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Abstract. In the present article, unsteady flow field characteristics of the Williamson fluid model are ex-
plored. The nanosized particles are suspended in the flow regime having the interaction of a magnetic
field. The fluid flow is induced due to a stretching permeable surface. The flow model is controlled through
coupled partial differential equations to the used shooting method for a numerical solution. The obtained
partial differential equations are converted into ordinary differential equations as an initial value problem.
The shooting method is used to find a numerical solution. The mathematical modeling yields physical pa-
rameters, namely the Weissenberg number, the Prandtl number, the unsteadiness parameter, the magnetic
parameter, the mass transfer parameter, the Lewis number, the thermophoresis parameter and Brownian
parameters. It is found that the Williamson fluid velocity, temperature and nanoparticles concentration
are a decreasing function of the unsteadiness parameter.

1 Introduction

The magnetohydrodynamics generators, geothermal energy extractions, nuclear reactors, and the plasma studies are
the few pertinent applications of heat transfer along with magnetic field interaction subject to boundary layer flows.
Therefore, various attempts are reported on magnetohydrodynamics namely, Damseh [1] discussed the influence of
a magnetic field on boundary layer flow due to an exponentially stretching surface. The MHD viscoelastic fluid flow
induced by a stretching flat surface was considered by Abel and Nandeppanavar [2]. The impact of a magnetic filed on
unsteady flow via a shrinking surface was investigated by Merkin and Kumaran [3]. In the presence of heat source/sink
and thermal radiation effects the MHD viscoelastic fluid flow was studied by Nandeppanavar et al. [4]. Since then
a lot of work is given by prolific researchers to highlight the importance of magnetic field effects on boundary layer
flow induced by different stretching surfaces. One can assess the past and recent developments in this regard in
refs. [5–14].

A vast classification of non-Newtonian fluids is based upon their characteristics and the physical factors. Time-
dependent fluids class is one of the major classes. Heat and mass flow is effected with the change in time that is why
the study of unsteady flows has great importance in industrial applications. From a historical point of view a classical
paper was given by Stewartson [15], in which he has given the concept of unsteady laminar boundary layer for the very
first time. Perepelitza [16] investigated the unsteady heat transfer and gave the experimental results that stabilized
heat transfer at Reynolds numbers of (0.8–6.8)×104 for 5mm×40mm, 10mm×40mm, and 20mm×40mm channels.
Recently Bachok et al. [17] compared the time-dependent boundary layer of heat and mass flow over a permeable
stretching sheet for two different solutions. Rees et al. [18] investigated the time-dependent thermal boundary layer
for the Bingham fluid in the porous medium, they concluded that the fluid stayed stagnant at early times because the
resulting buoyancy forces were too weak to overcome the yield threshold.
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In industry the pseudoplastic fluids have great importance, specially in the chemical and petroleum industry. The
Williamson fluid also drops in the pseudoplastic class of fluids. This model was introduced by Williamson [19] in
1929 and he gave the experimental results. Although this model gained little attention by the researchers, in the last
decade Dapra and Scarpi [20] gave the perturbation method for Williamson fluid flow in fractured rock and Khan
et al. [21] gave the Homotopy Analysis Method (HAM) for the Williamson fluid reaction with other chemicals. A
most recent study of this model was done by Hayat [22] and Malik et al. [23]. Rehman et al. [24] analyzed the double
stratification and chemically reactive species for the Williamson fluid numerically and concluded that the thermal
stratification depreciate the velocity and heat of the fluid. Rehman et al. [25] also discussed the mixed convection
under the stagnation region over an inclined cylindrical surface.

In the current article the Williamson fluid is taken as a base fluid and nano paricles are used to enhance the heat
flow rate. The word “nanofluid” was firstly used by Choi and Eastman [26] to allude to the scattering of nano-particles
in the base fluid for the enhancement of thermal conductivities. He had unwrapped a field of study which is of great
importance in the industry because nanofluids play a magical role as coolants for many industrial and automotive
purposes. Nandy and Mahapatra [27] investigated the effect of nano particles in the presence of MHD. The latest
numerical model for the cooling performance of exhaust gas recirculation (EGR) cooler by using nanofluids is given
by Shabgard et al. [28].

