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Abstract. In this paper, the buckling response of nanobeams on the basis of the Euler-Bernoulli beam
model with the von Kármán geometrical nonlinearity using the modified couple stress theory is investigated
under various types of thermal loading and electrical and magnetic fields. The modified couple stress theory,
used in this paper, is capable to consider the higher-order electro-mechanical coupling effects besides size
effects. The governing equations and boundary conditions are derived using minimum potential energy
principle. The nanobeam is assumed to be under two types of thermal loading, uniform and linear, along
thickness direction. The buckling response of nanobeams is studied using the Galerkin method and the
effects of different parameters, such as size effect, length and thickness, on the critical buckling temperature
are shown. The buckling behavior of nanobeam is illustrated significantly size-dependent particularly with
an increase in thickness and decrease in length.

Introduction

Magneto-electro-thermo-elastic materials (METEMs), a specific category of smart materials, have attracted the atten-
tion of many researchers in recent years. These materials are able to generate electric and magnetic fields if stretched
and they undergo deformation under magnetic and electrical loads. To date, many studies have been conducted on the
physical and mechanical properties of METEMs [1]. In one study, Razavi and Shooshtari investigated the nonlinear
free vibration of a symmetric rectangular electromagnetic elastic plate with simply supported boundary conditions.
They developed the equations of motion using the first-order shear deformation theory and the von Kármán nonlinear
strain and modeled the electric and magnetic behavior of the plate using Maxwell equations [2]. Liu et al. investigated
the electro-thermo-mechanical free vibration of a nanoplate with simply supported boundary conditions using the
nonlocal theory and the Kirchhoff theory and also demonstrating the effect of the nonlocal parameter, electric voltage,
and temperature variation on the natural frequencies of the nanoplate [3].

Piezoelectric and piezomagnetic materials are used in engineering structures, particularly in sensors and actuators,
for damping and controlling the vibrations. They are extensively used in microelectro-mechanical systems (MEMSs)
and nanoelectro-mechanical systems (NEMSs) [4]. The distinctive capability of the materials in controlling deformation
and delaying buckling has further increased the necessity of their investigation [5]. In this connection, Kumaravel et
al. investigated the linear buckling and vibration of layered MEE beam subjected to uniform magnetic field using
the finite element method under clamped conditions. They also examined the piezoelectric coupling effect on critical
buckling magnetic field and vibration behavior [6].

In recent years, mechanical and electrical properties of piezoelectric and piezomagnetic materials have been in-
vestigated using laboratory techniques. Based on these investigations, researchers concluded that the mechanical
and electrical properties of piezoelectric and piezomagnetic materials are size-dependent [7–13]. The classical contin-
uum theory is efficient only in the analysis of macroscopic structures, and it fails to justify the size dependency of
nanoelectro-mechanical systems [4]. Considering the shortcomings of classical continuum theories in incorporating size
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effects, the higher-order continuum theories, which yield more accurate results by taking size effects into account,
has been strongly recommended [14]. In this connection, due to the difficult nature of experiments at nano-scale
and the time-consuming one of the molecular dynamics simulation, researchers have conducted many studies using
higher-order continuum theories [15]. In this connection, Eringen introduced the nonlocal elasticity theory in order to
take nano-scale effects into account in the classical continuum theory. According to this theory, stress at the reference
point is a function of strain at other points within a certain domain [4]. In one study, Ke and Wang investigated
thermo-electro-mechanical vibration of a piezoelectric nanobeam by using the Timoshenko beam model and by tak-
ing Eringen’s nonlocal elasticity theory into consideration. They demonstrated the effects of temperature, nonlocal
parameter, and input voltage on nanobeam vibration [16].

Other higher-order continuum theories including couple stress theory, strain gradient and shear deformation theory
have been used by researchers to investigate size effects in micro and nano dimensions [17–21]. The couple stress theory
was initially introduced by Toupin, Mindlin, Koiter and their colleagues as a nonclassical theory incorporating size
effects [22–24]. This theory involves two extra material length scale parameters in order to describe the size effect of
nano- and microstructures [25]. Anthoine studied the pure bending of circular cross-section beam based on the couple
stress theory [26]. Due to the difficulty of computation of size effects of materials, Yang et al. developed the modified
couple stress theory with a single size effect parameter. In this theory two material length scale parameters in the
couple stress theory are decreased to one parameter [27]. Park and Gao analyzed bending of a Euler-Bernoulli beam
based on a modified couple stress theory [28]. Reddy studied the static bending, free vibration and buckling problems
of a simply supported beam using Euler-Bernoulli and Timoshenko models based on a modified couple stress theory
and illustrated the effect of beam thickness parameter on deflection values [29].

Beams are structures with wide applications in MEMSs and NEMSs, and many studies have been conducted using
these structural elements [4]. Beam models including the Euler-Bernoulli and the shear deformation models, that
include the axial and transverse displacements and the angle of rotation of the cross-sections about vertical axis of
any point on the mid-plane of the beam, respectively, have been widely used by researchers [30].

