
DOI 10.1140/epjp/i2018-11974-3

Regular Article

Eur. Phys. J. Plus (2018) 133: 140 THE EUROPEAN
PHYSICAL JOURNAL PLUS

Quasi–four-body treatment of charge transfer in the collision of
protons with atomic helium: I. Thomas related mechanisms�

Zohre Safarzade1, Reza Fathi2, Farideh Shojaei Akbarabadi2, and Mohammad A. Bolorizadeh3,a

1 Department of Physics and Photonics, Graduate University of Advanced Technology, Kerman, Iran
2 Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran
3 Atomic and Molecular Physics Group, School of Physics, Yazd University, Yazd, Iran

Received: 28 January 2018 / Revised: 5 March 2018
Published online: 11 April 2018 – c© Società Italiana di Fisica / Springer-Verlag 2018

Abstract. The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-
body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step
interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose
amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called
Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described
through three-body quantum mechanical models. This work discusses a four-body quantum treatment of
the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are
emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states
as well as the operators. It will be demonstrated that there is a momentum condition for each two-step
interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas
mechanism.

1 Introduction

The single charge transfer has been extensively studied and reported in the literature [1–13] for the case of a three-body
interaction. There are also studies on the single charge transfer based on a four-body interaction under the CDW [14–
17] DWB [18–20], B1B, and B2B [3,21–23] approximations or formalisms. A three- or four-body treatment is the
perfect choice when hydrogen or helium are the target, respectively. When targets are more complex than helium,
however, a model has to be devised to make use of a three-, four-, or few-body formalism.

Faddeev developed an expansion by rearranging the Born expansion [24,25], benefiting from the advantage that
each term explains an individual interaction. Faddeev’s work led to the Faddeev-Watson-Lovelace (FWL) formalism,
which is a quantum treatment for describing different channels in atomic and nuclear scattering problems. The FWL
formalism is applied to describe different channels in the collision of ions with atomic targets, where long-range
Coulomb forces are present. The problems described under the FWL formalism are three-body, or adapted for a
three-body description of scattering channels like charge transfer [26], ionization [27], and excitation [28]. However,
the FWL formalism has also been applied to describe four-body problems [29–34]. The method is powerful enough to
be applied to few-body problems, with the expense of increased number of terms to be dealt with as expected.

We have developed a method implementing the three-body FWL formalism and its expansion toward a four-body
scattering process defined by Sloan [34], to calculate the single electron transfer in the collision of protons by helium
atoms as

P + (T + e1 + e2) → (P + eP ) + (T + eT ), (1)
where P stands for the proton as the projectile and (T + e1 + e2) denotes helium as the target. Note that we have
named the two electrons after the collision eP , and eT as they are indistinguishable. The original form of the FWL
transition operators from an initial channel α to a final channel β is [35]

U−
βα = VPC + TPeT ,PC + TTeP,PC + TeP eT ,PC + TPT,PC + TPeT ,PT + TTeP,PT + TeP eT ,PT + TPT,PT , (2)
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where C, VPC , and Tf,i stand for the initial electronic cloud of the target, the interaction potential between the
projectile and the electronic cloud, and the elements of four-body transition operator between initial interacting
particles i to a final interacting particles f , respectively. We call this method the quasi–four-particle FWL formalism,
as in the initial channel a three-body system composed of the projectile, the target’s nucleus, and the electronic cloud
is assumed, while the final channel is described by a four-body (four-particle) system.

The two-step interaction mechanism for a high-velocity charge transfer in an ion-atom collision has been studied
rigorously [36–40]. In a three-body Faddeev formalism, the Thomas peak is the signature of the two-step interactions.
Thomas [37] originally explained the charge transfer process as a double-scattering mechanism, classically. He stated
that the projectile heads toward the target’s nucleus after colliding with the target’s electron and ejecting it from
the target at 0.47mrad angle with respect to the projectile [37]. The projectile then scatters off the target’s nucleus
in parallel with and at the same speed as the ejected electron while the two form a bound atom or ion. In practice,
a peak at the scattering angle of 0.47mrad is observed in the differential cross sections for charge transfer between
a projectile and a target. Here, we intend to revisit the Thomas peak as a two-step interaction within a four-body
Faddeev formalism.