A stretching surface is mostly the cause of flow in most of industrial applications, like hot rolling, extrusion of
metals and plastic. Crane [29] was the first one who studied the flow past a stretching surface. Then Wang [30] and
Fang et al. [31] started the study of a shrinking sheet. After some time Ishak et al. [32] contemplated the boundary
layer flow of mass and heat of nano fluid past a porous shrinking sheet. The numerical solution for a MHD boundary
layer and heat flow past a stretching surface inserted in a non-Darcy spongy medium with fluid-particle suspension
was found by Gireesha et al. [33]. Currently a stability analysis of boundary layer flow and heat transfer through
permeable surface which is itself embedded in a porous medium was given by Yasin et al. [34] numerically. Momentum
and thermal boundary layer for a porous cylinder was reported by Sia et al. [35].

The theme of the current article is to offer a numerical solution of Williamson time-dependent fluid flow due
to a porous stretching surface. Thus an attempt is performed by using theoretical grounds. Moreover, the effects of
magnetic field are also taken into account. The nano sized particles are assumed to be suspended in the flow regime.
The obtained results are provided with the aid of both graphs and tables shooting method [36–38]. The results are
compared with the existing literature in a limiting sense which yields the surety of the present work.

2 Mathematical formulation

The constitutive equation for the Williamson fluid model is defined by the form

T = −pI + τ, (1)

where

τ =
[
μ∞ +

(μ0 − μ∞)
1 − Γ γ̇

]
A1. (2)

here p, I and τ are the pressure, identity vector and extra stress tensor. Γ is a positive time constant, i.e., Γ > 0. μ0

is the low shear rate viscosity, μ∞ is the high shear rate viscosity, A1 is the first Rivlin-Ericksen tensor and shear rate
γ̇ is defined as

γ̇ =

√
1
2
π , (3)

where

π =
1
2

trace(A1
2). (4)

Here we consider only the case for μ∞ = 0 and Γ γ̇ < 1. Now the extra stress tensor reduced to

τ =
[

μ0

1 − Γ γ̇

]
A1. (5)
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By applying binomial expansion to eq. (5) one one can obtain the following expressions:

τ = μ0[1 + Γ γ̇]A1, (6)

γ̇ =

[(
∂u

∂x

)2

+
1
2

(
∂u

∂y
+

∂v

∂x

)2

+
(

∂v

∂y

)2
] 1

2

, (7)

τxx = 2μ0[1 + Γ γ̇]
(

∂u

∂x

)
, (8)

τxy = μ0[1 + Γ γ̇]
(

∂u

∂y
+

∂v

∂x

)
, (9)

τyy = 2μ0[1 + Γ γ̇]
(

v

y

)
, (10)

τxz = τyz = τzx = τzy = τzz = 0. (11)

The component form of continuity and momentum equations can be defined as

∂u

∂x
+

∂v

∂y
= 0, (12)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

∂

∂x
(τxx) +

∂

∂y
(τxy), (13)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

∂

∂x
(τyx) +

∂

∂y
(τyy), (14)

where u(x, y, t) and v(x, y, t) are the velocity components along the flow direction and normal to the flow direction,
respectively. The boundary layer approximations with zero pressure gradient assumption reduce the momentum, energy
and nanoparticle concentration equations to

∂u

∂x
+

∂v

∂y
= 0, (15)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

[
∂2u

∂y2
+
√

2Γ
∂u

∂y

∂2u

∂y2

]
− σB2(t)u

ρ
, (16)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ τ

[
DB

∂C

∂y

∂T

∂y
+

DT

D∞

(
∂T

∂y

)2
]

, (17)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

D∞

∂2T

∂y2
, (18)

their respective boundary conditions are

u = Uw(x, t), v = Vw(t), T = Tw(x, t),
C = Cw(x, t), at y = 0, (19)
u → 0, T → T∞, C → C∞, when y → ∞. (20)

In the above equations ν represents the kinematic viscosity, τ = (ρc)p

(ρc)f
defines the ratio of effective heat capacity of the

nanoparticles to the effective heat capacity of the base fluid. Both DT and DB are the coefficients of thermophoresis
diffusion and Brownian diffusion, respectively. T is the fluid temperature and C is the nanoparticle concentration. The
assumed forms of stretching velocity, surface temperature, mass fluid velocity, surface nanoparticle concentration and
magnetic field are given as follows:

Uw(x, t) =
ax

1 − ct
, Tw(x.t) = T∞ +

T0Uwx

ν(1 − ct)
1
2
,

Vw(t) =
−V0

(1 − ct)
1
2

, Cw(x, t) = C∞ +
C0Uwx

ν(1 − ct)
1
2

, B(t) =
B0

(1 − ct)
1
2

, (21)

where a and c are positive constants with unit of s−1 or to balance the dimensions with (time)−1 and it is certain
that 1− ct > 0. B0 is the magnetic field intensity and V0 is the uniform suction/injection velocity. One can introduce
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a stream function ψ which satisfies the continuity equation, such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (22)

The set of transformations for order reduction can be defined as

η = y

√
Uw

νx
, ψ =

√
Uwνxf(η), (23)

θ =
T − T∞
Tw − T∞

, φ =
C − C∞
Cw − C∞

. (24)

By using eqs. (22)–(24) into eqs. (16)–(20) one can obtain

f ′′′[1 + Wef ′′] + ff ′′ − f ′2 − A
[
f ′ +

η

2
f ′′

]
− M2f ′ = 0, (25)

θ′′ + Pr(fθ′ − 2f ′θ) − Pr
A

2
(ηθ′ + 3θ) + Pr

[
Nbθ′φ′ + Nt(θ′)2

]
= 0, (26)

φ′′ + PrLe(fφ′ − 2f ′φ) − Pr
A

2
Le(ηφ′ + 3φ) +

Nt

Nb
θ′′ = 0, (27)

along with the boundary conditions

f(0) = s, f ′(0) = 1, θ(0) = 1, φ(0) = 1, (28)

f ′ → 0, θ → 0, φ → 0, at η → ∞. (29)

Here differentiation is with respect to η. The dimensionless numbers We, A, M and Pr, Nb, Nt, Le and s are the
Weissenberg number, the unsteadiness parameter, the magnetic parameter, the Prandtl number, the Brownian motion
parameter, the thermophoresis parameter, the Lewis number and the mass transfer parameter s > 0 for suction and
s < 0 for injection. They are defined below

We =

√
a3Γx2

ν(1 − ct)3
, A =

c

a
, M =

√
σ

ρa
B0 ,

P r =
μCp

k
, Nb =

τDB(Cw − C∞)
ν

,

Nt =
τDT (Tw − T∞)

νT∞
, Le =

αm

DB
, s =

v0√
νa

. (30)

3 Skin friction coefficient, local Nusselt number and local Sherwood number

The skin friction coefficient is defined below
Cf =

τw
1
2ρU2

w

, (31)

in the above expression τw represents the shear stress at the permeable surface. For the Williamson fluid surface the
shear stress is defined as

τw = μ0

[
∂u

∂y
+

Γ√
2

(
∂u

∂y

)2
]

y=0

, (32)

after incorporating the eq. (32) into eq. (31), one has the following expression:

CfRe
1
2
x

2
= f ′′(0) +

We

2
f ′′2(0). (33)

The local Nusselt number can be written as

Nux =
xqw

k(Tw − T∞)
, (34)
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where qw is the measure of heat transfer at the surface of a permeable stretching sheet and defined as

qw = −k

(
∂T

∂r

)
r=R

. (35)

Using eq. (33) into eq. (32) one has

NuxRe
− 1

2
x = −θ′(0). (36)

The Sherwood number is defined as
Shx =

xqm

DB(Cw − C∞)
, (37)

where

qm = −DB

(
∂C

∂y

)
y

= 0, (38)

by using eq. (38) into eq. (37) one can get
Re−

1
2 Shx = −φ′(0), (39)

where Rex = Ux
ν denotes the Reynolds number.

