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Abstract. A fully quantum mechanical four-body treatment of charge transfer collisions between energetic
protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave
function of the initial and final states as well as the operators involved in the interaction. Prior to the
collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an
electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As
the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-
Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section,
under this quasi–four-body treatment within the FWL formalism, showed that other mechanisms leading
to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body
interactions which are not classically described but which lead to an effect similar to the Thomas mechanism
and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the
charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present
results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is
where experimental results are available in the literature for comparison. Finally, when possible we compare
the present results with the other available theoretical data.

1 Introduction

In a single charge transfer process, one electron from an atomic species is attached to the second interacting particle,
as reported in the literature theoretically [1–14] and experimentally [15–23]. These processes should be studied under a
many-body model, except for the interaction of a fully charged ion and atomic hydrogen which could be studied under
a three-body formalism [24–27]. The same is also true in the investigation of interactions leading to ionization [28–30]
or discrete excitation [31,32]. For other interactions, where two interacting atomic objects carry two electrons, a four-
body treatment is physically more sensible. The Born approximation [33,34], the Faddeev-Watson-Lovelace (FWL)
formalism [25,35–37] and the Continuous Distorted Wave (CDW) method [38] are examples of methods implemented
frequently in order to study single charge transfer under a three-particle formalism, where some other assumptions
are made for the treatment to be physically feasible. The study of single charge transfer, based on a four-body
interaction has been extended under the CDW [26,39,40], Distorted Wave Born (DWB) [41–43], B1B, B2B [4,44,45]
and FWL [46–51] approximations or formalisms as well.

Following up from our two recent papers [52,53], the single charge transfer in proton-helium collisions is considered
here in order to introduce a detailed four-body treatment of the process. We will achieve this by implementing the
FWL formalism, which is a quantum mechanical treatment and defines the different terms in the interaction properly.
In this paper we will specifically treat the second-order terms, i.e. nuclear-nuclear terms, and we will calculate the
scattering partial amplitudes and differential cross sections.
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The charge transfer interaction between the proton, as a bare ion, and atomic helium is shown as

P + (T + e1 + e2) → (P + eP ) + (T + eT ), (1)

where P and (T +e1+e2) stand for the proton as the projectile and helium as the target, respectively. Note that we have
defined the two electrons after collision as eP and eT to take the indistinguishability of these electrons into account.
Previously we implemented the FWL formalism, for the first time, to investigate the first-order terms of the prior
FWL equation form [52], as well as the second-order terms leading to a Thomas peak under FWL formalism [53]. We
will denote the latter as paper I. Here we intend to discuss the other terms, specifically the nuclear-nuclear interaction
terms, and to find the angular distribution of the cross sections. We will not repeat the work discussed in paper I and
the first order paper [52].

In order to properly calculate the transition amplitude for single charge transfer in proton-helium collisions, one
needs a form of the transition matrix derived by Nutt and Schwinger [54,55], in integral form, which can be implemented
either as its exact off-shell Coulomb T -matrix [56–58] or Chen’s [59] approximate off-shell Coulomb T -matrix or via
Haar resolution analysis which is implemented to calculate the transition amplitudes [60,61]. The three off-shell
Coulomb T -matrix forms are used here, and the results are too close to be distinguished. Therefore, we are confident
that our choice does not contribute to possible errors.

2 Background and post-transition operator

The four-body FWL equations for the post (+) and prior (−) forms of the transition operator are obtained as

U±
βα = (1 − δβα)

{
Vβ − Vβα

Vα − Vβα

}
+

∑
j∈E(α)

∑
i∈E(α)

Tji. (2)

Based on the Faddeev three-body treatment of the scattering process [36], and its expansion to four-body interac-
tions [51], we introduced a quasi–four-body treatment for single charge transfer [52,53] where we obtained a post-form
of the FWL transition operator as

U+
βα = VPeT

+VTeP
+VeP eT

+TPeT ,PC +TTeP,PC +TeP eT ,PC +TPT,PC +TPeT ,PT +TTeP,PT +TeP eT ,PT +TPT,PT , (3)

in which C and T stand for the electronic cloud and the target’s nucleus, respectively. We will use this post-form of the
interaction operator in this paper, in order to calculate the cross sections. As noted above, the indistinguishability of
the electrons results in naming them as eP and eT after collision. Finally, we find the post-form of the FWL transition
operator, in this quasi–four-body treatment for single charge in terms of the two particle interactions, V , and the two
particle transition operators, t, as

U+
βα = VTeP

+ VeP eT
+

(
G−1

0 + tTeP
+ teP eT

+ tPeT

)
G0tPT + VPeT

+
1
2

(
G−1

0 + tTeP
+ teP eT

+ tPT

)
G0tPeT

+
1
2

(tTeP
+ tPeT

+ teP eT
+ tPT ) G0tPeP

(4)

where G0 stands for the free particle Green’s operator. Although the method presented here is applied to proton-
helium collisions, eq. (4) can be applied to any interaction between a bare ion and a two-electron atomic system when
describing a single charge transfer process.