In this study, we will show that in a four-body treatment of electron capture, different two-step interactions lead
to a peak at the scattering angle 0.47mrad, the same scattering angle as the Thomas peak. In addition, we will extend
our earlier works [26,35,41,42], where it is important to apply the Pauli exclusion principle to the operators and wave
functions, as we are dealing with two electrons. The Pauli exclusion principle applied to operators is important as we
are dealing with the transition matrix operators. This paper is the continuation of our recent work, which we shall call
the First Order Paper [35]. As we are only calculating some of the second-order terms in the charge transfer collision,
it is not possible to calculate the corresponding cross sections to compare with experimental data. Besides, it is not
possible to measure the partial amplitudes. Understanding the physics of some of the partial amplitudes is the main
goal of this paper. Previous works in the literature (as examples see [41,43]) assume an active electron for targets
having more than one electron and solve the charge transfer collision in a three-body formalism. The present work
differs from those, in the sense that all electrons are active and the electronic cloud is taken into account.

The theoretical background is shortly discussed in the next section, while the kinematics of the various interactions
is pointed out in sect. 3. In sect. 4, the FWL amplitude leading to the Thomas-like mechanisms of charge transfer is
simplified for a practical calculation in sect. 5. Finally, the concluding remarks are made in sect. 6.

2 Theoretical background

In this section, we define the main structure of the present model and apply the Pauli exclusion principle to the opera-
tors, where electrons are involved. Therefore, the interaction potential between the projectile and the electronic cloud
for a single electron transfer, two-body transition operators, and the elements of a four-body transition operator are

VPC =
1
2
(VPe1 + VPe2), (3)

tPC =
1
2
(tPe1 + tPe2) (4)

and
Tj,PC =

1
2
(Tj,Pe1 + Tj,Pe2), (5)

respectively, where j in Tj,PC denotes a pair of particles, and the Pauli exclusion principle is taken into account.
The two-particle transition matrices play an essential role in describing the interaction channel [44–47], as they

provide all the information on the two-particle interacting systems. In order to calculate the charge transfer cross
sections, one needs a functional form of the transition matrix elements, for which there are different forms of near-shell
and off-shell transition matrix elements available in the literature [41,43,48–56].

The general off-shell form of the transition matrix elements is derived by Nutt and Schwinger [48,54] as

tij

(
�k,�k′;E

)
=

4πZ

|�k′ − �k|2

{
1 − 4iν

e2πν − 1

∮

c0

t−iν

ε(1 − t)2 − 4t
dt

}
, (6)

where i and j are the interacting particles and ν (= −Z1Z2μ/p) is the Somerfield parameter for p =
√

2μE and

ε =

(
p2 − k2

) (
p2 − k′2)

p2|�k′ − �k|2
; k �= p �= k′ �= k. (7)

Different methods have been devised in the literature to calculate the integral in eq. (6) [57–59].
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There is an exact form for the off-shell Coulomb T -matrix in terms of hypergeometric functions as [53]

tij

(
�k,�k′;E

)
=

4πZ1Z2

|�k′ − �k|2
{
1 + 1/

√
1 + ε [2F1(1,−iν, 1 − iν; g−) − 2F1(1,−iν, 1 − iν; g+)]

}
, (8)

where

g± =
(1 + ε)1/2 ∓ 1
(1 + ε)1/2 ± 1

(9)

and ε is defined by eq. (7). This form of the exact off-shell Coulomb T -matrix is used to calculate the data of partial
amplitudes, which are discussed in this article. Additionally, several approximate off-shell Coulomb T -matrix forms
were calculated by Alston [56], Chen [53], and using the Padé approximation [42].

Chen [53] introduced a two-body transition matrix for two interacting particles:

tij

(
�k,�k′;E

)
=

4πZ1Z2

|�k′ − �k|2

{
|Γ (1 − iν)|2 e−πν

[ε

4

]−iν
}

. (10)

In addition, a relatively simple and efficient method, the Haar multi-resolution analysis, was implemented to calculate
the transition matrix element for single charge transfer in proton-hydrogen collisions [42]. According to Haar multi-
resolution analysis, the two-body transition matrix can be written as

tij

(
�k,�k′;E

)
≈ 4πZ1Z2

|�k′ − �k|2

{
1 − 4iν

(
2−m

)
[

2m−1∑
n=0

[2−m(n + 1
2 )]−iν

ε(1 − 2−m(n + 1
2 ))2 − 4(2−m(n + 1

2 ))

]}
, (11)

where summation contains 2m terms in subspace Vm. If m is chosen adequately large, the approximation converges to
the exact value of transition matrix.

