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Abstract. In this paper, we analyze the integrability of the Boussinesq equation by using the truncated
Painlevé expansion and the CRE method. Based on the truncated Painlevé expansion, the nonlocal sym-
metry and Bäcklund transformation of this equation are obtained. A prolonged system is introduced to
localize the nonlocal symmetry to the local Lie point symmetry. It is proved that the Boussinesq equation
is CRE solvable. The two-solitary-wave fusion solutions, single soliton solutions and soliton-cnoidal wave
solutions are presented by means of the Bäcklund transformations.

1 Introduction

The symmetry analysis method is one of the most effective methods to investigate the partial differential equations
(PDEs) [1–4]. With the development of the theory of symmetry, the classical Lie symmetry method has been extended
to nonclassical symmetry [5], Lie-Bäcklund [6], high-order symmetry [2], which are all local symmetries. To find more
generalized symmetries of the PDEs, the nonlocal symmetries have been proposed. It is proved that the nonlocal
symmetries can be constructed by means of Darboux transformation [7], Bäcklund transformation [8], Lax pair [9,10]
and so on. Bluman et al. used the nonlocally related system to find nonlocal symmetries and nonlocal conservation
laws [2]. The Painlevé technique [11,12] is very useful for investigating the integrable properties of PDEs. One can yield
auto-Bäcklund transformations and Lax pairs for the Painlevé integrable equations by using the generalized Weiss
algorithm [13]. Painlevé analysis has been identified as an effective method for searching new integrable systems [14].
Recently, Lou proposed a simple technique to obtain nonlocal symmetries of PDEs by using the truncated Painlevé
expansion [15]. These types of nonlocal symmetries are also called residual symmetries. Then, based on the trun-
cated Painlevé expansion, Lou developed a new consistent Riccati expansion (CRE) method [16] to find interaction
solutions between soliton and other types of waves. These solutions cannot easily be obtained with the aid of the
Lie symmetry method [17–19]. Inspired by Lou’s work, many integrable equations’ nonlocal symmetries and various
interaction solutions, such as the (2 + 1)-dimensional Broer-Kaup-Kupershmidt system [20], the (2 + 1)-dimensional
AKNS equation [21], the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenkskii-Schiff equation [22], the Gardner
equation [23], the (2 + 1)-dimesional Konopelchenko-Dubrovsky equation [24] and the generalized KP equation [25]
have been obtained, respectively.

In this paper, we shall focus on a Boussinesq equation

utt − uxx + αuxxxx − β(u2)xx = 0, (1)

which is an important physical model to describe long waves in shallow water [26]. The Boussinesq equation can be
reduced to the ill-posed Boussinesq equation [27,28]

utt − uxx − uxxxx − (u2)xx = 0. (2)

This equation plays an important role in fluid mechanics. Research shows that this equation is integrable in the
sense of N -soliton solutions [29], Painlevé integrable [30], Bäcklund transformation [31], etc. Clarkson and Kruskal
developed a direct method for investigating some new similarity reductions of the Boussinesq equation [32]. New
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nonclassical symmetry reductions and Painlevé analysis of a generalized Boussinesq equation were investigated [33].
Many new exact traveling wave solutions of the Boussinesq equation were constructed by using the Riccati expansion
method [34]. Rational solutions of the Boussinesq equation were derived [35]. The potential symmetries method was
applied to determine the symmetry reductions of the Boussinesq equation [36]. The Boussinesq equation was used for
describing the convection phenomenon in the viscous incompressible flows and it arises in geophysics when α = −1,
β = k [37]. Xin et al. derived the nonlocal symmetries of an equivalent form of Boussinesq equation from Lax pair [38].
The paper [39] investigated the rational and semirational solutions of the Boussinesq equation. To our knowledge, the
nonlocal symmetries obtained from the truncated Painlevé expansion and CRE solvability of eq. (1) have not been
presented.

The organization of the paper is as follows. In sect. 2, we obtain the Bäcklund transformation and nonlocal
symmetry of eq. (1) with the aid of the truncated Painlevé expansion. To localize the nonlocal symmetry to the local
Lie point symmetry, a prolonged system of eq. (1) shall be introduced. The two-solitary wave fusion solutions are
presented by using the Bäcklund transformation. In sect. 3, the CRE solvability of (1) is investigated. Furthermore,
the interaction solutions between the soliton and the cnoidal periodic wave are explicitly presented. The last section
contains a summary and discussion.