Applying the Pauli principle to the two electrons of the four-particle interacting system, the final asymptotic singlet
(+) or triplet (−) states are given by eqs. (I19) in paper I [53]. The singlet and triplet forms of the final wave function
result in singlet and triplet partial amplitudes.

The transition amplitude is defined as
A = 〈ψf |U+

βα|ψi〉, (5)

which is written as 14 terms for the final triplet states and 23 terms for the final singlet states. The partial amplitudes
for the first-order terms of the prior form [52] and the second-order nuclear (electron) – electron, TTeP ,PC(TeP eT ,PC),
terms were calculated in paper I, eqs. (I-26) and (I-35). Those second-order terms confirmed the Thomas mechanisms.
The first and the second-order terms of the post-form of two particle interactions to be discussed here, respectively,
are

{VPeT
, VTeP

, VeP eT
} (6)

and {
TPeT ,PC , TPT,PC , TPeT ,PT , TTeP,PT , TeP eT ,PT , TPT,PT

}
. (7)
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Note that any partial amplitude obtained by inserting eq. (4) into eq. (5) contains two sub-amplitudes depending on the
final coordinate used to define the wave function. A sub-amplitude either expresses the probability of charge transfer
from the initial channel |i〉 into final channel |f1〉, or the second one shows the probability of this transformation
into final channel |f2〉. To become familiar with Jacobi coordinate see [52]. Therefore, we will calculate the angular
distribution of a single charge transfer collision from the ground state of atomic helium into the ground state of the
He+ and the H atom.

It is, also, necessary to define the momentum transfer experienced by the target ion and the projectile during the
collision to be �T and �J , respectively. Additionally the vectors �Vi and �Vf stand for the initial and final heavy-particles
velocities, respectively. One can conclude that �Vi = �Vf for a direct collision, which can therefore be simply set as �V .

The amplitude of the direct interaction between the particles, i.e., Coulomb potential, making use of the post-form
of the transition operator in charge transfer helium-proton scattering, is summarized as

Ae = 〈ψf |VPe2 + VTe1 + Ve1e2 |ψi〉 =
1√
N

{
2〈ψf1 |VPC + Ve1e2 |ψi〉 +

√
N〈ψf |VTe1 |ψi〉 Singlet

〈(1 − P12)ψf1 |VPe2 + VTe1 |ψi〉 Triplet.
(8)

This amplitude resembles the Coulomb interactions between the projectile-electron, nucleus-electron and electron-
electron and is similar to the first-order Born approximation. Therefore, we call it the Born amplitude. The Born
amplitude could be written in terms of five integrals for which their simplified forms and their momentum conditions
are listed as

I01 = 〈ψf1 |VPe1 |ψi〉 = (2π)3/2

∫
d�k1P d�k2T φ∗

H

(
�k1P

)
φ∗

He+

(
�k2T

)
VPe1

(
�k1P − �J

)
φHe

(
�k1i,�k2i

)
, (9)

where �k1i = −�T and �k2T − �k2i = 0;

I02 = 〈ψf2 |VPe1 |ψi〉 = (2π)3/2

∫
d�k1id�k2iφ

∗
H

(
�k2P

)
φ∗

He+

(
�k1T

)
VPe1

(
�k2i + �T

)
φHe

(
�k1i,�k2i

)
, (10)

where �k1T = �k1i + �k2i + �T and �k2P = �k2i − �V ;

I03 = 〈ψf1 |VTe1 |ψi〉 = (2π)3/2

∫
d�k1id�k2iφ

∗
H

(
�k1P

)
φ∗

He+

(
�k2T

)
VTe1

(
�k1i + �T

)
φHe

(
�k1i,�k2i

)
, (11)

where �k1P = �J and �k2T − �k2i = 0;

I04 = 〈ψf2 |VTe1 |ψi〉 = (2π)3/2

∫
d�k1id�k1T φ∗

H

(
�k2P

)
φ∗

He+

(
�k1T

)
VTe1

(
�k1T − �k1i

)
φHe

(
�k1i,�k2i

)
, (12)

where �k2P = �J and �k2i = −�T ; and

I05 = 〈ψf1 |Ve1e2 |ψi〉 = (2π)3/2

∫
d�k1id�k2iφ

∗
H

(
�k1P

)
φ∗

He+

(
�k2T

)
VTe1

(
�k1i + �T

)
φHe

(
�k1i,�k2i

)
, (13)

where �k2T = �k1i + �k2i + �T and �k1P = �J are the respective momentum conditions.

3 Charge transfer from |i〉 to |f1〉

The charge transfer from the initial state |i〉 to the final state |f1〉, due to the first-order sub-amplitude, tPT , is
simplified as

I31 = 〈ψf1 |tPT |ψi〉 =
∫

Φ∗
He+

(
�k2T

)
Φ∗

H

(
�k1P

)
tPT

(
μn

�V − �k1i − �T , μn
�V ,EPT

)
φHe

(
�k1i,�k2i

)
d�k1id�k2i, (14)

where the momentum conditions �k2T −�k2i = 0 and �k1i −�k1P = �V emerge from the delta functions in simplifying this
term. Similar momentum conditions should be present for any term that contributes to the charge transfer.

