different
type of non-Newonian fluid in a circular microtube was conducted by Tan and Liu [12]. Electroosmotic oscillatory flow
of blood in microfluidic devices was discussed by Misra et al. [13]. In a separate communication, electro-osmotically
actuated flow of blood on a porous micro-channel was discussed by Misra and Chandra [14], for a situation, when the
micro-channel is under the influence of an externally applied AC electric field with different frequencies. Two other
separate studies on electroosmotic flows in viscoelastic/second-grade were conducted by Misra et al. [15,16].

Similarly, several researchers have studied magneto-hydrodynamic flows of physiological fluids, with particular
reference to blood flow in arteries/capillaries of different dimensions. Magnetohydrodynamics of blood flow under the
action of a strong magnetic environment was studied by Keltner et al. [17]. Tzirtzilakis [18] studied the effect of an
externally applied magnetic field, considering blood as a Newtonian fluid. A theoretical analysis of the magnetic field
interaction with aortic blood flow under the influence of a static magnetic field, was presented by Kinouchi [19]. A
numerical simulation of MHD mixed convection of a viscous dissipating fluid on a permeable vertical flat plate was
presented by Aydin and Kaya [20]. A brief account of many of these are available in our earlier publications (Misra
et al. [21–33]). However, none of the aforesaid studies takes care of situations, where the system is subject to the
combined influence of externally applied electric and magnetic fields. On the basis of the experimental observation that
blood behaves as a non-Newtonian fluid, several researchers formulated different mathematical models by considering
blood as a second-order viscoelastic fluid (cf. [34–37]). However, the constitutive equations used in these models are
inadequate to depict the shear thickening/shear thinning properties, although they can take care of the normal stress
differences. This observation emphasizes the necessity of considering higher order models for complex fluids possessing
shear thinning/shear thickening properties.

In view of the observations made above, we have considered a third-order fluid model in the present study of
electroosmotic flow and heat transfer under the combined influence of electric and magnetic fields, applied externally,
since the study is motivated towards exploring some interesting information on the flow and heat transfer of blood,
which is known to be a complex fluid. Here, the heat transfer has been studied by considering the Cattaneo-Christov
heat flux model. It is worthwhile to mention here that most of the heat transfer problems studied by various researchers
are based on Fourier’s law of heat conduction. Although this law bears the potential to explain the heat transfer
phenomena in a variety of situations, the main drawback of using this law is that it gives a parabolic energy equation
for the temperature field, leading to the so-called “paradox of heat conduction”. This has been discussed by Hayat et
al. [38] Mustafa [39] and Han et al. [40]. This difficulty can be removed by adding in the heat conduction equation a
term that involves relaxation time, since Cattaneo’s heat conduction equation gives rise to hyperbolic energy equation.
Christov [38] made a further generalization of Cattaneo’s law, by making the equation frame-invariant. The generalized
heat conduction equation is referred to in the literatures as the Cattaneo-Christov heat flux model. The uniqueness
of the solution of Cattaneo-Christov heat conduction was established by Ciarletta and Straughan [41]. Sarkar and
Kundu [42] studied the effect of Cattaneo-Christov heat flux on the transfer of heat and mass during Maxwell nanofluid
flow over a sheet. They performed a numerical simulation and showed that the rate of heat transfer is enhanced in the
case of Cattaneo-Christov model, when compared to the case of classical Fouriers model. By using a finite difference
scheme, Soomro et al. [43] studied the entropy generation in MHD water-based carbon nanotubes and observed that
entropy generation reduces as the magnitude of externally applied magnetic field increases. The combined effect of
Joule heating, Brownian movement and thermophoresis on MHD Sakiadis flow was studied numerically by Sulochana et
al. [44]. Afridi et al. [45] obtained the exact solution of a problem concerning entropy generation during hydromagnetic
boundary flow under the action of frictional and Joule heating. They reported that in comparison to heat transfer,
viscous and Joule dissipation generate more entropy.

2 Mathematical modelling

2.1 Description of the model

Let us consider the electro-kinetic transport of a third order fluid on a uniform micro-channel of height 2H bounded
by two parallel plates, as shown in fig. 1. We take (ξ∗, η∗) as the rectangular cartesian coordinates of a representative
point. The walls of the micro-channel are supposed to have uniform surface charge. The zeta potential (ζ) is developed
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Fig. 1. Physical sketch of the problem.

at the stern layer of the EDL. Formulation of the model has been made based upon the following assumptions:

– The fluid is non-Newtonian, incompressible and electrically conducting.
– The flow is fully developed both hydro-dynamically and thermally.
– The electric field is applied along the axis of the channel.
– Zeta potential is high throughout the medium and it maintains a constant value at the walls of the micro-channel.
– A uniform magnetic field of strength B0 is applied in the vertical direction.
– Heat transfer is analysed by considering Cattaneo-Christov heat flux.
– Combined effects of Joule heating, magnetic field and viscous dissipation on heat transfer are taken into account.