We calculated the transition elements and their corresponding amplitudes by the adaptive Monte Carlo method
employing the exact form of eq. (8), the approximated form derived by Chen (eq. (10)) and the Haar multi-resolution
forms. The calculated transition element differs slightly. Therefore, we devised the Haar multi-resolution approximation
in V2, as it was the most efficient one in this report.

3 Definition of coordinates and conservation laws

At first, as the quasi–four-particle interaction is assumed, we needed to introduce five sets of Jacobi coordinate vectors
with three vectors for each set that define the positions of the constituents of the interacting system, similar to the
three Jacobi coordinate vectors employed by Alston [43]. These Jacobi coordinates were introduced in our previous
work, the First Order Paper [35]. If the kinetic energy operator related to a Jacobi coordinate set depends only on
the square of the momentum operators and no mass polarization term appear in it, the chosen Jacobi coordinate set
is proper for this kind of calculations [60,61].

Defining �Ki and �Kfj
(with the j being the number assigned to the transferred electron) as initial and final wave

vectors of the heavy particles in the center of mass frame, respectively, the total energy operator of the system is

E =
1

2νi
K2

i + εi =
1

2νf
Kfj

2 + εf , (12)

where εi and εf are the initial and final bound-state energies, respectively. It should be noted that the initial (final)
heavy-particle velocities are defined in terms of the initial (final) wave vectors as �Vi = �Ki/νi (�Vf = �Kfj

/νf ) while νi

and νf are the reduced masses of the initial and final particles, respectively.
The target ion and projectile momentum transfers experienced during the collision are defined as

�T = − �Kfj
+ γ′ �Ki (13)

and
�J = α′ �Kfj

− �Ki, (14)

respectively, where γ′ = (MT +m)/(MT +2m) and α′ = MP /(MP +m) are the mass ratios and they are approximately
equal to 1.
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Fig. 1. The mechanism for the term TTeP ,PC .

It must be added that the mass ratios m/MT , m/MP or m/(MP + MT ) are negligible with respect 1 and should
be utilized at the last stage of simplifications of formulae to avoid an expanded error in the final results. Making use
of this approximation, the momentum and energy conservation in the process takes the following form:

�T + �J + �V = �0 (15)

and
T 2 − 2εi = J2 − 2εf , (16)

respectively, where for a direct collision, one concludes �Vi = �Vf = �V .
The partial amplitude for each term of a four-body FWL expansion is written as

A = 〈ψf |Tj,i |ψi〉 , (17)

where the bra, 〈ψf |, and the ket, |ψi〉, are the final and initial asymptotic states, respectively, and Tj,i as an element
of the four-body transition operator.

The initial and final asymptotic states in momentum space are, respectively,

ψi = (2π)6ϕi

(
�k1i,�k2i

)
δ
(

�K − �Ki

)
(18)

and

ψf =
1√
N

(ψf1 ± ψf2) =
1√
N

(1 ± P12) ψf1 =
(2π)6√

N
ϕf

(
�k1P ,�k2T

)
δ
(

�K − �Kf1

)
, (19)

where ϕi and ϕf = (1±P12)ϕf1 are the initial and final bound state wave functions. The notation ϕHe(�k1i,�k2i) is used
as the wave function of the helium atom prior to collision for ϕi and ϕHe+(�k2T )ϕH(�k1P ) for ϕf1 after the collision. P12

in eq. (19) is the exchange operator for electrons 1 and 2. The positive (+) and negative (−) signs in eq. (19) stand
for the final singlet and triplet state wave functions, respectively, while the target is initially in the singlet ground
state as defined by eq. (18). The delta function in eq. (18) describes the free particle with the center of mass, while
the delta function in eq. (19) describes the relative motion of two atoms after the collision.

4 Mechanisms and developments of the Thomas related amplitude terms

4.1 Term TTeP,PC

The third term in the prior form of the FWL transition operator, eq. (2), indicates an interaction leading to the
charge transfer in the collision of a bare ion projectile (proton) with helium (the two-electron system). This charge
transfer interaction has both a classical [37,53] and a quantum interpretation. When the incident projectile interacts
with the target electronic cloud and creates two separate electronic clouds (electrons), one of these electrons collides
with the target’s nuclei and scatters in the same direction and at the same speed as the scattered projectile to form
a bound hydrogen atom. This mechanism is shown in fig. 1. A similar mechanism in three-body formalism, originally
described by Thomas [37], shows a peak in the angular distribution of the charge transfer amplitude at the same angle
as predicted classically, now called the Thomas peak. As described by eqs. (4) and (5) and applying the Pauli exclusion
principle to the four-body transition matrix, TTeP ,PC , this term takes the following form:

TTeP ,PC =
1
2

(tTeP
G0tPeT

+ tTeP
G0tPeP

) , (20)

in terms of the two-body transition operators where G0 is the free-particle Green’s operator.
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Applying the Pauli exclusion principle to the initial and final wave functions, the transition amplitude for the
charge transfer operator, TTeP ,PC , is

ATP =
1

2
√

N
〈ψf1 ± ψf2 | tTe1G0tPe1 + tTe1G0tPe2 |ψi〉 , (21)

where the positive (+) and negative (−) signs stand for the singlet and triplet final states, respectively. This amplitude
consists of four different terms. It is noteworthy that the final triplet state is possible only if the corresponding transition
amplitude is non-zero. This triplet state is for the two electrons, one being in final atomic hydrogen and the other in
helium ion. This triplet state is non-zero for a short time interval during the collision. It should be cited that specific
momentum conditions are derived from each non-zero integral. These conditions are specific to each integral and are
able to determine interacting particles of partial amplitudes. These momentum conditions are derived and explained
in the next section.

At this point, we introduce these four integrals and their simplified form in the momentum space:

I10 = 〈ψf1 | tTe1G0tPe1 |ψi〉

= (2π)−3

∫
d�k1id�k2id�k1P Φ∗

He+

(
�k2i

)
Φ∗

H

(
�k1P

)〈
�k1P + �V

∣∣∣ tTe1

∣∣∣�k1P + �k1i − �J
〉

G0(EPe1)

〈
�k1i + �k1P + �T

∣∣∣ tPe1

∣∣∣�k1i − �V
〉

ΦHe

(
�k1i,�k2i

)
, (22)

I11 = 〈ψf1 | tTe1G0tPe2 |ψi〉

= (2π)−3

∫
d�k1id�k2id�k1P Φ∗

He+

(
�k2i + �k1P − �J

)
Φ∗

H

(
�k1P

)〈
�k1P + �V

∣∣∣ tTe1

∣∣∣�k1i

〉
G0 (EPe2)

〈
�k2i + �k1P + �T

∣∣∣ tPe2

∣∣∣�k2i − �V
〉

ΦHe

(
�k1i,�k2i

)
, (23)

I12 = 〈ψf2 | tTe1G0tPe1 |ψi〉

= (2π)−3

∫
d�k1id�k1T d�k2P Φ∗

He+

(
�k1T

)
Φ∗

H

(
�k2P

)〈
�k1T

∣∣∣ tTe1

∣∣∣�k1i + �k2P − �J
〉

G0 (EPe1)

〈
�k1i + �k2P + �T

∣∣∣ tPe1

∣∣∣�k1i − �V
〉

ΦHe

(
�k1i,�k2P + �V

)
(24)

and

I13 = 〈ψf2 | tTe1G0tPe2 |ψi〉

= (2π)−3

∫
d�k1id�k1T d�k2P Φ∗

He+

(
�k1T

)
Φ∗

H

(
�k2P

)〈
�k1T

∣∣∣ tTe1

∣∣∣�k1i

〉
G0 (EPe2)

〈
�k2P

∣∣∣ tPe2

∣∣∣ �J
〉

ΦHe

(
�k1i,−�T

)
, (25)

where

ATP =
1

2
√

N
(I10 + I11 ± I12 ± I13) . (26)

Again the positive (+) and negative (−) signs stand for the singlet and triplet final states, respectively.
In addition, the free Green’s operator, which appears in each integral, has two equivalent forms that depend on

the scattering energies. However, the free Green’s functions in the sub-amplitude terms take one of the two forms,
respectively, as follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

G0(EPe1) =
(

EPe1 −
∣∣∣�k1i + �k1P + �T

∣∣∣
2 /

2 + iη

)−1

G0(ETe1) =
(

ETe1 −
∣∣∣�k1P + �k1i − �J

∣∣∣
2 /

2 + iη

)−1
, (27)
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Fig. 2. The mechanism of term TeP eT ,PC .