The other first-order sub-amplitude in this charge transfer process, due to tPe2 , is

I32 = 〈ψf1 |tPe2 |ψi〉 =
∫

d�k1P d�k2iΦ
∗
He+

(
�k2T

)
Φ∗

H

(
�k1P

)
tPe2

(
�k1P + �k2i + �T ,�k2i − �V ;EPe2

)
φHe

(
�k1i,�k2i

)
, (15)
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where �k2T − �k2i = �k1P − �J and �k1i − �k1P = �V now emerge as the momentum condition. The scattering energies in
integrals (14) and (15) are defined as

EPT = εf +
1
2
μnV 2 − 1

2
k2
1P − 1

2
k2
2T = εi +

1
2
μnV 2 − 1

2
k2
1i −

1
2
k2
2i

∼= 1
2
μnV 2 (16)

and

EPe2
∼= 1

2
V 2 − �k2T · �V − 1

2
k2
1P + εf =

1
2
V 2 − �k2i · �V − 1

2
k2
1i + εi. (17)

The scattering energy EPT defined by eq. (16) is present in all the terms containing the two particle interaction PT . The
term μnV 2/2 in EPT is dominated over the other terms as the heavy-particle reduced mass μn = MT MP /(MT +MP )
is a very large number. The second-order sub-amplitudes, whose interactions result in the charge transfer of the initial
state |i〉 to |f1〉 are the following.

a) The term I33 = 〈ψf1 |tTe1G0tPT |ψi〉 is simplified in momentum space as

I33 = (2π)−3

∫
d�k1P d�k1id�k2iΦ

∗
He+

(
�k2T

)
Φ∗

H

(
�k1P

) 〈
�k1P + �V |tTe1 |�k1i

〉
G0(EPT )

×
〈
μn

�V − �k1P + �J |tPT |μn
�V

〉
φHe

(
�k1i,�k2i

)
(18)

where �k2T − �k2i = 0 is the momentum condition which is expected as the non-interacting electron does not
experience a momentum transfer. This term has no classical counterpart and contributes to the charge transfer
not only in quasi–four-body FWL formalism but also in three-body FWL formalism. The free Green operator is
simplified as

G+
0 (EPT ) =

(
EPT −

∣∣∣μn
�V − �k1P + �J

∣∣∣2
/

2μn + iη

)−1

=
(

ETe1 −
∣∣∣�k1i

∣∣∣2
/

2 + iη

)−1

= G+
0 (ETe1) η → 0, (19)

where the scattering energy EPT is defined by eq. (16) and the scattering energy ETe1 is defined as

ETe1 =
1
2
V 2 + εf + �k1P · �V − 1

2
k2
2T . (20)

One should note that the free Green’s function derived throughout this manuscript has two distinct but equal
forms.

b) The term I34 = 〈ψf1 |tPe2G0tPT |ψi〉 is simplified as

I34 = (2π)−3

∫
d�k2T d�k1id�k2iΦ

∗
He+

(
�k2T

)
Φ∗

H

(
�k1P

) 〈
�k2T − �V |tPe2 |�k2i − �V

〉
G0(EPT )

×
〈
μn

�V + �k2T − �T |tPT |μn
�V

〉
φHe

(
�k1i,�k2i

)
, (21)

where the momentum condition is now �k1i −�k1P = �V , This conditions clarifies that the momentum transfer to the
first electron is as large as the projectile velocity in magnitude; i.e. it is the momentum of an electron moving at
the same velocity as the projectile. The scattering energy EPe2 is defined by the first equality in eq. (17). Also,

G0(EPT ) =
(

EPT −
∣∣∣μn

�V + �k2T − �T
∣∣∣2

/
2μn + iη

)−1

≡
(

EPe2 −
∣∣∣�k2i − �V

∣∣∣2
/

2 + iη

)−1

= G0(EPe2); η → 0 (22)

is the free Green’s function. The form of the Green’s function, G0(EPe2), on the second side of eq. (22), will be
often repeated and, therefore, we omit noting it for the future cases. This term contributes to charge transfer due
to the Pauli exclusion principle.
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c) The term I35 = 〈ψf1 |te1e2G0tPT |ψi〉 can be written as

I35 = (2π)−3

∫
d�k1P d�k1id�k2iΦ

∗
H

(
�k1P

)
Φ∗

He+

(
�k2T

)〈
1
2

(
�k2T − �k1P − �V

)
|te1e2 |

1
2

(
�k2i − �k1i

)〉
G0(EPT )

×
〈
μn

�V − �k1P + �J |tPT |μn
�V

〉
φHe

(
�k1i,�k2i

)
, (23)

where (�k1i + �k2i) − (�k1P + �k2T ) = �V is the momentum condition for this double interaction to lead to charge
transfer. This shows that the two-electron momentum transfer equals to the speed of the projectile. The scattering
energy Eee is defined as