2.2 Governing equations

The flow field in a uniform rectangular micro-channel of an electrically conducting third order fluid in the presence of
a uniform magnetic field B0 is governed by the continuity equation and the Cauchy momentum equation:

∇ · u∗ = 0, (1)
ρu∗ · ∇u∗ = ∇ · τ ∗ + f∗

B, (2)

where ρ denotes the fluid density, u∗ = (u∗, υ∗) is the velocity vector, τ ∗ the stress tensor and f∗
B is the net electro-

magnetic body force (cf. [46]) given by
f∗

B = ρeE + (J × B), (3)

in which ρe is the total charge density, E = Eξ∗eξ∗ is the applied electric field along the ξ∗-direction, which obeys the
Poission-Boltzmann equation and eξ∗ is a unit vector in the ξ∗-direction. J = σ(u∗×B) is the electric current density,
which follows from Ohm’s law [46] with σ as the electrical conductivity. B = B0eη∗ is the magnetic field where eη∗ is
a unit vector along the η∗-direction. Considering incompressibility of the fluid, the Cauchy stress tensor (τ ∗) for the
fluid under consideration

τ∗ = μA1 + α1A2 + α2A
2
1 + β1A3 + β2(A1A2 + A2A1) + β3(trA2

1)A1, (4)

where “tr” stands for the trace of the matrix, μ refers to the viscosity, α1, α2, β1, β2, β3 represent the material
constants (cf. [47]) of the working fluid. The expression of A1, A2, A3 are as follows:

A1 = ∇u∗ + (∇u∗)T and An = u∗ · ∇An + An−1 · ∇u∗ + (An−1 · ∇u∗)T ; n = 2, 3. (5)

2.3 Charge distribution

A thin layer of electrical charges called an electrical double layer (EDL) is formed, when a ionized solution comes into
contact with the walls of the microchannel. This layer is the combination of two layers, namely the stern layer and the



Page 4 of 18 Eur. Phys. J. Plus (2018) 133: 195

diffuse layer. The stern layer is formed in the immediate vicinity of the channel walls. This layer consists of oppositely
charged ions having a dimension of one atomic diameter. In the diffuse layer, which is formed next to the stern layer,
counter ions migrate freely and a rapid thermal motion is set up. A zeta potential (ζ∗) is developed between these two
layers, which maintains a constant value in the entire wall of the microchannel. Denoting the net charge density by ρe

and fluid permitivity by ε, let us find the distribution of the electric potential Ψ∗ by solving the Poisson-Boltzmann
equation (cf. [48,49]) of the form

∇2Ψ∗ = −ρe

ε
. (6)

In the present analysis, we assume that the length of the microchannel is much greater than the height of the mi-
crochannel, i.e., L � H. Owing to this assumption, the electrical potential distribution is independent of the axial
position. For an applied constant voltage gradient in ξ∗-direction in a ς : ς symmetric electrolyte, the total ionic charge
density may be expressed as ρe = eς(n+ −n−), where e denotes the charge of a electron, ς stands for the ionic valency
and n± denotes the densities of the positive/negative ions within the electrical double layer (EDL). For the present
study, we may consider

n± =
n0 exp(∓eςΨ∗/kBTa)

1 + 2℘ {cosh(eςΨ∗/kBTa) − 1} , (7)

in which n0 is the ionic concentration, kB the Boltzmann constant, Ta is the absolute temperature of the fluid at any
location and ℘ stands for the steric factor (cf. [50]). Then from eq. (6), we have

d2Ψ∗

dη∗2 =
2n0eς

ε

sinh(eςΨ∗/kBTa)
1 + 4℘ sinh2(eςΨ∗/2kBTa)

. (8)

The general solution for the electric potential Ψ∗ can be obtained by solving the second-order differential equation (8)
subject to appropriate conditions at the wall and the axis of the microchannel, given by

dΨ∗

dη∗

∣
∣
∣
∣
η∗=0

= 0, Ψ∗∣∣
η∗=H

= ζ∗. (9)

Introducing the dimensionless variables

Ψ =
eς

kBTa
Ψ∗, ζ =

eς

kBTa
ζ∗ and η =

η∗

H
, (10)

eq. (7) reads
d2Ψ

dη2
=

κ2 sinh(Ψ)
1 + 4℘ sinh2(Ψ/2)

, (11)

where κ = H/λD is the non-dimensional electro-osmotic parameter with λD =
√

εKBTa/2n0e2ς2 as the Debye length.
In terms of the aforesaid non-dimensional variables the above boundary conditions (8) reduce to

dΨ

dη

∣
∣
∣
∣
η=0

= 0, Ψ
∣
∣
η=1

= ζ. (12)

For lower values of zeta potential (|ζ∗| � |kBTa/eς|), one can ignore the steric effect (℘ = 0) and apply the Debye-
Hückle approximation (sinh(eςΨ∗/kBTa) ≈ (eςΨ∗/kBTa)). But in order to make the present study more general, we do
not apply any such approximation and for solving eq. (11) subject to the boundary conditions (12), we shall develop
in the sequel, a suitable numerical scheme.

2.4 Velocity distribution

The governing equations (1) and (2) that describe the two-dimensional flow of an electrically conducting incompressible
third-order fluid may be written in terms of Cartesian coordinates as

∂u∗

∂ξ∗
+

∂υ∗

∂η∗ = 0 (13)

ρ

(

u∗ ∂u∗

∂ξ∗
+ υ∗ ∂u∗

∂η∗

)

= μ
∂2u∗

∂η∗2 + α1

(

u∗ ∂3u∗

∂ξ∗∂η∗2 +
∂u∗

∂ξ∗
∂2u∗

∂η∗2 + υ∗ ∂3u∗

∂η∗3 − 3
∂u∗

∂η∗
∂2υ∗

∂η∗2

)

+ 2α2
∂u∗

∂η∗
∂2u∗

∂ξ∗∂η∗ + 6(β2 + β3)
(

∂u∗

∂η∗

)2
∂2u∗

∂η∗2 − σB2
0u∗ +

ρeξ
∗Eξ∗

L
, (14)
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while the boundary conditions read

∂u∗

∂η∗

∣
∣
∣
∣
η∗=0

= 0, υ∗∣∣
η∗=0

= 0, u∗ + β∗ ∂u∗

∂η∗

∣
∣
∣
∣
η∗=H

= 0, υ∗∣∣
η∗=H

= 0. (15)

Here α1, α2, β2, β3 represent the material moduli of the third-order fluid, μ is viscosity of the fluid, ρ the density of
blood, σ the electrical conductivity, B0 the applied magnetic field and β∗ denote the length of velocity slip.