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

G0(EPe2) =
(

EPe2 −
∣∣∣�k2i + �k1P + �T

∣∣∣
2 /

2 + iη

)−1

G0(ETe1) =
(

ETe1 −
∣∣∣�k1i

∣∣∣
2 /

2 + iη

)−1
, (28)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

G0(EPe1) =
(

EPe1 −
∣∣∣�k1i + �k2P + T

∣∣∣
2 /

2 + iη

)−1

G0(ETe1) =
(

ETe1 −
∣∣∣�k1i + �k2P − �J

∣∣∣
2 /

2 + iη

)−1
, (29)

and ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

G0(EPe2) =
(

EPe2 −
∣∣∣�k2P

∣∣∣
2 /

2 + iη

)−1

G0(ETe1) =
(

ETe1 −
∣∣∣�k1i

∣∣∣
2 /

2 + iη

)−1
. (30)

By definition, the scattering energy is the total energy minus the out-of-interaction particle energies. We used the
expansion coefficients of wave plane phase between any two Jacobi coordinate to calculate the corresponding scattering
energies in the same manner as was done for three-body interactions [41,56]. The scattering energies like EPe2 or Eee

are unique in a four-body formalism as compared with a three-body formalism. The scattering energies present in the
free Green’s functions (27) to (30) are approximately as

EPe1
∼= 1

2
V 2 − �k1i · �V − 1

2
k2
2i + εi, (31)

EPe2
∼= 1

2
V 2 − �k2i · �V − 1

2
k2
1i + εi (32)

and ⎧
⎪⎪⎨
⎪⎪⎩

ETe1
∼= 1

2
V 2 + �k1P · �V − 1

2
k2
2T + εf

ETe1
∼= εf − k2

2P

2μPe

. (33)

The scattering energies given here are used in the calculation of partial amplitudes and finally the differential cross
section. However, there are other forms of the scattering energies that are used for the calculation of different sub-
amplitudes. Specifically, the top form of ETe1 in eq. (33) is used for calculating I10 and I11 while the second form of
ETe1 is used in calculating the sub-amplitudes I12 and I13.

4.2 Term TePeT,PC

The electron-electron interaction leads to the Thomas peak (let us not call it a Thomas mechanism), due to the
transfer of an electron to the projectile after that projectile interacts with the target electronic cloud. Because of this
interaction, described by TeP eT ,PC , the incident projectile consequently forms an atom (atomic hydrogen in this case)
with the ejected electron, as shown by fig. 2.
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Applying the Pauli exclusion principle (5) to the operator TeP eT ,PC , expanding TeP eT ,PC in terms of the two-
particle transition operators and substituting the initial and the final states in transition amplitude definition by
eq. (17), we will get the transition amplitude as

Ae
TP =

1√
N

〈ψf1 |te1e2G0tPe1 + te1e2G0tPe2 |ψi〉, (34)

for a final singlet state while it is zero for a final triplet state. It has to be noted that the final triplet state is forbidden
in this electron-electron mechanism.

We will write Ae
TP , in short, as

Ae
TP =

1√
N

(I14 + I15) , (35)

where I14 and I15 are equal to 〈ψf1 |te1e2G0tPe1 |ψi〉 and 〈ψf1 |te1e2G0tPe2 |ψi〉, respectively. We simplify the integral
I14, as

I14 = (2π)−3

∫
d�k1P d�k1id�k2iΦ

∗
He+ (�q1) Φ∗

H

(
�k1P

)〈1
2

(
�q+
2 + �T − �V

)∣∣∣∣ te1e2

∣∣∣∣
1
2

(
�q−2 + �J

)〉
G+

0 (EPe1)
〈
�k1i + �k1P + �T

∣∣∣ tPe1

∣∣∣�k1i − �V
〉

Φi

(
�k1i,�k2i

)
, (36)

where �q1 = �k1i + �k2i + �T and �q±2 = �k2i − �k1P ± �k1i. The two forms of momentum-space Green’s function are
⎧
⎪⎪⎨
⎪⎪⎩

G0(EPe1) =
(

EPe1 −
1
2

∣∣∣�k1i + �k1P + �T
∣∣∣
2

+ iη

)−1

G0(Ee1e2) =
(

Ee1e2 −
1
4

∣∣∣�q−2 + �J
∣∣∣
2

+ iη

)−1 . (37)

In the same way, we simplify the integral I15 as

I15 = (2π)−3

∫
d�k1P d�k1id�k2iΦ

∗
He+ (�q1) Φ∗

H

(
�k1P

)〈1
2

(
�q+
2 + �T − �V

)∣∣∣∣ te1e2

∣∣∣∣
1
2

(
�q3 − �J

)〉
G+

0 (EPe2)

〈�q4| tPe2

∣∣∣�k2i − �V
〉

Φi

(
�k1i,�k2i

)
, (38)

where �q3 = �k2i + �k1P − �k1i and �q4 = �k2i + �k1P + �T , where the two forms of momentum-space Green’s function are
⎧
⎪⎪⎨
⎪⎪⎩