Eee =
1
2
V 2 + �k1P · �V − 1

4

(
�k1i + �k2i

)2

+ εf (24)

and the Green’s function in eq. (23) is similar to that of the sub-amplitude I33 which is defined in eq. (19). Not
considering the electronic cloud, this term disappears.

d) The second-order term I36 = 〈ψf1 |tPT G0tPe1 |ψi〉 in momentum space reads as

I36 = (2π)−3

∫
d�k1P d�k1id�k2iΦ

∗
He+

(
�k2T

)
Φ∗

H

(
�k1P

) 〈
μn

�V |tPT |μn
�V + �k1i + �T

〉
G0(EPe1)

×
〈
�k1P |tPe1 |�k1i − �V

〉
φHe

(
�k1i,�k2i

)
, (25)

in which the momentum condition similar to I33 holds. Both the I33 and I36 interactions are present in a three-body
FWL treatment of the charge transfer interaction. The free Green’s function is defined as

G0(EPT ) =
(

EPT −
∣∣∣μn

�V + �k1i + �T
∣∣∣2

/
2μn + iη

)−1

≡
(

EPe1 −
∣∣∣�k1P

∣∣∣2
/

2 + iη

)−1

= G0(EPe1) η → 0, (26)

while the scattering energy, EPe1 , is

EPe1 = εi +
1
2
V 2 − �k1i · �V − 1

2
k2
2i. (27)

e) The term I37 = 〈ψf1 |tPe2G0tPe1 |ψi〉, which has no counterpart in a three-body treatment, is

I37 = (2π)−3

∫
d�k1P d�k2T d�k2iΦ

∗
He+

(
�k2T

)
Φ∗

H

(
�k1P

)
tPe2

(
�k2T − �V ,�k2i − �V ;EPe2

)
G0(EPe1)tPe1

×
(
�k1P ,�k2T − �k2i + �J ;EPe1

)
φHe

(
�k1i,�k2i

)
, (28)

in which the momentum condition, for the charge transfer to take place under this double interaction, is �k2T −�k2i =
�k1i + �T . The scattering energies EPe1 and EPe2 of sub-amplitude I37 are defined in eqs. (27) and (17), respectively.
Also the free Green’s function inserted in eq. (28) is in the form of the second side of eqs. (26) or (22).

4 Charge transfer from |i〉 to |f2〉

The only first-order sub-amplitude in this group, which defines charge transfer from the initial state |i〉 to the final
state |f2〉, is simplified as

I41 = 〈f2|tPe2 |i〉 =
∫

d�k2P d�k1iΦ
∗
He+

(
�k1i, �T

)
Φ∗

H

(
�k1P

)
tPe2

(
�k2P , �J ;EPe2

)
φHe

(
�k1i,�k2i

)
, (29)

where �k2i = −�T and �k1T
∼= �k1i are its momentum conditions and the scattering energy, EPe2 , is defined by eq. (17).

The second-order sub-amplitudes, leading to charge transfer from the initial channel |i〉 to the final channel |f2〉,
are the following.
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a) The term I42 = 〈ψf2 |tTe1GtPT |ψi〉 is simplified in momentum space as

I42 = (2π)−3

∫
d�k1T d�k1id�k2iΦ

∗
He+

(
�k1T

)
Φ∗

H

(
�k2P

) 〈
�k1T |tTe1 |�k1i

〉
G0(EPT )

×
〈
μn

�V − �k2i − �T |tPT |μn
�V

〉
φHe

(
�k1i,�k2i

)
, (30)

where the same momentum condition as I34 holds by replacing the second electron for the first one. The scattering
energy ETe1 in I42, defined as

ETe1 = εf − k2
2P /2 (31)

differs with the term in I34. The Green’s function is obtained as

G+
0 (EPT ) =

(
EPT −

∣∣∣μn
�V − �k2i − �T

∣∣∣2
/

2μn + iη

)−1

≡
(
ETe1 − k2

1i/2 + iη
)−1

= G+
0 (ETe1) η → 0, (32)

where its second form is exactly similar to the second equality in eq. (19). Hence, the first equality in eqs. (19)
and (32) are also equal.

b) The next sub-amplitude, I43 = 〈ψf2 |tPe2G0tPT |ψi〉, is now simplified as

I43 = (2π)−3

∫
d�k2P d�k1T d�k2iΦ

∗
He+

(
�k1T

)
Φ∗

H

(
�k2P

) 〈
�k2P |tPe2 |�k2i − �V

〉
G0(EPT )

×
〈
μn

�V − �k2i − �T |tPT |μn
�V

〉
φHe

(
�k1i,�k2i

)
, (33)

where �k1i = �k1T is the momentum condition, which determines the momentum of the passive electron due to the
interaction. The scattering energy, EPe2 , is now defined as

EPe2 = εf − k2
1T /2. (34)

In order to obtain the integral (33), we had to make use of the Green’s functions G0(EPT ) and G0(EPe2) as defined
by eqs. (32) and (22), respectively.