To obtain the solution eq. (14) subject to the boundary conditions (15), let us first introduce the dimensionless
stream function

ψ(ξ, η) = UHSHξf(η) and ξ = ξ∗/H. (16)

Now velocity components can be written as

u∗ =
∂ψ

∂η∗ = UHSξf ′(η) and υ∗ = − ∂ψ

∂ξ∗
= UHSf(η), (17)

in which UHS = − εkBTaEξ∗
μςe stand for Helmholtz-Smoluchowski velocity. Equation (13) is automatically satisfied by

the above expressions of u∗ and υ∗, while eq. (14) assumes the following form:

f ′′′ + Re(ff ′′ − f ′2) + ε1(2f ′f ′′′ − ff iv) − (3ε1 + 2ε2)f ′′2 + 6φf ′′2f ′′′ − Ha2f ′ + λΨ ′′ = 0. (18)

Moreover, the boundary conditions (15) take the forms

f ′′(η)
∣
∣
η=0

= 0, f(η)
∣
∣
η=0

= 0, f ′(η) + βf ′′(η)
∣
∣
η=1

= 0, f(η)
∣
∣
η=1

= 0. (19)

In the above-written equations, Re (= UHS

νH ) stands for the Reynolds number, ε1
(

= α1UHS

μH

)

, ε2
(

= α2UHS

μH

)

and φ
(

= (β2+β3)U
2
HSξ2

μH2

)

are non-dimensional material parameters, Ha (=
√

σ
μB0H) is the Hartmann number, λ

(

= H
L

)

denotes the aspect ratio and β
(

= β∗

H

)

the non-dimensional velocity-slip parameter.

2.4.1 Perturbation analysis

Considering the parameter ε1 to be small, we write

f(η) = f0(η) + ε1f1(η) + ε21f2(η) + · · · . (20)

Substituting (20) in eq. (18), then equating the coefficients of like powers of ε1 and ignoring the quadratic and higher
power of ε1, we have

f ′′′
0 + Re

(

f0f
′′
0 − f ′2

0

)

− 2ε2f
′′2
0 + 6φf ′′2

0 f ′′′
0 − Ha2f ′

0 + λΨ ′′ = 0, (21)

f ′′′
1 + Re (f ′′

0 f1 + f0f
′′
1 − 2f ′

0f
′
1) − 4ε2f

′′
0 f ′′

1 + 6φ
(

2f ′′
1 f ′′

0 f ′′′
0 + f ′′2

0 f ′′′
1

)

− Ha2f ′
1 = 3f ′′2

0 − 2f ′
0f

′′′
0 + f0f

iv
0 . (22)

In a similar manner, the boundary conditions (19) can be rewritten in terms of f0 and f1 as

f ′′
0 (η)

∣
∣
η=0

= 0, f0(η)
∣
∣
η=0

= 0, f ′
0(η) + βf ′′

0 (η)
∣
∣
η=1

= 0, f0(η)
∣
∣
η=1

= 0,

f ′′
1 (η)

∣
∣
η=0

= 0, f1(η)
∣
∣
η=0

= 0, f ′
1(η) + βf ′′

1 (η)
∣
∣
η=1

= 0, f1(η)
∣
∣
η=1

= 0. (23)

2.5 Temperature distribution

In order to account for the heat transfer phenomenon, we consider the energy equation

ρcp(u∗ · ∇T ∗) = −∇ · q + σ(E · E) +
J · J
σ

+ Φ, (24)

in which cp is the specific heat; the second and third terms on the right-hand side of eq. (24), respectively, represent
the effects due to Joule heating and magnetic field, while Φ denotes the viscous dissipation term (cf. [51]) given by

Φ = μ

(
∂u∗

∂η∗

)2

+ α1

(

u∗ ∂u∗

∂η∗
∂2u∗

∂ξ∗∂η∗ + υ∗ ∂u∗

∂η∗
∂2u∗

∂η∗2

)

+ 2(β2 + β3)
(

∂u∗

∂η∗

)4

. (25)
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In eq. (24), q denotes the heat flux based on the Cattaneo-Christov theory (cf. [42]), which satisfies the equation

q + λ∗ [u∗ · ∇q − q · ∇u∗ + (∇ · u∗)q] = −k∇T ∗, (26)

where λ∗ denotes the thermal relaxation time, u∗ the velocity vector and k the thermal conductivity of the fluid.
It may be noted that for λ∗ = 0 eq. (26) reduces to the classical Fourier’s law of heat conduction. However, for the
incompressible fluid considered here, eq. (26) takes the form

q + λ∗ [u∗ · ∇q − q · ∇u∗] = −k∇T ∗. (27)

In general, the presence of thermal relaxation time in heat flux gives rise to a hyperbolic equation. The advantage of
considering this equation is that we can study the heat transfer characteristics through waves. It will be clear in the
sequel that with rise in thermal relaxation time, there is a breakdown of the fluid. Such types of properties make the
Cattaneo-Christov heat flux from the classical Fourier’s law of heat conduction.