G0(EPe2) =
(

EPe2 −
∣∣∣�k2i + �k1P + �T

∣∣∣
2 /

2 + iη

)−1

G0(Ee1e2) =
(

Ee1e2 −
1
4

∣∣∣�k1i − �k2i − �k1P + �J
∣∣∣
2

+ iη

)−1 . (39)

Here, the momentum vectors �qs are defined simply to make eqs. (36) and (38) shorter. The scattering energy Ee1e2

simplifies as

Ee1e2
∼= εf +

1
4

[
V 2 + 2

(
�k1P − �k2T

)
· �V −

(
�k1P + �k2T

)2
]

(40)

and the scattering energies EPe1 and EPe2 are introduced by eqs. (31) and (32), respectively. Calculation of I14 and I15

introduces momentum conditions, which are discussed in the next section. In the present work, the Green’s functions
G0(EPe1) and G0(EPe2) are used to calculate I14 and I15, respectively.

Here, the initial bound state wave function ϕi, which describes the ground state of a helium atom, is considered
as the product of two hydrogenic wave functions by Ze = 1.7 as an effective charge of the nucleus. It has the form

ϕi (�p1, �p2) = ϕ100 (�p1, Ze) ϕ100 (�p2, Ze)

=
11.092

(2.84766 + p1
2)2(2.84766 + p2

2)2
. (41)

The wave function ϕf1 is the product of hydrogenic wave functions for helium ion with ZHe = 2 and hydrogen atom
with ZH = 1. Hence, the final bound state wave function is

ϕf (�p1, �p2) =
1√
2

(ϕ100 (�p2, ZHe) ϕ100 (�p1, Z) ± ϕ100 (�p1, ZHe) ϕH (�p2, Z))

=
32
π2

(
1

(1 + p1
2)2(4 + p2

2)2
± 1

(1 + p2
2)2(4 + p1

2)2

)
. (42)
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Fig. 3. Plots of the sub-amplitudes related to the second-order terms 〈ψf |tTe1G0tPC |ψi〉 and 〈ψf |te1e2G0tPC |ψi〉, for charge
transfer as a function of scattering angle, which leads to a Thomas peak.

The energy of projectile in the laboratory frame is chosen to be 7.42MeV in our calculations.
We integrated our integrands using the adaptive Monte Carlo method, which is the best method for taking high

dimension integrals and takes care of the singularities. During calculations to achieve the final form of the integrand
in I10 to I15, we use the common simplifications in the works of Alston [43] and Ghanbari-Adivi and Bolorizadeh [41].

5 Discussion

5.1 Angular distributions of the partial amplitude norms

The major amplitude in the charge transfer channel is the first-order electronic amplitude, namely the projectile-
electronic cloud interaction VPC , which is equal to the first Born amplitude discussed in our First Order Paper [35],
which can be seen in fig. 3. All terms, leading to a Thomas mechanism or showing a peak at the same scattering angle,
in the charge transfer collision of protons with helium, include the interaction of the projectile with the electronic
cloud. The physics behind these sub-amplitudes is important since all of them show a peak at the same location as
the Thomas mechanism predicts. Other terms and the second-order terms not discussed here could add up to be
(partially) constructive or (partially) destructive with the first-order electronic amplitude. We discuss the physics of
the calculated partial amplitudes and sub-amplitudes, next.

a) The sub-amplitudes I10, I11, I12, and I13 describe the interaction of the target’s nucleus with the ejected electron
after the scattering of the projectile with the electronic cloud, tTe1G0tPC ; however, not all of them result in a peak at
the same scattering angle as the Thomas mechanism in the angular distribution of the amplitude. In particular:

1) The sub-amplitude I10 = 〈ψf1 |tTe1G0tPe1 |ψi〉, which represents a three-body interaction and the Thomas mecha-
nism, results in a Thomas peak. Even though the initial and final wave functions include the second electron, this
electron is passive in I10 and is absent in the interaction operator tTe1G0tPe1 . In calculating the sub-amplitude I10,
the appearing delta functions result in a momentum condition; hence, the momentum transferred to the electron
remained with the target, Δ�k2 = �k2T −�k2i, is equal to −[m/(MT +m)]�T , which is approximately equal to zero since
m/(MT + m) is very small. This is the momentum change required in changing the state of the second electron
from the ground state of the helium atom to the ground state of the helium ion. This condition clarifies that
the second electron plays a minor role in this interaction, and the target momentum transfer during the collision,
[MT /(MT + m)]�T , is approximately equal to �T . The wave functions, which are used in a three-body treatment, do
not even include the second electron, while here, in a four-body treatment, it is not the case. However, the Thomas
peak is observed at 0.47mrad degrees as expected and as is shown in fig. 3.