2 Nonlocal symmetry and fusion of solitary waves of eq. (1)

In this section, we shall investigate the nonlocal symmetry of eq. (1) from the truncated Painlevé expansion. According
to the truncated Painlevé analysis, eq. (1) can be expanded to the Laurent series

u = u0 +
u1

f
+

u2

f2
, (3)

where u0, u1, u2 and f are the functions of x and t. Substituting (3) into the (1) and vanishing all the coefficients of
the powers of 1

f , we have

u0 = −1
2
−f2

t − 4αfxxxfx + 3αf2
xx + f2

x

βf2
x

, u1 = −6αfxx

β
, u2 =

6αf2
x

β
, (4)

where f satisfies the equation

fxxxx =
fxxf2

t − 3αf3
xx + 4αfxfxxxfxx − f2

xftt

αf2
x

, (5)

which is equivalent to the Schwarzian form

1
α

Ct +
(

S +
1
2α

C2

)
x

= 0, (6)

by introducing notations as

C =
ft

fx
, S =

fxxx

fx
− 3

2
f2

xx

f2
x

.

From the above analysis, we have the following Bäcklund transformation theorem.

Theorem 1 (Bäcklund transformation 1). If function f is a solution of eq. (6), then

u = −1
2
−ft

2 − 4αfxxxfx + 3αf2
xx + f2

x

βf2
x

− 6
αfxx

βf
+ 6

αf2
x

βf2
, (7)

is a solution of eq. (1).

Theorem 1 provides a method to construct the new solutions of eq. (1). Once the solutions f of eq. (6) are known,
the solutions of u can be obtained by using formula (7).

Based on the definition of residual symmetry, the nonlocal symmetry can be obtained from the truncated Painlevé
analysis

σu = −6αfxx

β
. (8)
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This nonlocal symmetry can also be derived form the Schwarzian form (6). It is known that the Schwarzian form is
invariant under the transformation of Möbius

f → a + bf

c + df
, (ad �= bc) (9)

which means eq. (6) has the point symmetry
σf = −f2. (10)

The symmetry (10) can be simply derived from (9) by making a = 0, b = c = 1, d = ε. Thus, we have the following
nonlocal symmetry theorem.

Theorem 2. The Boussinesq equation (1) has the nonlocal symmetry

σu = −6αfxx

β
, (11)

where u and f satisfy the Bäcklund transformation 1.

Proof. The symmetry equation for eq. (1) is

σu
tt − σu

xx + ασu
xxxx − 4βuxσu

x − 2βσuuxx − 2βuσu
xx = 0. (12)

Theorem 2 can be proved by substituting the nonlocal symmetry (11) into (12) with the aid of (6) and (7).

To find out the group of symmetry
u → ũ(ε) = u + εσu, (13)

where σu is given by (11), we should solve the following initial value problem:

dũ(ε)
dε

= −6αfxx

β
, ũ(ε)|ε=0 = u,

where ε is an infinitesimal parameter. Due to σu in (13) contains the extra variable fxx other than x, t and u, the
group (13) is a group of nonlocal symmetry. However, it is difficult to solve the above initial value problem directly. In
order to solve the above value problem simply, one can localize the nonlocal symmetry to the local Lie point symmetry
for an enlarged system. We introduce the following new variables:

f1 = fx, f2 = f1x, (14)

then we obtain a prolonged system including (1), (6), (7) and (14). The Lie point symmetry of the prolonged system is

⎛
⎜⎜⎜⎝

σu

σf

σf1

σf2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−6α

β
f2

−f2

−2ff1

−2f2
1 − 2ff2

⎞
⎟⎟⎟⎟⎟⎠

(15)

Based on the Lie’s first theorem, the corresponding initial value problem of the Lie point symmetry is

dũ(ε)
dε

= −6α

β
f̃2(ε), ũ(0) = u,

df̃(ε)
dε

= −f̃(ε)2, f̃(0) = f,

df̃1(ε)
dε

= −2f̃(ε)f̃1(ε), f̃1(0) = f1,

df̃2(ε)
dε

= −2f̃1(ε)2 − 2f̃(ε)f̃2(ε), f̃2(0) = f2. (16)
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Fig. 1. The fusion of two bell solitary waves (19) with p1 = 1, p2 = −1, α = 1, β = −2 (a) Perspective view of the wave u. (b)
The wave along the t-axis with x = 10. (c) The wave along the x-axis with t = 5.

Solving the above initial problem, we obtain the transformation group that corresponds to the symmetry (15) of the
prolonged system

f̃(ε) =
f

1 + εf
,

f̃1 =
f1

(1 + εf)2
,

f̃2 =
f2

(1 + εf)2
− 2εf2

1

(1 + εf)3
,

ũ = u − 6α

β

εf2

1 + εf
+

6α

β

ε2f2
1

(1 + εf)2
.

where the ε is an arbitrary group parameter. Thus, if {u, f, f1, f2} is the solution of the prolonged system (1), (6), (7)
and (14), {ũ, f̃ , f̃1, f̃2} is also the solution of this prolonged system.