From (24) and (27), we obtain

ρcp

[

u∗ ∂T ∗

∂ξ∗
+ υ∗ ∂T ∗

∂η∗ + λ∗
(

u∗ ∂u∗

∂ξ∗
∂T ∗

∂ξ∗
+ υ∗ ∂υ∗

∂η∗
∂T ∗

∂η∗ + u∗ ∂υ∗

∂ξ∗
∂T ∗

∂η∗ + υ∗ ∂u∗

∂η∗
∂T ∗

∂ξ∗
+ υ∗ ∂u∗

∂η∗
∂T ∗

∂ξ∗

+ 2u∗υ∗ ∂2T ∗

∂ξ∗∂η∗ + u∗2 ∂2T ∗

∂ξ∗2
+ υ∗2 ∂2T ∗

∂η∗2

)]

= k
∂2T ∗

∂η∗2 + σE2
ξ + σB2

0u∗2 + μ

(
∂u∗

∂η∗

)2

+ α1

(

u∗ ∂u∗

∂η∗
∂2u∗

∂ξ∗∂η∗ + υ∗ ∂u∗

∂η∗
∂2u∗

∂η∗2

)

+ 2(β2 + β3)
(

∂u∗

∂η∗

)4

. (28)

The thermal boundary conditions are

∂T ∗

∂η∗

∣
∣
∣
∣
η∗=0

= 0, T ∗ + k∗ ∂T ∗

∂η∗

∣
∣
∣
∣
η∗=H

= 0, (29)

where k∗ denotes the thermal-slip. Let Tw denote the wall temperature. We now introduce another dimensionless
temperature variable

Θ(ξ, η) =
T ∗

Tw
. (30)

In terms of this variable, eq. (28) reads,

(1 − γ RePr f2)Θ′′ + RePr f(1 − γ f ′)Θ′ + Sp + Ha2Brf ′2 + Brf ′′2 + ε1Br
(

f ′f ′′2 − f ′′f ′′′) + 2φBrf ′′4 = 0, (31)

in which γ
(

= λ∗UHS

H

)

is the dimensionless thermal relaxation parameter, Pr
(

= μcp

k

)

denotes the Prandtl number,

Sp

(

= σE2
ξH2

kTw

)

corresponds to the non-dimensional Joule heating parameter and Br
(

= μξ2U2
HS

kTw

)

is the Brinkman
number.

Non-dimensional forms of the thermal boundary conditions are as follows:

Θ′(η)
∣
∣
η=0

= 0, Θ(η) + StΘ
′(η)

∣
∣
η=1

= 1, (32)

St (= k∗

H ) being the non-dimensional thermal slip.

2.6 Physical quantities

Here we emphasize upon mainly two important physical quantities, viz. i) skin friction and ii) Nusselt number. All
these are calculated by using the following formulae by employing appropriate numerical scheme.

The non-dimensional forms of the local skin friction coefficient C∗
f and local Nusselt number Nuξ∗ are, respectively,

given by

C∗
f =

2τw

ρU2
HS

and Nuξ∗ =
ξ∗qw

kTw
, (33)

where τw and qw denote the wall shear stress and wall heat flux, respectively, given by

τw = μ
∂u∗

∂η∗

∣
∣
∣
∣
η∗=H

+ α1

(

u∗ ∂2u∗

∂ξ∗
+ υ∗ ∂2u∗

∂η∗2 + 2
∂u∗

∂ξ∗
∂u∗

∂η∗

) ∣
∣
∣
∣
η∗=H

+ 2
(β2 + β3)

ρ

(
∂u∗

∂η∗

)3 ∣
∣
∣
∣
η∗=H

qw = −k
∂T ∗

∂η∗

∣
∣
∣
∣
η∗=H

. (34)
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Using (34) and the non-dimensional variables introduced earlier, we now have from (33)

C∗
fReξ = f ′′(η) + ε1 [3f ′(η)f ′′(η) − f(η)f ′′′(η)] + 2φ (f ′′(η))3

∣
∣
η=1

and Nuξ = −ξ Θ′(η)
∣
∣
η=1

, (35)

Reξ being the local Reynolds number.

3 Procedure for solving the non-linear equations numerically

Since the governing equations are highly non-linear, we have developed a suitable numerical procedure in order to
solve them. The numerical scheme consists of the use of Newton’s linearisation technique, the use of finite difference
and the method of iteration. The method that we have used bears the advantage of quadratic convergence.

Let us substitute f ′
0 = F0, f ′′

0 = F ′
0, f ′′′

0 = F ′′
0 and f ′

1 = F1, f ′′
1 = F ′

1, f ′′′
1 = F ′′

1 in eqs. (21)-(22), so that the
equations read

F ′′
0 + Re

(

f0F
′
0 − F 2

0

)

− 2ε2F
′2
0 + 6φF ′2

0 F ′′
0 − Ha2F0 + λΨ ′′ = 0, (36)

F ′′
1 + Re (F ′

0f1 + f0F
′
1 − 2f ′

0F1) − 4ε2F
′
0F

′
1 + 6φ

(

2F ′
1F

′
0F

′′
0 + F ′2

0 F ′′
1

)

− Ha2F1 = 3F ′2
0 − 2f ′

0F
′′
0 + f0F

′′′
0 . (37)

Also, the associated boundary conditions (23) take the following form:

F ′
0(η)

∣
∣
η=0

= 0, F0(η) + βF ′
0(η)

∣
∣
η=1

= 0,

F ′
1(η)

∣
∣
η=0

= 0, F1(η) + βF ′
1(η)

∣
∣
η=1

= 0. (38)

Following [52,53], the coupled non-linear system of differential equations (36), (37) has been solved numerically, by
taking into consideration the boundary conditions (38). Adopting a similar procedure we have also solved the Poisson-
Boltzmann equation (11) subject to (12) as well as the temperature equation (31) subject to the thermal boundary
conditions (32).