c) The sub-amplitude I44 = 〈ψf2 |tPT G0tPe1 |ψi〉 is also simplified as

I44 = (2π)−3

∫
d�k2P d�k1T d�k1iΦ

∗
He+

(
�k1T

)
Φ∗

H

(
�k2P

) 〈
μn

�V |tPT |μn
�V + �k1i − �J

〉
G0(EPe1)

×
〈
�k1T − �V |tPe1 |�k1i − �V

〉
φHe

(
�k1i,�k2i

)
. (35)

Note that the momentum condition for I44 is similar to that for I42. The scattering energy EPe1 used here is the
same as the one defined by eq. (27). The Green’s function G0(EPe1) in eq. (35) and its equivalent form is defined
as

G0(EPT ) =
(

EPT −
∣∣∣μn

�V + �k1i − �J
∣∣∣2

/
2μn

)−1

≡
(

EPe1 −
∣∣∣�k1T − �V

∣∣∣2
/

2
)−1

= G0(EPe1) η → 0. (36)

d) The final double interaction term in a four-body treatment of charge transfer from helium to incoming protons,
I45 = 〈f2|tPe2G0tPe1 |i〉, is written as

I45 = (2π)−3

∫
d�k2P d�k1T d�k2iΦ

∗
He+

(
�k1T

)
Φ∗

H

(
�k2P

)
tPe2

(
�k2P ,�k2i − �V ;EPe2

)
G0(EPe1)tPe1

×
(
�k1T − �V ,�k1T − �k2i + �J ;EPe1

)
φHe

(
�k1i,�k2i

)
, (37)

in momentum space where the momentum condition so derived is �k1T −�k1i = �k2i + �T . The quantities EPe1 , EPe2 ,
G0(EPe2) and G0(EPe1) are defined by eqs. (27), (34), (22) and (36), respectively.

5 Singlet and triplet amplitudes

Due to the existence of a singlet or the triplet state of the final state wave function, any sub-amplitude morphs into
two different values. In this section, we find the interaction terms for the final singlet and triplet wave forms.
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Fig. 1. The graphical description of interaction TTeP ,PT .

First-order potential interactions

The first-order potential amplitude, which results from the post-form of the FWL transition operator, can be presented
both as the singlet and the triplet forms of the wave function as:

Ae = 〈ψf |VPe2 + VTe1 + Ve1e2 |ψi〉 =
1√
N

{
I01 + I02 + I03 + I04 + 2I05 Singlet,

−I01 + I02 + I03 − I04 Triplet.
(38)

Inter-particle term, An

The first inter-particle term TPT,PT appears in all scattering channels such as excitation, ionization and charge transfer,
where the incoming projectile shifts the position and/or the momentum of the target’s (helium) nucleus and, therefore,
changes the symmetry of electronic cloud. Hence the atom loses its “equilibrium” and causes an electron to be emitted,
excited or transferred to the projectile. The amplitude for this process, also called the inter-nucleus term, An, is

An = 〈ψf |TPT,PT |ψi〉 =
2√
N

{
I31 Singlet,

0 Triplet.
(39)

Proton-nucleus collision, ATeP ,PT

There is a possibility that the incoming proton, leaving the helium atom after recoil by scattering from the nucleus, also
during the collision disturbs the electronic cloud, a double interaction term. In this case an electron leaves the electronic
cloud with the reflecting proton from the target nucleus and forms an atom with the projectile. This mechanism is
represented by TTeP ,PT and its amplitude is shown as

ATeP ,PT = 〈ψf |TTeP ,PT |ψi〉 =
1√
N

{
I33 + I42 Singlet,

I33 − I42 Triplet,
(40)

which is symbolized in fig. 1.

Proton-nucleus collision APeT ,PT

Another double interaction mechanism, denoted by TPeT ,PT , could be described similarly to the previous one, but the
transition matrix is written differently. This mechanism is denoted by fig. 2 where its amplitude is simplified as

APeT ,PT = 〈ψf |TPeT ,PT |ψi〉 =
1√
N

{
I34 + I43 Singlet,

I34 − I43 Triplet.
(41)
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Fig. 2. The graphical description of interaction TPeT ,PT .

 

 
Fig. 3. The graphical description of interaction TeP eT ,PT .

 

 
Fig. 4. The graphical description of interaction TPT,PC .

Electron-electron interaction, AeP eT ,PT

The other probable possibility for charge transfer is that the spherical symmetry of the electronic cloud is destroyed,
and it is divided into two parts as a result of the proton-nucleus collision. The next interaction would be between the
two parts of the electronic cloud, leaving one attached to the projectile and the other to the target’s nucleus. This
mechanism is described by the transition matrix TeP eT ,PT . The amplitude for this mechanism to take place simplifies
as

AeP eT ,PT = 〈ψf |Te1e2,PT |ψi〉 =
2√
N

{
I35 Singlet,

0 Triplet,
(42)

which is described in fig. 3.