Remark 1. The nonlocal symmetry (11) of eq. (1) is actually a Lie point symmetry of a prolonged system (1), (6), (7)
and (14). It depends on the new variables fxx, where f satisfies Schwarzian form (6). The Lie point symmetry of
the prolonged system has not been investigated. Thus the nonlocal symmetry can be regarded as a new symmetry of
eq. (1). Solving the new reduction equations of the prolonged system can yield new solutions.

For eq. (5), we let
f = 1 + ep1x+q1t + ep2x+q2t. (17)

Substituting the ansatz into (5) will produce the following relations:

q1 =
√

3α

3
p1(p1 − 2p2), q2 =

√
3α

3
p2(2p1 − p2). (18)

Substituting eq. (17) with (18) into (7) gives the two-solitary-wave fusion solution

u(x, t) = −1
2
β−1(p1e

Δ1 + p2e
Δ2)−2

(
−

(
−1

3

√
3αp1(−2p2 + p1)eΔ1 +

√
3α

3
(−p2 + 2p1)p2e

Δ2

)2

− 4α(p1
3eΔ1 + p2

3eΔ2)
(
p1e

Δ1 + p2e
Δ2

)
+ 3

(
p1

2eΔ1 + p2
2eΔ2

)2
α +

(
p1e

Δ1 + p2e
Δ2

)2

)

− 6αβ−1
(
p1

2eΔ1 + p2
2eΔ2

) (
1 + eΔ1 + eΔ2

)−1
+ 6αβ−1

(
p1e

Δ1 + p2e
Δ2

)2 (
1 + eΔ1 + eΔ2

)−2
,

Δ1 = p1x −
√

3α

3
(−2p2 + p1)p1t, Δ2 = p2x +

√
3α

3
(−p2 + 2p1)p2t. (19)

Figure 1 shows the fusion phenomenon of the two bell solitary waves when p1 = 1, p2 = −1, α = 1 and β = −2.
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3 CRE solvable and soliton-cnoidal waves of eq. (1)

Based on the CRE method, the CRE solutions of eq. (1) can be written as

u = u0 + u1R(w) + u2R(w)2, w ≡ w(x, t), (20)

where R(w) is the solution of the following Riccati equation

R(w)w = a0 + a1R(w) + a2R(w)2, (21)

where a0, a1 and a2 are arbitrary constants. By substituting the expression (20) with eq. (21) into eq. (1) and collecting
all the coefficients of the power of R(w), we can obtain the overdetermined system about u0, u1 and u2. Solving this
system, we obtain

u0 =
1
2

4αwxwxxx − 3αwxx
2 + 6wxxαwx

2a1 + α(a1
2 + 8a2a0)wx

4 − wx
2 + wt

2

wx
2β

, (22)

u1 = 6
a2α(wx,x + wx

2a1)
β

, (23)

u2 = 6
αa2

2wx
2

β
(24)

and the function w(x, t) satisfy

wx,x,x,x =
4wxαwx,xwx,x,x − 3αwx,x

3 + (α(a1
2 − 4a2a0)wx

4 + wt
2)wx,x − wx

2wt,t

wx
2α

, (25)

which is equivalent to the Schwarz-type equation

1
α

Ct +
(

S +
1
2α

C2 − a2
1 − 4a0a2

2
w2

x

)
x

= 0, (26)

by introducing notations as

C =
wt

wx
, S =

wxxx

wx
− 3

2
w2

xx

w2
x

.

Then we can establish a Bäcklund transformation between the solution u of eq. (1) and R(w) of the Riccati equa-
tion (21).

Theorem 3 (Bäcklund transformation 2). If function w is the solution of Schwarz-type equation (26), then

u =
1
2

4αwxwxxx − 3αwxx
2 + 6wxxαwx

2a1 + α(a1
2 + 8a2a0)wx

4 − wx
2 + wt

2

wx
2β

+ 6
a2α(wx,x + wx

2a1)
β

R(w) + 6
αa2

2wx
2

β
R(w)2 (27)

is a Bäcklund transformation between u and R(w).