Thus we have now the following set of differential equations:

Ai
1 (Ψ ′′)i+1 + Ai

2 (Ψ ′)i+1 + Ai
3 (Ψ)i+1 = Ai

4,

Bi
1 (F ′′

0 )i+1 + Bi
2 (F ′

0)
i+1 + Bi

3 (F0)
i+1 = Bi

4,

Ci
1 (F ′′

1 )i+1 + Ci
2 (F ′

1)
i+1 + Ci

3 (F1)
i+1 = Ci

4,

Di
1 (Θ′′)i+1 + Di

2 (Θ′)i+1 + Di
3 (Θ)i+1 = Di

4, (39)

subject to the boundary conditions listed below,

(Ψ ′(η))i+1 ∣
∣
η=0

= 0, (Ψ(η))i+1 ∣
∣
η=1

= ζ,

(F ′
0(η))i+1 ∣

∣
η=0

= 0, (F0(η))i+1 + β (F ′
0(η))i+1 ∣

∣
η=1

= 0,

(F ′
1(η))i+1 ∣

∣
η=0

= 0, (F1(η))i+1 + β (F ′
1(η))i+1 ∣

∣
η=1

= 0,

(Θ′(η))i+1 ∣
∣
η=0

= 0, (Θ(η))i+1 + St (Θ′(η))i+1 ∣
∣
η=1

= 1. (40)

The quantities with superscript (i + 1) are calculated by using the values of the quantities with superscript i, whose
values are already determined. In the system of eq. (39),

Ai
1 = 1, Ai

2 = 0, Ai
3 = − κ2 sinh(Ψ i)

1 + 4℘ sinh2(Ψ i/2)
, Ai

4 = 0,

Bi
1 = 1 + 6φF ′2

0 , Bi
2 = Ref0 − 2ε2F

′
0, Bi

3 = −(Ref0 + Ha2), Bi
4 = ReF 2

0 − λΨ ′′ + (2ε2 − 6φF ′′
0 )F ′2

0 ,

Ci
1 = Ai

1, Ci
2 = Ref0 − 4ε2F

′
0 + 12φF ′

0F
′′
0 , Ci

3 = −(2Ref ′
0 + Ha2), Ci

4 = 3f ′2
0 − 2f ′

0F
′′
0 + f0F

′′′
0 ,

Di
1 = 1 − γRePr(f0 + ε1f1)2, Di

2 = RePr(f0 + ε1)(1 − γ(F0 + ε1F1)), Di
3 = 0,

Di
4 = −

[

Sp + Ha2Br (F0 + ε1F1)
2 + Br (F ′

0 + ε1F
′
1)

2 + ε1Br
(

(F0 + ε1F1) (F ′
0 + ε1F

′
1)

2

− (F ′
0 + ε1F

′
1) (F ′′

0 + ε1F
′′
1 )

)

+ 2φBr (F ′
0 + ε1F

′
1)

4
]

.
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System (39) was discretised for η-derivatives, using second-order central finite differences while the boundary conditions
are discretised using forward/backward differences. At every iteration step, the equations reduce to a system of linear
algebraic equations in the form of a tri-diagonal block matrix. The block matrix equations have then been solved by
using Thomas algorithm (cf. [54]). The iterative procedure was continued until the absolute error committed between
two consecutive operations is less than 10−6, i.e.,

Max
{∣

∣
∣(Ψ(η))i+1 − (Ψ(η))i

∣
∣
∣ ,

∣
∣
∣(F0(η))i+1 − (F0(η))i

∣
∣
∣ ,

∣
∣
∣(F1(η))i+1 − (F1(η))i

∣
∣
∣ ,

∣
∣
∣(Θ(η))i+1 − (Θ(η))i

∣
∣
∣

}

≤ 10−6. (41)

4 Entropy generation analysis

In the previous section, we have discussed the method of obtaining the numerical solution for velocity and temperature.
In this section, we discuss the method of calculating the entropy generation rate in terms of various parameters involved
in the present analysis. The calculation of entropy generation consists of four variables, viz. heat transfer, Joule heating,
magnetic field intensity and fluid friction. The local entropy generation for the present problem (cf. [43,45]) may be
expressed in the form

Sgen =
k

T 2
w

(
∂T ∗

∂η∗

)2

+
σEξ∗

Tw
+

σB2
0u∗2

Tw
+

Φ

Tw
. (42)

In terms of non-dimensional variables, entropy generation may be expressed in its dimensionless form as

Ns = Sgen/Sg = Θ′2 + Sp + Ha2Brf ′2 + Brf ′′2 + ε1Br
(

f ′f ′′2 − f ′′f ′′′) + 2φBrf ′′4, (43)

where Sg (= kf

H2 ) represents the characteristic entropy generation. For the present investigation, the entropy generation
takes place due to a combination of four different effects, viz. i) conduction effect (heat transfer irreversibility) (HTI),
ii) Joule heating irreversibility (JHI), iii) magnetic field irreversibility (MFI) and iv) fluid friction irreversibility (FFI).
The Bejan number [55] for the present problem may be written in the form of a ratio

Be =
HTI

HTI + JHI + MFI + FFI
. (44)

For the present problem, the Bejan number can vary from 0 to 1. If Be = 0 then the irreversibility is dominated
by the combined irreversibility due to Joule heating, magnetic field and fluid friction, while Be = 1 corresponds to
the particular limit, when irreversibility is dominated by heat transfer only. The contribution of heat transfer to the
entropy generation is equal to the joint contribution of Joule heating, magnetic field and fluid friction. In this case,
Be = 1/2.