Projectile-electron cloud interaction, APT,PC

A main interaction among the possible double interaction mechanisms, for charge transfer collisions, is between the
projectile and the electronic cloud which is shown graphically in fig. 4 and described by TPT,PC . Here, the next double
interaction involves the projectile to initially interact with the target’s nucleus while one electron bounds with it and
the second one bounds with the target’s nucleus.
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Fig. 5. The graphical description of interaction TPeT ,PC .

Table 1. The ε from |i〉 to |f1〉 and to |f2〉 in the first-order amplitudes.

I31 εPT = μn(2εi − k2
1i − k2

2i)(2εf − k2
2i − |�k1i − �V |2)/2EPT |�k1i + �T |2

I32 εPe2 = (2εi − k2
1i − k2

2i)(2εf − k2
1P − k2

2T )/|�k1P − �J |2

I41 εPe2 = (2εi − k2
1i − k2

2i)(2εf − k2
2P − k2

2T )/|�k2P − �J |2

This mechanism is present in a three-body treatment of charge transfer, when it is assumed that one electron is
inactive. The amplitude for this process to occur, APT,PC , can be written as

APT,PC = 〈ψf |TPT,PC |ψi〉 =
1√
N

{
(I36 + I44) Singlet,

0 Triplet.
(43)

Projectile-electron cloud interaction, APeT ,PC

The other probable possibility for charge transfer is that the spherical symmetry of the electronic cloud is divided into
two parts by the projectile in the first interaction. The next interaction would then be between the projectile and the
part of the electronic cloud being attached to the target’s nucleus, leaving the other part of the cloud to the projectile
which is symbolized in fig. 5. The amplitude for this interaction resulting in a charge transfer APeT ,PC is

APeT ,PC = 〈ψf |TPeT ,PC |ψi〉 =
1

2
√

N

{
I32 + I37 + I41 + I45 Singlet,

I32 + I37 − (I41 + I45) Triplet.
(44)

6 Results

In order to calculate each amplitude/sub-amplitude, the critical part is the calculation of the two-body transition
matrix elements. The matrix elements of the two-body transition operator at energy E in momentum space, as
derived by Nutt [55] and Schwinger [54], is given by eq. (I-6) in paper I [53].

There are several exact or approximate forms for the off-shell Coulomb T -matrix. However, we will not discuss these
different forms for calculating the two-body transition matrix, here, as they have already been discussed elsewhere [52,
59] in detail. The ε, which is defined by eq. (I-7) in paper I for each integral in the different transition amplitudes,
is simplified and presented in tables 1 to 3. Nonetheless, when we calculated the transition matrix making use of
the different forms, there was no significant difference between the various results. Therefore, we chose the Haar
approximation [60,61], which was the faster one numerically. In addition, the wave function in final channel is considered
as

ΦHe+

(
�k2T

)
ΦH

(
�k1P

)
= φ100

(
�k2T ;ZHe

)
φ100

(
�k1P ;ZH

)
, (45)

where φ100(�k;Z) is the ground state hydrogenic wave function in momentum space and with nuclear charge Z.
The wave function for the helium atom in the initial channel is ϕHe(�r1, �r2) = (Z3

e/π) × exp[−Ze(r1 + r2)], where
Ze is to be determined. Hence, in momentum space we have

ϕHe

(
�k1,�k2

)
=

23Z5
e

π2(Z2
e + k2

1)2(Z2
e + k2

2)2
. (46)
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Table 2. The ε from |i〉 to |f1〉 in the second-order amplitudes.

I33 εTe1 =
(2εf−k2

1P −k2
2T )

ET e1 |�k1P −�k1i+�V |2G0(ET e1 )
εPT =

μn(2εi−k2
1i−k2

2i)

EP T |�J−�k1P |2G0(EP T )

I34 εPe2 =
2εf−k2

1P −k2
2T

EP e2 |�k2i−�k2T |2G0(EP e2 )
εPT =

μn(2εi−k2
1i−k2

2i)

EP T |�k2T −�T |2G0(EP T )

I35 εe1e2 =
(εf−1/2(k2

1P +k2
2T ))

G0(Ee1e2 )Ee1e2 |�k1i−�k1P −�V |2 εPT =
μn(εi−k2

1i−k2
2i)

G0(EP T )EP T |�k1P −�J |2

I36 εPe1 =
2εi−k2

1i−k2
2i

G0(EP e1 )EP e1 |−�k1P +�k1i−�V |2 εPT =
μn(2εf−k2

1P −k2
2T )

G0(EP T )EP T |�k1i+�T |2

I37 εPe2 =
(2εf−k2

1P −k2
2T )

G0(EP e2 )EP e2 |�k1i+�T |2 εPe1 =
(2εi−k2

1i−k2
2i)

G0(EP e1 )EP e1 |�k1f−�k1i+�V |2

Table 3. The ε from |i〉 to |f2〉 in the second-order amplitudes.