Also, Tadi Beni developed the nonlinear formulation of the isotropic piezoelectric Euler-Bernoulli beam on the
basis of consistent size-dependent piezoelectricity. He investigated the vibration of a hinged nanobeam subjected
to mechanical loads and drew a comparison between the results of linear and nonlinear classical vibration, and
nonclassical vibration [31]. In one study, Tadi Beni studied the size-dependent electro-mechanical bending, buck-
ling, and free vibration of a functionally graded piezoelectric nanobeam using Euler-Bernoulli model for clamped
and cantilever boundary conditions. He demonstrated the effect of mechanical and electric load as well as the
material properties of the functionally graded piezoelectric material on static responses, buckling, and free vibra-
tion [32].

When structures are exposed to thermal environments, thermal stress is created in the structures. As thermal
stress reaches to certain level, the structures may lose their stability and undergo thermal buckling. Considering the
exposure of many structures and nanostructures to thermal environments, it is highly necessary to investigate their
behavior in such environments. In one study, Nateghi and Salamat-talab analyzed the thermal effect on buckling and
free vibration of functionally graded microbeams using the modified couple stress theory and demonstrated the effect
of temperature variation on size dependency [33]. Akgöz and Civalek investigated the thermo-mechanical buckling
behavior of functionally graded microbeams using the modified couple stress theory and demonstrated the effect of
size effects and length on the beam buckling behavior [34]. So far, few studies have been conducted on the thermal
buckling of elastic piezoelectric and piezomagnetic nanobeams using higher-order theories.

In most previous studies, isotropic beams are assumed to be under uniform thermal loading and the buckling
characteristics of only simply supported beam [34] in thermal environment are investigated [33,34]. Additionally, on
the basis of the linear model, the critical buckling temperature, which leads to beam instability, are determined [33].
However, in the current study these limitations, by developing new formulation, are eliminated.

In the present paper, attempts are made for the first time to extract the nonlinear formulation of size-dependent
thermal buckling of elastic piezoelectric and piezomagnetic nanobeams in a coupled fashion using the modified couple
stress theory and Euler-Bernoulli beam model. In this study, the pre-buckling analysis has been presented as a funda-
mental and basic prerequisite for predicting the occurrence of buckling in the elastic piezoelectric and piezomagnetic
nanobeam, and, afterwards, the analysis of thermal buckling of the nanobeam is carried out using the von Kármán
nonlinear strain. Furthermore, the effects of geometrical parameters, boundary conditions, external electrical voltage
and magnetic potential on the critical buckling temperature of the nanobeams are investigated.

It should be noted that the size effect has been taken into account in this formulation through using the modified
couple stress theory for analysis the anisotropic nanostructures and can be used for isotropic ones as well. Besides,
this formulation can turn into the classical beam formulation.

Note that there are many studies in which the piezoelectric and piezomagnetic nanobeams are investigated but
only in this study the higher-order electro-mechanical coupling effect is considered. This is mainly due to the fact that
the theory used in this paper is capable to consider the higher-order electro-mechanical coupling effect and that is
more significant for beams with small scales.
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Fig. 1. Schematic view of the nanobeam.

Modified couple stress theory for piezoelectric materials

Based on the modified couple stress theory, which is able to incorporate the electro-mechanical coupling effect, the
structural equations for a piezoelectric solid are expressed as [35,36]

σij = cijklεkl − ekijEk − qkijHk − βijΔT, (1)
τijk = −flijkEl + gijklmnηlmn, (2)
Di = aijEj + eijkεjk + dijHj + fjkliηjkl + piΔT, (3)
Bi = μijHj + qijkεjk + dijEj + λiΔT, (4)

where Bi, Di, σij , τijk represent the components of magnetic displacement, electric displacement, stress and higher-
order stress, respectively; ΔT , βij stand for temperature change and thermal modulus, respectively; λi, pi, μij , dij , qijk,
aij , eijk, cijkl represent pyromagnetic, pyroelectric, magnetic, electromagnetic, piezomagnetic, dielectric, piezoelectric,
and elastic coefficients, respectively [35]; flijk is the electric field-strain gradient coupling coefficient tensors; gijklmn

is strain gradient elasticity [36]. Hi, Ei, εij stand for magnetic field, electric field, and strain, which are defined as
follows:

εij =
1
2
[ui,j + uj,i + u3,iu3,j ], (5)

Ek = − ∂φ

∂xi
, Hk = − ∂ψ

∂xi
, (6)

where ψ, φ stand for magnetic potential and electric potential, respectively, and u stands for displacement. The strain
gradient tensor is expressed as

ηijk = εij,k =
1
2
[ui,jk + uj,ik], (7)

where εij = εji, ηijk = ηjik. If electro-mechanical coupling is not taken into account, all electric coefficients are set to
zero. For centrosymmetric dielectric cases, coefficient eijk is set to zero [36].

In modified couple stress theory, used in this study, by setting strain gradient elasticity parameter, gijklmn and the
electric field-strain gradient coupling coefficient tensors (the higher-order electro-mechanical coupling coefficient) flijk

to zero, the formulation of classical continuum theory can be obtained.