4 Method of solution

The system given by eqs. (25)–(27) is non-linear and it is difficult to find out the closed form solution, therefore as a
numerical solution one can write

f ′′′ =
f ′2 − ff ′′ + A(f ′ + η

2 ) + M2f ′

1 + Wef ′′ , (40)

θ′′ = Pr
A

2
(ηθ′ + 3θ) − Pr

[
fθ′ − 2f ′θ − Pr(Nbθ′φ′ + Nt(θ′)2)

]
, (41)

φ′′ = Pr
A

2
Le(ηφ′ + 3φ) − PrLe(fφ′ − 2f ′φ) − Nt

Nb
θ′′, (42)

to implement the shooting method we have introduced dummy variables as follows:

f = y1, f ′ = y2, f ′′ = y3, f ′′′ = y′
3,

θ = y4, θ′ = y5, θ′′ = y′
5,

φ = y6, φ′ = y7, φ′′ = y′
7. (43)

The equivalent form of eqs. (25)–(27) in terms of initial value problem can be written as

y′
1 = y2, (44)

y′
2 = y3, (45)

y′
3 =

y2
2 + A(y2 + η

2y3) − y1y3 + M2y2

1 + Wey3
, (46)

y′
4 = y5, (47)

y′
5 = −Pr(y1y5 − 2y2y4) + Pr

A

2
(ηy5 + 3y4) − Pr[Nby5y7 + Nt(y5)2], (48)

y′
6 = y7, (49)

y′
7 = Pr

A

2
Le(ηy7 + 3y6) − PrLe(y1y7 − 2y2y6) −

Nt

Nb
y′
5. (50)

The reduced endpoint conditions are

y1(0) = s, y2(0) = 1, y3(0) = a1, y4(0) = 1,
y5(0) = a2, y6(0) = 1, y7(0) = a3. (51)

where a1, a2 and a3 are initial guessed values.
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Fig. 1. Physical model.
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Fig. 2. Impact of unsteadiness parameter A on velocity profile.
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Fig. 3. Impact of unsteadiness parameter A on temperature profile.

5 Results and discussions

The outcomes by means of the shooting method are reported through both tables and figures. Figure 1 is the ge-
ometric representation of the flow problem. In detail, figs. 2–4 exhibit that there is a decrease in velocity, tem-
perature and concentration to be more specific in unsteadiness parameter. Figure 2 depicts that the momentum
boundary layer decreases with increase in unsteadiness parameter A. When the unsteadiness parameters increase
the fluid temperature decreases due to a rapid transfer of heat through the permeable sheet. A similar trend is
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Fig. 4. Impact of unsteadiness parameter A on nanoparticle concentration profile.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

η

f 
’ 
(η

)

 

 

s=0.3
s=0.9
s=1.5

We=0.2, A=0.3, M=0.2,Pr=0.72,
Le=1.0, Nt=0.1, Nb=0.2

Fig. 5. Impact of mass transfer parameter s on velocity profile.
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Fig. 6. Impact of mass transfer parameter s on temperature profile.

noticed for nanoparticle concentration via unsteadiness parameter as shown in fig. 4. Figures 5–7 are plotted to
examine the effect of mass transfer parameters on fluid velocity, temperature and nanoparticle concentration re-
spectively. It is noticed that fluid velocity, temperature and nanoparticle concentration are a decreasing function
of the mass transfer parameter that an increase in the mass transfer parameter brings declined curves in veloc-
ity, temperature and nanoparticle concentration. Figures 8 and 9 provide the impact of a magnetic field parameter
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Fig. 7. Impact of mass transfer parameter s on concentration profile.
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Fig. 8. Impact of magnetic parameter M on velocity profile.
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Fig. 9. Impact of magnetic parameter M on temperature profile.

on both fluid velocity and temperature distributions. It is observed that the velocity profile is a decreasing func-
tion of magnetic field parameter M . When the magnetic field parameter increases the magnitude of the Lorentz
force increases. Hence large resistance is forced by fluid particles and as a result the velocity of the fluid decreases.
In parallel context due to large resistance heat is produced which enhances the temperature of the fluid. Figure 10 is
used to examine the impact of the Weissenberg number on the velocity profile. It is noticed that the velocity profile is a
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Fig. 10. Impact of Weissenberg number We on velocity profile.
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Fig. 11. Impact of thermophoresis parameter Nt on temperature profile.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

η

φ
(η

)

 

 

Nt=0.1
Nt=0.5
Nt=0.9

We=0.2, s=0.3, A=0.3, M=0.2,
Pr=0.72, Le=1.0, Nb=0.2

Fig. 12. Impact of thermophoresis parameter Nt on concentration profile.

decreasing function of the Weissenberg number. The Weissenberg number is the ratio of relaxation time to retardation
time. Therefore an increase in relaxation time confirms the dominance of viscous forces as a result velocity curves show
declining values. The impact of the thermophoresis parameter on both temperature and nanoparticle concentration is
tested in figs. 11 and 12.
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Fig. 13. Impact of Brownian motion parameter Nb on temperature profile.
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Fig. 14. Impact of Brownian motion parameter Nt on concentration profile.
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Fig. 15. Impact of Lewis number Le on temperature profile.