I22 εTe1 =
(2εf−k2

2P −k2
1T )

ET e1 |�k1T −�k1i|2G0(ET e1 )
εPT =

μn(2εi−k2
1i−k2

2i)

EP T |�k2i+�T |2G0(EP T )

I23 εPe2 =
(2εf−k2

1T −k2
2P )

EP e2 |�k2i−�V −�k2P |2G0(EP e2 )
εPT =

μn(2εi−k2
1i−k2

2i)

EP T |�k2i−�T |2G0(EP T )

I24 εPe1 =
2εi−k2

1i−k2
2i

EP e1 |�k1T −�k1i|2G0(EP e1 )
εPT =

μn(2εf−k2
1T −k2

2P )

EP T |�k1i−�J |2G0(EP T )

I25 εPe2 =
(2εf−k2

1P −k2
2T )

G0(EP e2 )EP e2 |�k2i−�V −�k2P |2 εPe1 =
(2εi−k2

1i−k2
2i)

G0(EP e1 )EP e1 |�k2i+�T |2

Note that Ze is calculated to take the value of 27/16, in order to reproduce the experimental values of the ground
state energy when making use of a variational method. However, here Ze took the value of 2 in order for the calculated
differential cross section to better match the magnitude of the measured values, especially in the forward direction
and at the Thomas peak.

6.1 Singlet forms of the partial amplitudes

The singlet forms of the partial amplitudes are shown in fig. 6. As it is apparent from these figures and as was expected,
the dominant term belongs to the Born amplitude term, Ae. The phase of the Born term, as is shown in fig. 7, is equal
to π. Hence each singlet partial amplitude, whose phase difference with respect to the Born term is in the range of
(−π/2, π/2) or in the range (−π,−π/2) and (π/2, π), might have a destructive or a constructive effect, respectively,
on the total amplitude. Figure 7 also shows explicitly the phase of the singlet forms of partial amplitudes as well as
the Born amplitude. One should note that the amplitude terms APe2,PC , Ae1e2,PT and Ae1e2,PC , which are shown in
fig. 6(b), have very small values and so they will have a minute effect on the total electron transfer cross sections. In
addition, their phase values would be largely irrelevant. Their presence, however, is important to our understanding
of the physics behind the many-body interactions.

Taking these phase results into account, the singlet term TPT,PC is constructive and amplifies the main amplitude,
Ae, as the two are almost in phase. Otherwise, the phase of the singlet terms of TPT,PT and TPe2,PT are in the range
(−π/2, π/2), hence they add up destructively with Ae. As the phase of the term TTe1,PT is either −π or π and it
is comparable in value to Ae, the two add up constructively. The phase of the singlet amplitude TTe1,PC is in range
(0, π/2) below the scattering angle 0.47mrad, where the Thomas peak appears, while it is in the range (−π,−π/2)
for scattering angles which are larger than 0.47mrad. Hence, it is partially destructive for scattering angles in the
range of 0 to 0.47mrad and it is constructive at other angles, see fig. 7. As these terms are comparable with the main
amplitude, Ae, so their being constructive or destructive can significantly affect the final result.

6.2 Triplet forms of the partial amplitudes

As shown in fig. 8, among the five non-zero interaction amplitudes, the dominant triplet amplitudes belong to the
interaction terms TTe1,PC and TTe1,PT , where TTe1,PC , as a Thomas peak term, is investigated in paper I [53] while
the term TPe2,PC has a minute effect on the total triplet amplitude. One should note that the amplitude is zero for the
projectile-nucleus, TPT , TPT,PC and also TeP eT ,PC amplitudes, where last one is investigated in paper I [53] as a term
which results in Thomas peak. The phase of the non-zero triplet terms are plotted in fig. 9. The Born amplitude, Ae, is
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Fig. 6. Singlet amplitudes of the terms (a) V , TPT , TTe1,PT , TPe2,PT , TTe1,PC and TPT,PC and (b) the terms TPe2,PC , Te1e2,PT

and Te1e2,PC for Ze = 27/16. See legend in the figure and text for future detail.
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Fig. 7. Singlet amplitude phase of the terms V , TPT , TTe1,PT , TPe2,PT , TTe1,PC and TPT,PC for Ze = 27/16. See legend in
the figure for further detail and text.

not zero in post-triplet form, opposite of prior one, but this amplitude is not dominate term anymore. The destructive
or constructive effect of these terms on each other is quite complex, as their phase varies more than the dominant
terms in the singlet case. It should be noted that the amplitudes of the triplet interactions are comparable to or even
dominate with the other terms except the singlet interaction Ae. The final total singlet and triplet amplitudes for the
charge transfer from the ground state of atomic helium into the ground state of the final atomic hydrogen atom, in
the collision of energetic protons with atomic helium, are shown in fig. 10.
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Fig. 8. Triplet amplitude for the terms V , TTe1,PT , TPe1,PC , TPe2,PT and TPe2,PC for Ze = 27/16. See legend in figure and
text for further details.
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Fig. 9. Phase of the triplet amplitudes for the terms V , TTe1,PT , TTe1,PC , TPe2,PT and TPe2,PC for Ze = 27/16. See legend in
figure and text for further details.
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Fig. 10. The final singlet and triplet amplitudes in the charge transfer between protons and helium atoms. The collision energy
is 7.42 MeV and Ze = 27/16. See legend in figure and text for further details.