2) A peak at the same location as the Thomas peak is present in the sub-amplitude I11 = 〈ψf1 |tTe1G0tPe2 |ψi〉, which
is specific to this four-body treatment, as is shown in fig. 3. This sub-amplitude describes the charge transfer while
all four particles are involved. The probability of charge transfer occurrence by this term is small and has a minor
effect on the total amplitude and the final cross sections, which provide experimental evidence for it. It has to
be noted that the delta function dictates a momentum condition, Δ�k2 = �k2T − �k2i = �k1P − �J , for the electron
remaining with the target during the interaction. A Thomas peak is observed at 0.47mrad degree as expected.

3) Based on the interaction operator, the sub-amplitudes I12 = 〈ψf2 |tTe1G0tPe1 |ψi〉 and I10 are similar. However,
a peak at 0.47mrad or any other angle calculated does not appear for the amplitude I12, as is shown in fig. 3.
This sub-amplitude is present due to the Pauli exclusion principle, where the electrons are indistinguishable.
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Fig. 4. Phase of the sub-amplitudes discussed and calculated in this study; the matrix for VPC has a negative value with π phase.

As is shown in fig. 3, the sub-amplitude I12 has a very small contribution to the total amplitude as well as
the calculated cross sections for the charge transfer. In calculating I12, the delta function dictates the relation
Δ�k2 = �k2P −�k2i = −�V , demonstrating that the charge transfer occurs, while the momentum transfer to the second
electron is equal to the projectile velocity, �V , but in the opposite direction. Although it is not possible to describe
this interaction classically, the interaction occurs with a small probability and therefore one could technically
neglect this sub-amplitude.

4) The interaction described by the sub-amplitude I13 = 〈ψf2 |tTe1G0tPe2 |ψi〉 is similar to that for I11 in terms of the
interaction operator and is similar to I12 in terms of the final wave function. The probability of charge transfer
from the initial channel to the final channel f2, which is introduced by this sub-amplitude, is relatively high and
affects the charge transfer cross sections. However, this sub-amplitude does not produce a peak at the location of
Thomas peak. The delta function condition is now �k2i = −�T , which demonstrates that the initial momentum of
the second electron, the electron transferred to the projectile, should be as large as that for the target nucleus
momentum transfer but in the opposite direction.

The partial amplitude 〈ψf |te1e2G0tPC |ψi〉 consists of the sub-amplitudes I14 and I15. Here, the second electron replaces
the target nucleus in the amplitude 〈ψf |tTe1G0tPC |ψi〉. Hence, the electron-electron interaction replaces the electron-
nucleus interaction in the second step. This term does not appear in any three-body treatment, as only one active
electron is assumed there.

As mentioned earlier, the partial amplitude 〈ψf |te1e2G0tPC |ψi〉 is zero for the triplet final state; nonetheless, the
final singlet state for it is not zero. The momentum condition derived in the integration for this interaction proves that
the momentum transfer to the second electron is Δ�k2 = �k2T − �k2i = �k1i + �T . As is shown in fig. 3, a peak is observed
at 0.47mrad for both sub-amplitudes of this partial amplitude. Further relevant results from this study include:

1) The interaction and form of the sub-amplitude I14 are similar to those of I10 if the target nucleus replaces the
second electron. However, I14 is smaller than I10 by two orders of magnitude; hence, the probability of an electron-
electron collision is much less than the probability of an electron-target nucleus collision. Nevertheless, around the
Thomas peak, this term affects the charge transfer cross sections somehow.

2) Similarly, the interaction and form of sub-amplitude I15 are similar to those for I11. In this case, the sub-amplitude
I11 is slightly larger in magnitude as compared with I15 (fig. 3). Again, this difference indicates that the interaction
of the electron-target nucleus, leading to charge transfer, is more probable than the interaction of electron-electron
collisions. It is also expected that the magnitude of both sub-amplitudes, I11 and I15, are small because they contain
interactions between the projectile and the second electron, which results in the transfer of the first electron to the
projectile. This interaction, despite showing a Thomas equivalent mechanism, has no counterpart in a three-body
formalism.