It is clear from the figures that by increasing the values of the thermophoresis parameter both temperature and
nanoparticle concentration show increasing values. Figures 13 and 14 reveal the effect of the dimensionless Brownian
motion parameter on the thermal and concentration boundary layer. By definition the Brownian motion parameter
increases the kinetic energy of the nanoparticles due to which the temperature of the nanofluid increases. In result of
this motion the thermal boundary layer thickness increases.
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Fig. 16. Impact of Lewis number Le on concentration profile.
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Fig. 17. Skin friction variation due to a change in magnetic parameter M and Weissenberg parameter We.
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Fig. 18. Skin friction variation due to a change in unsteadiness parameter A and mass transfer parameter s.

The increase in kinetic energy is the cause of dispersion of nanoparticles which declines the concentration boundary
layer thickness of nanofluids. Figure 15 shows the impact of the Lewis number on the temperature profile minutely.
The Lewis number has a direct relation with the thermal diffusion so an increment in the Lewis number enhances
the heat transfer, and as a result temperature increases. Figure 16 reports the impact of the Lewis number on the
concentration profile. The nanoparticle concentration is a decreasing function of the Lewis number. Figure 17 reveals
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Fig. 19. Local Nusselt number variation due to a change in unsteadiness parameter A and Prandtl number Pr.
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Fig. 20. Sherwood number variation due to a change in unsteadiness parameter A and Lewis number Le.

Table 1. Comparison of skin friction −f ′′(0) with previously published data considering unsteadiness parameter variation A
when M = s = We = 0.

A Khan and Azam [39] Present results

0.0 1.0000 1.0005

0.2 1.06801 1.0685

0.4 1.13469 1.1349

0.6 1.19912 1.1992

the results due to friction offered by the stretching permeable surface. It clarifies an increase in the skin friction
coefficient due to an increase in the magnetic parameter. But there is a decline in (1/2)Re

1/2
x Cf by incrementing

the Weissenberg number. Figure 18 reports the influence of both the unsteadiness parameter and the mass transfer
parameter on the skin friction coefficient. The influence of the unsteadiness parameter on both local Nusselt number
and local Sherwood number is examined and provided by figs. 19 and 20, respectively. It is seen that both local
Nusselt number and local Sherwood number are an increasing function of unsteadiness parameter A. Moreover it
is also clear from the figures that the local Nusselt and Sherwood numbers reflect increasing values towards higher
values of the Prandtl and Lewis numbers, respectively. Table 1 is constructed to provide the comparison of our work
with the existing literature. It is observed that they have an excellent match with Khan et al. [39]. Table 2 indicates
the effect of non-dimensional parameters upon skin friction coefficient (f ′′(0) + We√

2
f ′′2(0)). The values in the table

show an enhancement in the local skin friction due to an increase in unsteadiness parameter A, mass transfer s and
magnetic parameter M but it drops due to an increment in Weissenberg number We. Table 3 reports the effects of the
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Table 2. Numerically computed value of skin friction for different values of A, M , s and We.

A M s We 1
2
CfRex

1
2

0.0 0.2 0.3 0.2 1.0005

0.1 – – – 1.08854

0.2 – – – 1.11305

0.3 – – – 1.13710

– 0.6 – – 1.23785

– 1.0 – – 1.90526

– 0.2 0.9 – 1.41889

– – 1.5 – 1.68579

– – 0.3 0.0 1.2752

– – – 0.2 1.13711

– – – 0.4 0.88380

Table 3. Numerically computed values of the Nusselt number for different values of A, Pr, Nt, Nb and Le by fixing s = 0.3
and M = We = 0.2.