The relationship between the differential cross section and the total FWL amplitude is defined [36] as

(
dσfi

dΩ

)
=

νiνfKf

(2π)2Ki
|(AFWL)fi|2, (47)

where νi and νf are the ratios of the mass of the projectile to the target before the collision, and of the hydrogen atom
to the helium ion after collision, respectively.
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Fig. 11. The differential cross section in proton-helium collisions at 7.42 MeV. (a) The calculated cross section for Ze equal to
2 and 27/16. (b) Comparison between experiment [17,22] and the present work. (c) Comparison between the different theories.
The CDW-EIS II [12], CDW-EIS II convoluted [22] and Faddeev convoluted [25] theories are compared. The collision energy is
7.42 MeV. See legend in figure and text for further details.

In an unpolarized system, the particle’s spins are randomly oriented. Hence the probability of producing triplet
states is three times that of generating singlet states, so the FWL amplitude is related to the singlet and triplet
amplitudes as

|(AFWL)fi|2 =
1
4
|(AFWL)fi|2s +

3
4
|(AFWL)fi|2t . (48)

Therefore, we have
dσ

dΩ
=

1
4

(
dσ

dΩ

)
s

+
3
4

(
dσ

dΩ

)
t

. (49)

The differential cross sections for charge transfer, in the collision of protons with helium atoms, are shown in fig. 11.
In fig. 11(a), we compare the Ze dependence of the differential cross sections for proton-helium collisions at 7.42MeV
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Fig. 12. The differential cross sections in proton-helium collisions at 7.42 MeV for Ze = 27/16, are compared with the experi-
mental works of Støchkel [22] and the other available theoretical results [6,12].

impact energy. The cross sections are higher in magnitude at all calculated scattering angles when the helium nucleus
charge is higher. Indeed the only difference between two (dσ/dΩ)lab is related to the charge of the target nucleus. By
studying figs. 11(b), (c) and 12, it can be seen that the differential cross section for Ze = 2 has a better compatibility
with the experimental and other theoretical data compared with the case for Ze = 27/16. This is especially true in the
scattering angular range from 0 to 0.3mrad. Hence, we can conclude that Ze = 2 is better than Ze = 27/16 in order
to optimize the differential cross sections. This seems to suggest that at larger incident proton energies the nucleus
charge is not screened significantly by the target electron cloud.

Certainly it is apparent from fig. 11(b) that our result, at the small scattering angles, converges to the experi-
mental data, which is also the case for almost all the other theoretical works. The angular resolution of the earlier
measurement [17] is not as good as the most recent one [22], as shown in fig. 11(b), therefore, the older results show
a shallower minimum below the Thomas peak. Note, that the later measurement is normalized to the earlier one at
forward angles. Finally, we emphasize that the differential cross sections which are reported here are obtained from
the post-form of the transition matrix.

7 Concluding remarks

The present work is a four-body treatment of the charge transfer collision between protons and helium atoms, which
has been well studied previously. However, the goal of this work is to better understand the scattering mechanisms
behind the atomic collisions, specifically for charge transfer.

The fully quantum mechanical Faddeev-Watson-Lovelace formalism was chosen for this task, as it separates the
interaction amplitude in such a way that each term represent a specific sub-interaction in the collision. It was concluded
that in a multi-body treatment of charge transfer, there are other terms leading to the Thomas “like” mechanisms
which show an exactly similar peak at 0.47mrad. Additionally momentum conditions were determined for every
sub-interaction, some of which could be described classically but some others had no classical counterpart.

The other important point in this investigation was to consider the electrons in an atomic species as an electron
cloud, and we also established the Pauli exclusion principle in the formalism as the electrons are fermions. This
principle was taken into account for both the wave functions and the operators describing the electrons. The crucial
point is that we had to use the value Ze = 2 for the charge of the helium nucleus, to arrive at a better result at forward
angles, where the two available experimental works agree in value. Note that in order to reproduce the ground state
energy of the helium atom, one has to take into account the screening of one electron with respect to the other. This
seems not to be true here. This point needs further study and we believe new physics may result from it.

There is a final point that should be emphasized here, namely that a plane wave was assumed for the projectile
and the outgoing atom. This makes the model best suited for higher projectile energies. Therefore, a comparison
with the experimental results at lower energies [23] was not provided in this work. Even at high energies, a boundary
corrected spherical wave is best suited for the outgoing atom is created at the scattering center. Lastly, it should be
highlighted that the present method is more suitable for describing double charge transfer, transfer excitation and
transfer ionization. We intend to further this work to study these new scattering channels as well as making use of
boundary corrected plane waves and/or spherical wave for the incoming and outgoing species, respectively.

The author ZS would like to acknowledge the support of the Graduate University of Advanced Technology, Kerman, Iran. One
of us (MJB) also thanks the Australian Research Council for financial support.
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