5 Validation of results

In this section, with an aim to validate the present analysis, we have made a comparison between the results of the
present study and those reported in [16], where a simple problem of electro-osmotic flow was investigated analytically
in the absence of any external magnetic field. While the present study considers high zeta potential, the earlier study
was carried out by using Debye-Hückel approximation and the fluid considered was a second-order viscoelastic fluid.
Moreover, the electro-osmotic flow characteristics of a third-order fluid has been investigated here for the situation,
where the channel is under the influence of an external magnetic field. Figure 2 gives the distribution of axial velocity
for the present study. The corresponding plots for the limiting case of a second-order fluid on the basis of the present
study, using the approximation sinh(Ψ) ≈ Ψ (Debye-Hückel approximation) and Ha = 0 (in the absence of any
magnetic field) have also been presented in fig. 2, along with the corresponding results for the second-order fluid,
reported in [16]. The two plots presented at the top of fig. 2 validate the present study. Comparing all the plots
presented in fig. 2, one finds that both the third-order effects and the influence of the magnetic field on fluid velocity
in the axial direction are quite prominent. We further find that as expected, an externally applied magnetic field
(Ha = 4.0) retards the flow. Moreover, the third-order effects are also significant.

6 Results and discussion

The numerical results computed/presented here correspond to blood, because the values of the different parameters
have been taken from the data used in previous literatures [13,16,35,36,53,54]. The computational results have been
obtained by considering the values of different physical variables mentioned in table 1.
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Fig. 2. Comparison of the results of the present study with those reported in [16], when Re = 1.0, κ = 20.0, ε1 = 0.1, λ = 0.001,
℘ = β = ε2 = φ = Ha = 0.0.

Table 1. Typical values of physical parameters.

Parameter Symbol Value Unit

Half-channel height H 10 μm

Charge of proton e 1.6 × 10−19 C

Electric field force in the axial direction Eξ∗ 2 × 105 V/m

Viscosity of blood μf 3.2 × 10−3 Pa s

Density of blood ρ 1050 kg m−3

Electrical conductivity σ 0.8 S/m

Thermal conductivity k 0.58 W/(mK)

Boltzmann constant kB 1.38 × 10−23 J/K

Debye length/EDL thickness λD 3–35 nm

Channel length L 0.005 m

Ionic concentration n0 1 mol/m3

Average absolute temperature Ta 300 K

Initial wall temperature Tw 300 K

Ionic valency ς 1 –

Steric factor ℘ 0.1–0.5 –

Electric potential of the walls ζ∗ −0.25 V

Magnetic field strength B0 8–12 T (tesla)

Slip length β∗/k∗ 0–200 nm

It is assumed that the microchannel is under the influence of a strong magnetic field having strength 8–12T
(tesla). This range of magnetic field strength was considered in an experimental study (cf. [54]) on the orientation
of erythrocytes in blood under the action of a strong magnetic field. If the parallel plates that represent the walls of
the channel are taken to be made of silicon, a negative zeta potential will develop. In this case, the third order non-
Newtonian fluid plays the role of a monovalent symmetric electrolyte. However, since the paper is motivated towards
studying the electroosmotic flow in the realm of hemodynamics, the entire computational work has been performed
by considering blood as the working fluid, as indicated above. We have taken Re = 1, λ = 0.01 and γ = 0.1, along
with the following range of parametric values (estimated on the basis of the values provided in table 1):

0 ≤ Ha ≤ 8, 0.0 ≤ β ≤ 0.2, 5 ≤ κ ≤ 30, 0 ≤ ε1 ≤ 0.2, 0 ≤ ε2 ≤ 0.2,

0.5 ≤ ζ ≤ 2, 0 ≤ St ≤ 0.2, 20 ≤ Pr ≤ 25, −1.0 ≤ Sp ≤ 1.0, 0 ≤ Br ≤ 0.1, 0.1 ≤ φ ≤ 0.7.
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Fig. 3. Influence of magnetic field on velocity distribution.
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Fig. 4. Impact of velocity slip on velocity distribution.
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Fig. 5. Influence of surface zeta potential on velocity distribution.

Figures 3–8 illustrate the influence of different parameters on axial velocity. Figure 3 gives an idea of the changes in
the distribution of velocity, as the magnetic field intensity is increased, while fig. 4 shows similar changes in the velocity,
when velocity-slip increases. Similarly, changes taking place in the velocity distribution for changes in electroosmotic
parameter (κ), material parameter (ε1) of the third-order fluid (perturbation parameter), the surface zeta potential
(ζ) and the steric factor (℘) are depicted in figs. 5–8. It is known that high zeta potential that serves as a key factor
of electrokinetic transport is developed in the fluid medium, when a strong electric current passes through the fluid.
Figure 5 reveals that when the zeta potential (ζ) is high, the electroosmotic flow is enhanced. With an increase in the
surface zeta potential, the non-dimensional electric potential in the interfacial double layer (DL) increases, whereby
the boundary layer thickness also increases.
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Fig. 6. Impact of ε1 on axial velocity.
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Fig. 7. Impact of electroosmotic parameter on axial velocity.
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Fig. 8. Impact of steric factor on axial velocity.