A Pr Nt Nb Le Re1/2Nux

0.0 0.72 0.1 0.2 1.0 1.0883

0.1 – – – – 1.1321

0.2 – – – – 1.1733

0.3 – – – – 1.2125

– 1.00 – – – 1.4548

– 1.30 – – – 1.6671

– 0.72 0.5 – – 1.1489

– – 0.9 – – 1.0915

– – 0.1 0.8 – 1.0467

– – – 1.4 – 0.9051

– – – 0.2 3.0 1.1781

– – – – 6.0 1.1575

Table 4. Numerically computed values of the Sherwood number for different values of A, Pr, Nt, Nb and Le by fixing s = 0.3
and M = We = 0.2.

A Pr Nt Nb Le Re−1/2Shx

0.0 0.72 0.1 0.2 1.0 0.7915

0.1 – – – – 0.8353

0.2 – – – – 0.8755

0.3 – – – – 0.9128

– 1.00 – – – 1.1455

– 1.30 – – – 1.3767

– 0.72 0.5 – – 0.4744

– – 0.9 – – 1.6819

– – 0.1 0.8 – 1.2146

– – – 1.4 – 1.2561

– – – 0.2 3.0 2.3083

– – – – 6.0 3.7891

non-dimensional parameter on local Nusselt number −θ′(0). The result implies that the Nusselt number increases with
the increase in unsteadiness parameter A and Prandtl number Pr but the increment of thermophoresis parameter Nt,
Brownian motion parameter Nb and Lewis number Le reduces the local Nusselt number. Also it fixes the values of
the rest of the parameters. Table 4 uncovers the impact of non-dimensional parameters towards the local Sherwood
number −φ′(0). For the controlled values of s, M and We there is an increase in the Sherwood number by the increase
in unsteadiness parameter A, Prandtl number Pr, Lewis number Le and Brownian motion parameter Nb. But the
enhancement of the thermophoresis parameter Nt reduces the local Sherwood number.
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6 Concluding remarks

– The Williamson fluid velocity, temperature and nanoparticles concentrations are a decreasing function of the
unsteady parameter.

– The fluid velocity, temperature and nanoparticle concentration reflect declining curves for the mass transfer pa-
rameter.

– The velocity profile shows a declining nature towards the magnetic field parameter but the opposite trend is noticed
for the case temperature profile.

– Both temperature and nanoparticles concentration show increasing values via thermophoresis parameter.
– The skin friction coefficient increases for the positive values of both mass transfer parameter and unsteadiness

parameter.
– The Nusselt number shows higher values for the increasing values of both Prandtl number and unsteadiness

parameter.

Nomenclature

(x, y) Space variables τ Extra stress tensor

Γ Time material constant μ Dynamic viscosity

u Component of velocity along the x-direction μ0 Zero shear rate viscosity

v Component of velocity along the y-direction μ∞ Infinite shear rate viscosity

t Time γ̇ Shear rate

T Fluid temperature η Variable of local similarity

C Nanoparticle concentration ψ Stream function

p Pressure ρ Fluid density

I Identity tensor ν Kinematic viscosity

f ′ Non-dimensionalized velocity θ Non-dimensionalized temperature

We Weissenberg number φ Non-dimensionalized concentration

M Magnetic parameter αm Effective thermal diffusivity

Pr Prandtl number qw Wall heat flux

s Mass transfer parameter qm Wall mass flux

Re Reynolds number Um Stretching velocity

A1 First Rivlin-Ericksen tensor Tw Surface/wall temperature

B(t) Unsteady magnetic field Cw Surface/wall nanoparticle concentration

B0 Magnitude of magnetic field Vw Mass fluid velocity

A unsteadiness parameter τw Wall shear stress

Le Lewis number Cp Specific heat capacity

Nb Brownian motion parameter DT Coefficient of thermophoresis diffusion

Nt Thermophoresis parameter DB Coefficient of Brownian diffusion

V0 Uniform suction/injection velocity C∞ Ambient concentration

a, c Positive constants T∞ Ambient temperature

k Thermal conductivity Cfx Local skin friction

T0 Reference temperature Nux Local Nusselt number

C0 Reference concentration Shx Local Sherwood number
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