3.1 Single soliton solutions of eq. (1)

As is known the Riccati equation (21) has the following tanh-function solution:

R(w) = − 1
2a2

[
a1 +

√
a2
1 − 4a0a2 tanh

(
1
2

√
a2
1 − 4a0a2w

)]
. (28)

We take the
w(x, t) = kx + ht + l, (29)

and substitute it into (27), then it comes that

u =
1
2β

(
(a2

1 + 8a0a2)k2 − 1 +
h2

k2

)
+

6αa1a2k
2

β
R(w) +

6αa2
2k

2

β
R(w)2, (30)

is the single soliton solution of eq. (1). (See fig. 2.)
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Fig. 2. Single soliton wave (30) with α = 1, β = 1, a0 = 0, a1 = −1, a2 = 1, k = 1, h = 1, l = 0. (a) Perspective view of the
wave u. (b) The wave along the t-axis. (c) The wave along the x-axis.

3.2 Soliton-cnoidal wave solutions of eq. (1)

To find the soliton-cnoidal wave solutions of eq. (1), we let

w = k1x + h1t + ψ(ξ), ξ = k2x + h2t, (31)

ψξ = dψ(ξ)
dξ is the solution of the elliptic equation

ψ2
ξξ = c0 + c1ψξ + c2ψ

2
ξ + c3ψ

3
ξ + c4ψ

4
ξ , (32)

where ci (i = 0 . . . 4) are constants. Substituting (31) with (32) into the (25), we can obtain the following set of
constraining equations for ci:

c0 = −1
3

4αa2k2
2a0k1

4 − k2
2h1

2 − αk2
2a1

2k1
4 + k2

4αc2k1
2 + h2

2k1
2 − 2αk2

5k1c1

αk2
6 ,

c3 =
1
3

16αa2k2
2a0k1

3 − 2k2h1h2 + 2h2
2k1 − 2k2

4αc2k1 − 4αk2
2a1

2k1
3 + αk2

5c1

αk2
3k1

2 ,

c4 = a1
2 − 4a0a2. (33)

Then, according to the theorem 1, eq. (1) has the solution

u =
1
2

[
(h1 + ψξh2)2 + 4αk2

3(k1 + ψξk2)ψξξξ + 6αa1ψξξk2
2(k1 + ψξk2)2

+ (k1 + k2)4αa1
2 − 3αk2

4(ψξξ)2 − (k1 + ψξk2)2 + 8αa0a2(k1 + k2ψξ)4
]/

(k1 + k2ψξ)2β

− 3
α(ψξξk2

2 + (k1 + ψξk2)2a1)(a1 +
√

a1
2 − 4a0a2 tanh(1/2

√
a1

2 − 4a0a2(k1x + h1t + ψ(k2x + h2t))))
β

+ 3/2
α(k1 + k2ψξ)2(a1 +

√
a1

2 − 4a0a2 tanh(1/2
√

a1
2 − 4a0a2(k1x + h1t + ψ(k2x + h2t))))2

β
. (34)

The general solution of (32) can be written out in terms of Jacobi elliptic functions. Hence if we take the solution
of (32) as

ψξ = μ0 + μ1sn(mξ, n), (35)

we can investigate the interaction solutions, which are under the collision between the soliton wave and cnoidal periodic
wave. Substituting (35) with (33) and conditions cn2 = 1 − sn2 and dn2 = 1 − n2sn2 into (32) and vanishing all the
coefficients of powers of sn, we yield

c1 = 2μ0(8μ0
2a2a0 − 2μ0

2a1
2 + m2 + m2n2),

c2 = −24μ0
2a2a0 + 6μ0

2a1
2 − m2n2 − m2,

h1 =
Q1

√
Q2

Q3

√
αa1

2 − 4a0a2

, h2 =
P2

√
αa1

2 − 4αa0a2√
P1

, μ1 =
mn√

a1
2 − 4a0a2

. (36)
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Fig. 3. Soliton-cnoidal wave (37) with m = 1, n = 1
2
, k1 = 1, k2 = 1, a0 = 0, a1 = −1, a2 = 1, μ0 = 1. (a) Perspective view of

the wave u. (b) The wave along the t-axis. (c) The wave along the x-axis.

Therefore, we obtain the following soliton-cnoidal wave interaction solution of (1)

u(x, t) =
1
2

[
(h1 + (μ0 + μ1S)h2)2 + 4α(k1 + (μ0 + μ1S)k2)(−μ1m

2D2S − μ1m
2n2C2S)k2

3

+ 6μ1mk2
2αCD(k1 + (μ0 + μ1S)k2)2a1 + (k1 + (μ0 + μ1S)k2)4αa1

2
]/

β(k1 + (μ0 + μ1S)k2)2

−3
α(μ1mk2

2CD + (k1 + (μ0 + μ1S)k2)
2a1)(a1 +

√
a12 − 4a0a2 tanh( 1

2

√
a12 − 4a0a2(k1x + h1t +

R k2x+h2t
0 μ0 + μ1sn(mY, n)dY )))