Figure 6 shows that with an increase in the value of the material parameter ε1, the velocity gradually reduces. This
observation may be interpreted by saying that the viscoelastic effects become more prominent with a rise in the value
of material parameter α1 and thereby reduction of velocity takes place. Figure 7 reveals the effect of the phenomenon
of electroosmosis. This figure shows that the velocity of the third-order fluid under consideration increases with a rise
in the eletroosmotic parameter (κ) and that the velocity attains its minimum in the central region of the microchannel.
The electroosmotic parameter (κ) being inversely proportional to the Debye length (λD), on the basis of the plots
presented in fig. 7, we can make a conjecture that reduction of the electrical double layer (EDL) thickness leads to a
significant rise in the electroosmotic velocity, which promotes the transport of mobile ions in the EDL formed in the
vicinity of the wall of the microchannel. With a rise in the steric effect, there will be an amplification in the crowding
of counterions within the EDL, owing to which the magnitude of the velocity reduces drastically in the vicinity of the
capillary wall (cf. fig. 8).
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Fig. 10. Impact of Prandtl number on thermal distribution.

The effects of different physical parameters on the temperature distribution are shown in figs. 9–13. Figure 9
gives the impact of the third-order fluid parameter ε1 on the distribution of fluid temperature. This figure shows that
the temperature is maximum at the central line, while it is minimum at the capillary wall. One may observe from
fig. 10 that the fluid temperature increases as the Prandtl number increases. Since specific heat capacity is directly
proportional to the Prandtl number, it is apparent from fig. 10 that a fluid with high Prandtl number will have high
heat capacity. As a consequence, it follows that if the Prandtl number is increased suddenly, the fluid temperature will
be enhanced instantly. Owing to this, the thermal boundary layer thickness will be increased. It is apparent from fig. 11
that the fluid temperature is reduced when the magnetic field is increased. Figure 12 depicts the influence of thermal
slip on the distribution of temperature. The different plots presented in this figure indicate that with an increase in
thermal slip, the thermal boundary layer thickness increases. This may be attributed to the exchange of heat between
the fluid and the microchannel walls. The heat exchange increases gradually with a rise in thermal slip, owing to which
there is a rise in the thermal boundary layer thickness. From fig. 13, we can have a clear picture of the impact of Joule
heating on the distribution of the fluid temperature. Here we consider both the case of heat generation (characterised
by positive values of Sp) and heat absorption (characterised by negative values of Sp). This figure reveals that in both
cases, the temperature of blood rises, when the value of the Joule heating parameter is raised.

Figure 14 gives the variation of the skin friction with the externally applied magnetic field strength. Different plots
have been presented in the same figure, for varying values of φ, which is another parameter characterizing the nature
of the third-order fluid. This figure shows that the magnitude of the skin friction reduces, when the value of Ha lies
between 0 and 1.7, but for Ha > 1.7 the trend is completely reversed. This observation is common to all the values
of φ investigated here and can be attributed to the generation of the Lorentz force that dominates the fluid viscosity.
Figure 15 presents the variation of the Nusselt number as a function of the Hartmann number. This figure reveals
that for Ha ≤ 2, there occurs a rapid reduction in the heat transfer rate, but when Ha > 2, the heat transfer rate
decreases very slowly. From the same figure, one can also observe that the heat generation effect due to Joule heating
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Fig. 11. Change in temperature distribution due to change in Hartmann number.
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Fig. 13. Impact of Joule heating on temperature distribution (in the absence of thermal slip).

enhances the heat transfer rate on the capillary wall. Thus, both parameters Sp and Ha have major roles to play
in controlling the heat transfer rate at the capillary wall. Figure 16 gives the variation of the Nusselt number with
thermal relaxation parameter (γ), as the Prandtl number (Pr) changes between 20 and 23. This figure clarifies the
mechanism of heat transfer in the vicinity of the wall. It may be noted that under the purview of the present study, the
Nusselt number decreases, as the Prandtl number increases. All these observations can be justified by the fact that the
Prandtl number varies directly with heat capacity of the fluid and that the kinetic energy due to the motion of the fluid
particles increases significantly as the Prandtl number increases. From fig. 16, we further find that for all the values of
Pr, the Nusselt number increases with increase in thermal relaxation. From the physical point of view, we may further
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mention that where thermal relaxation increases, the time required for the transfer of heat from one particle to the
neighbouring particle increases and this may be interpreted as the reason for the enhanced value of the Nusselt number.