5.2 Angular distribution of the partial amplitude phases

The first-order electronic term in the Faddeev series is a negative real number and, thus, it has a phase of π. It is
notable that by phase difference, we mean the phase difference between the specific sub-amplitude in question and the
first-order electronic amplitude. The phases of all the sub-amplitudes derived here are shown in fig. 4. In the following,
we discuss the effect of those sub-amplitudes on the first-order electronic amplitude in the charge transfer interaction
between the proton and the helium atom.
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Fig. 5. Singlet and triplet amplitudes of Thomas terms versus scattering angles.
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Fig. 6. Phase of singlet and triplet amplitudes for Thomas terms plotted versus scattering angles.

The first-order electronic amplitude and the sub-amplitudes I12 and I13 show an almost similar angular dependence
and therefore add up constructively, although I13 and I12 are by a factor of 3 and 103 smaller in magnitude, respectively.
Thus, I12 has a minute effect on the total amplitude for charge transfer.

I10 is the second-order sub-amplitude showing a strong Thomas peak (fig. 3), where it adds to the first-order
electronic amplitude almost destructively below the Thomas peak and then constructively above this peak (fig. 4).
The three sub-amplitudes I11, I14, and I15, which physically arise from different mechanisms, show a peak exactly
at the same location as the Thomas peak in the sub-amplitude I10 but are by two orders of magnitude smaller than
I10, as is shown in fig. 3. The sub-amplitudes I14 and I15 contribute to the total amplitude constructively for the
singlet final state; however, they both are almost destructive when added with the sub-amplitude I11, as is shown in
fig. 4. Sub-amplitude I11 adds to the first-order electronic amplitude almost destructively below the Thomas peak, and
almost constructively for the case of scattering angles above the Thomas peak (fig. 4). When the three sub-amplitudes
I11, I14, and I15 are added, they affect the total amplitude with the values of about 3% (1%) for the final singlet
(triplet) state.

To form a triplet state, I11 adds to I10 constructively, although I11 is by a factor of 100 smaller in magnitude than
I10, I12, and I13, which turn from being constructive to destructive when going from scattering angles below to above
the Thomas peak (fig. 4).

In fig. 5, the singlet and triplet amplitudes for the Thomas related peaks are shown. The singlet amplitude is smaller
by a factor of ten than the triplet amplitude, while the two converge at the Thomas scattering angle, 0.47mrad. The
two are approximately equal in magnitude above the Thomas angle. In fig. 6, the phase of the singlet and the triplet
Thomas related amplitudes are plotted as a function of scattering angle. As is known, the phase of the first-order
electronic amplitude is −π, hence in the range 0–0.47mrad of scattering angle both singlet and triplet terms have a
destructive effect on the first-order electronic amplitude. However, in the range 0.47–0.8 the triplet amplitude adds
constructively to the first-order electronic amplitude, while the singlet one keeps its destructive effect on this term.
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6 Concluding remarks

In this paper, the electronic cloud concept was used to study the interaction of protons and atomic helium, specifically
for Thomas-related partial amplitudes in a charge transfer collision. The physics involved in a four-body treatment of
the charge transfer interaction was mainly discussed. In this model, both electrons of the helium atom are assumed
to be active. The four-body FWL formalism was applied up to the second order, where the Thomas mechanism is
observed by the term tTe1G0tPe1 . In the present four-body FWL formalism, the terms tTe1G0tPe2 , te1e2G0tPe2 and
te1e2G0tPe1 are found in addition to the tTe1G0tPe1 , where they show a peak at the same angle as the Thomas peak
in the partial amplitude. The sub-amplitude I12 and I13 do not show a peak at the Thomas angle; however, all the
sub-amplitudes, as well as I12 and I13, change their constructive/destructive effect on the first-order term at the
Thomas angle. The four terms discussed here result in different momentum conditions, which are different from the
momentum condition for the Thomas mechanism. It has to be noted that the two electrons, one being bound in the
atomic hydrogen (formed atom) and the other one being bound in the helium ion (ion being left), form a singlet or
triplet state that both contribute to the charge transfer process. The final triplet state leads to very small amplitudes
as compared with the singlet state.

The quasi–four-body model presented here could be applied to single or double ionization, excitation, charge
transfer, or a combination of these effects. The method could also be applied to larger atoms, as well.

One of the authors, ZS, would like to acknowledge the support of the Graduate University of Advanced Technology. The authors
would also like to thank Prof. Michael Brunger for his scientific support in this work.
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