β

+
3
2

α(k1 + (μ0 + μ1S)k2)2(a1 +
√

a1
2 − 4a0a2 tanh(1

2

√
a1

2 − 4a0a2(k1x + h1t +
∫ k2x+h2t

0
μ0 + μ1sn(mY, n)dY )))2

β
,

(37)
where a0, a1, a2, μ0, k1 and k2 are arbitrary constants, h1, h2 and μ1 are given by (36), and S = sn(m(k2x + h2t), n),
C = cn(m(k2x + h2t), n) and D = dn(m(k2x + h2t), n). Figure 3 exhibits the soliton-cnoidal interaction solution (37)
with m = 1, n = 1

2 , k1 = 1, k2 = 1, a0 = 0, a1 = −1, a2 = 1 and μ0 = 1.

4 Conclusions

The nonlocal symmetry of the Boussinesq equation (1) is obtained by using the truncated Painlevé expansion. The
form of nonlocal symmetry (11) is quite simple, however, it is difficult to solve its corresponding initial problem. To
solve this question, a prolonged system is introduced. Actually the nonlocal symmetry related to the truncated Painlevé
expansion is a Lie point symmetry of a prolonged system. Two Bäcklund transformations are presented by means of
the truncated Painlevé expansion and CRE method, respectively. The two bell-type solitary wave fusion solutions are
obtained with the aid of Bäcklund transformation 1. We also investigate the soliton-cnoidal interaction solutions of (1)
by using Bäcklund transformation 2. These solutions are useful for explaining some physical phenomena.

This work is supported by the National Natural Science Foundation of China under Grant No. 41474102 and the Research
Project of China Scholarship Council (No. 201706120213).

Appendix A.

Q1 = α

(
((4a2a0 − a1

2)μ0
2 + m2)((4a2a0 − a1

2)μ0
2 + m2n2)k2

4 +
20
3

μ0((8a2a0 − 2a1
2)μ0

2 + m2(1 + n2))

×k1(−1/4a1
2 + a2a0)k2

3 + 8/3((−6a1
2 + 24a2a0)μ0

2 + m2(1 + n2))

×k1
2(−1/4a1

2 + a2a0)k2
2 − 32μ0k1

3(−1/4a1
2 + a2a0)2k2 + 16/3k1

4(−1/4a1
2 + a2a0)2

)
,
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Q2 = 3((4a2a0 − a1
2)μ0

2 + m2)((4a2a0 − a1
2)μ0

2 + m2n2)k2
4

+ 24μ0((8a2a0 − 2a1
2)μ0

2 + m2(1 + n2))k1(−1/4a1
2 + a2a0)k2

3

+ 12((−6a1
2 + 24a2a0)μ0

2 + m2(1 + n2))k1
2(−1/4a1

2 + a2a0)k2
2

− 192μ0k1
3(−1/4a1

2 + a2a0)2k2 + 48k1
4(−1/4a1

2 + a2a0)2,

Q3 = ((4a2a0 − a1
2)μ0

2 + m2)((4a2a0 − a1
2)μ0

2 + m2n2)k2
4

+ 8μ0((8a2a0 − 2a1
2)μ0

2 + m2(1 + n2))k1(−1/4a1
2 + a2a0)k2

3

+ 4((−6a1
2 + 24a2a0)μ0

2 + m2(1 + n2))k1
2(−1/4a1

2 + a2a0)k2
2

− 64μ0k1
3(−1/4a1

2 + a2a0)2k2 + 16k1
4(−1/4a1

2 + a2a0)2

P1 = 3((4a2a0 − a1
2)μ0

2 + m2)((4a2a0 − a1
2)μ0

2 + m2n2)k2
4

+ 24k1μ0((8a2a0 − 2a1
2)μ0

2 + m2(1 + n2))(−1/4a1
2 + a2a0)k2

3

+ 12k1
2(−1/4a1

2 + a2a0)((−6a1
2 + 24a2a0)μ0

2 + m2(1 + n2))k2
2

− 192k1
3μ0(−1/4a1

2 + a2a0)2k2 + 48k1
4(−1/4a1

2 + a2a0)2,

P2 =
(
μ0((8a2a0 − 2a1

2)μ0
2 + m2(1 + n2))k2

3 + k1((−6a1
2 + 24a2a0)μ0

2 + m2(1 + n2))k2
2

− 24k1
2μ0(−1/4a1

2 + a2a0)k2 + (8a2a0 − 2a1
2)k1

3
)
k2.
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