Induction of entropy (Ns) during the fluid flow may take place due to thermal diffusion, Joule heating, magnetic
field and viscosity. Thus in order to study the efficiency of fluid flow, it is necessary to analyse entropy generation.
Figures 17 and 18 depict the impact of magnetic field (Hartmann number) and Joule heating on entropy generation. It
is known that the fluid flow is hindered by the growing strength of the magnetic field, which reduces the shear flow and
lowering of temperature. Entropy being directly to the temperature, it decreases with rise in the magnetic field strength
(cf. fig. 17). Figure 18 reveals the impact of Joule heating on local entropy generation. It is observed that the total local
entropy is enhanced as the quantum of Joule heating is increased. It may be further noted that while the change in
entropy generation is very prominent in the vicinity of the capillary wall, it maintains a nearly constant value near the
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Fig. 17. Variation of entropy generation with change in Hartmann number.
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Fig. 18. Variation of entropy generation with change in Joule heating parameter.
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Fig. 19. Impact of electroosmosis on Bejan number.

axis. Figures 19 and 20 depict the variation of the Bejan number for different values of the electroosmotic parameter and
thermal-slip parameter. It is noteworthy that the Bejan number is zero at the centre of the capillary. This leads us to
make a conjecture that the entropy generation due to the combined impact of the fluid friction, the electric field and the
magnetic field is not very relevant in the central region of the micro-vessels. From fig. 19, we also observe that thermal
irreversibility changes significantly within the region of EDL for different values of the electroosmotic parameter.
Moreover, it is seen that the Bejan number can alter the flow characteristics at η = 0.55. The impact of thermal-slip
parameter on the Bejan number is illustrated in fig. 18. This figure shows that the Bejan number increases uniformly
as the magnitude of thermal-slip increases. It is observed from fig. 21 that the thermal irreversibility decreases within
the EDL as the Hartmann number increases, while a reverse trend is observed in the central region. It is worthwhile to
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Fig. 20. Impact of thermal slip on Bejan number.
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Fig. 21. Impact of Hartmann number on Bejan number.
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Fig. 22. Impact of Joule heating parameter on Bejan number.

further note here that the value of the Bejan number is highly dependent on the Joule heating parameter. Figure 22
gives a clear picture of the variation in the Bejan number during heat absorption. The observation from this figure
implies that the heat transfer irreversibility is dominated by the combination of all other irreversibilities. One may
observe a similar phenomenon happening at the boundary of the micro-vessels, when Sp = −1/2.

7 Concluding remarks

Using the concepts of cite dissociation models, a mathematical model has been developed here for studying the
electro-magnetically driven flow of a third-order fluid. Heat transfer during the flow of the fluid has also been paid
due attention by considering the Cattaneo-Christov heat flux. Major conclusions that can be drawn on the basis of
the study are listed below.
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– As the intensity of the applied magnetic field increases, the fluid velocity reduces, and for any magnetic field
strength, the velocity attains its maximum near the wall.

– Fluid velocity increases with increase in the magnitudes of the velocity-slip, surface zeta potential, as well as the
electroosmotic parameter.

– With an increase in the value of the material parameter ε1 of the third-order fluid, both the fluid velocity and the
temperature diminish.

– The steric factor counteracts with the transport mechanism to an appreciable extent.
– Heat transfer increases with increase in thermal slip and Joule hating, but it diminishes as the Hartmann number

increases.
– The Nusselt number increases with increase in thermal relaxation, but it reduces with an increase in the Prandtl

number.
– A steady increase in total entropy generation takes place in the vicinity of the walls of micro-vessels.
– The Bejan number increases with increase in both eletroosmotic parameter and thermal slip.

Finally on the basis of our study it can be concluded that the temperature for the Cattaneo-Christov heat flux
model is less than that in Fourier’s heat conduction. The temperature of the fluid gradually reduces, as thermal
relaxation increases.

This work was supported by the Science and Engineering Research Board, Department of Science and Technology, Government
of India, New Delhi through Grant No. SB/S4/MS: 864/14. The authors also wish to thank the reviewers for their comments
and suggestion for the improvement of the earlier version of the manuscript.

Nomenclature
Symbol Definition Greek symbol Definition
u∗ = (u∗, υ∗) Velocity vector (ξ∗, η∗) Cartesian coordinate of a point
τ ∗ Stress tensor ξ, η Transformed variables
f∗

B External body force vector β∗ Velocity slip length
E Electric field vector Ψ∗ Electric potential
J Electric current density λ∗ Thermal relaxation time
B Magnetic field vector σ Electrical conductivity
q Heat flux ς Ionic valency
T ∗ Temperature ζ∗ Zeta potential at the wall
Tw Wall temperature λD Debye Length
Ta Absolute temperature ζ Non-dimensional zeta potential
n± Densities of positive and negative ion ψ(η) Stream function
n0 Ionic concentration ρe Total charge density
e Protonic charge α1, α2, β1, β2, β3 Physical constants
L Length of micro-channel ε1, ε2, φ Material parameters of the third order fluid
kB Boltzmann constant λ Aspect ratio
H Height of the micro-channel β Velocity slip parameter
Reξ Local Reynolds number γ Thermal relaxation parameter
UHS Helmholtz-Smoluchowski velocity cp Specific heat
Re Reynolds number μ Dynamic viscosity
Ha Hartmann number ρ Density of fluid
τw Wall shear stress κ Electro-osmotic parameter
k Thermal conductivity
k∗ Thermal slip Subscript
Pr Prandtl number
Sp Joule heating parameter 0 Terms associated with zeroth order
St Thermal slip parameter 1 Terms associated with first order
qw Wall heat flux w Properties at the wall of micro-channel
C∗

f Skin-friction
Nuξ∗ Nusselt number Superscript
Sgen Entropy generation
Sg Characteristic entropy parameter i Iterative index
Ns Non-dimensional entropy ∗ Dimensional quantities
Be Bejan number ′ Differentiation w.r.t. η
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