Governing equations and related boundary conditions

A nanobeam of length L, width b, and height h is considered in fig. 1. The origin of the coordinate system is assumed
to be on the beam’s middle surface, such that the x-axis is along the beam’s length and the z-axis is perpendicular to
the beam’s length.

Displacement at each point of nanobeam, based on the Euler-Bernoulli beam model, is expressed as [37]

u1 = u0(x) − z
∂w(x)

∂x
, u2 = 0, u3 = w(x). (8)

The governing equation and boundary conditions are developed using the principle of minimum potential energy,
according to the following equation:

δΠ = δU − δW = 0, (9)
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where δW is the work variation of external loads acting on nanobeam, and δU is the variation of strain energy.
According to the modified couple stress theory, the strain energy per volume for piezoelectric beams is determined as
follows:

U =
1
2

[σij(εij − αijΔT ) + τijkηijk − DkEk − BkHk] , (10)

where αij represents thermal expansion coefficients. The relationship between thermal expansion coefficient and ther-
mal modulus is expressed through the following equation [38], in which α0 = αx, Y0 is meant for data normalization:

βxi =
(

1
α0Y0

)
(c11iαxi + c12iαyi + c13iαzi) . (11)

Components of the strain tensor and the strain gradient tensor are determined by substituting eq. (8) into eqs. (5)
and (7) as follows:

εxx =
∂u0

∂x
− z

∂2w

∂x2
+

1
2

(
∂w

∂x

)2

,

ηxx =
∂2u0

∂x2
− z

∂3w

∂x3
, ηxz = −∂2w

∂x2
. (12)

It should be noted that other components of the classical strain tensor and higher-order strain gradient tensor are
equal to zero. By substituting eq. (12) into eqs. (1)–(4), the classical and higher-order stress as well as electric and
magnetic displacements are determined as follows:

σxx = c1111(εxx − α11ΔT ) − e311Ez − q311Hz, (13)
τxx = g111111ηxx, τxz = g113113ηxz − f3113Ez, (14)
Dx = a11Ex + d11Hx + p1ΔT, (15)
Dz = a33Ez + d33Hz + p3ΔT + e311εxx + f3113ηxz, (16)
Bx = μ11Hx + d11Ex + λ1ΔT, (17)
Bz = μ33Hz + d33Ez + λ3ΔT + q311εxx. (18)

The work of the external loads equals zero. Now, by substituting eqs. (12)–(18) into the strain energy equation and
by using the calculus of variations, the following result is yielded:

δU =
∫ L

0

∫
A

(σxxδ(εxx − α11ΔT ) + τxxδηxx + τxzδηxz − DxδEx − DzδEz − BxδHx − BzδHz) dAdx, (19)

δU =
∫ L

0

(
Nδ

(
∂u0

∂x
+

1
2

(
∂w

∂x

)2
)

− Mδ

(
∂2w

∂x2

)
+ pδ

(
∂2u0

∂x2

)
− MHδ

(
∂3w

∂x3

)
− pδ

(
∂2w

∂x2

))
dx

+
∫ L

0

∫
A

(
Dxδ

(
∂φ

∂x

)
+ Dzδ

(
∂φ

∂z

)
+ Bxδ

(
∂ψ

∂x

)
+ Bzδ

(
∂ψ

∂z

))
dAdx. (20)

In the latter equation, N is the axial force, M is the bending moment, MH is the higher-order bending moment, and
P is the summation of the axis couple stress on the cross-section:

N =
∫

A

σxxdA, M =
∫

A

σxxzdA, p =
∫

A

τxxdA, MH =
∫

A

τxxzdA, p =
∫

A

τxzdA. (21)

Also, the governing equations are developed as follows:

δu0 :
∂2p

∂x2
− ∂N

∂x
= 0, (22)

δw :
∂3MH

∂x3
− ∂2M

∂x2
− ∂2p

∂x2
− ∂

∂x

(
N

∂w

∂x

)
= 0, (23)

δφ :
∂Dx

∂x
+

∂Dz

∂z
= 0, (24)

δψ :
∂Bx

∂x
+

∂Bz

∂z
= 0. (25)
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The boundary conditions are as follows:
(
−∂P

∂x
+ N

)∣∣∣∣
x=0,L

= 0, or δu0 |x=0,L = 0 , (26)

P |x=0,L = 0, or δ

(
∂u0

∂x

)∣∣∣∣
x=0,L

= 0, (27)

(
−∂2MH

∂x2
+

∂M

∂x
+

∂p

∂x
+

(
N

∂w

∂x

))∣∣∣∣
x=0,L

= 0, or δw |x=0,L = 0, (28)

(
∂MH

∂x
− M − p

)∣∣∣∣
x=0,L

= 0, or δ

(
∂w

∂x

)∣∣∣∣
x=0,L

= 0, (29)

− MH |x=0,L = 0, or δ

(
∂2w

∂x2

)∣∣∣∣
x=0,L

= 0, (30)

∫ h
2

−h
2

(Dx) dz |x=0,L = 0, or δφ |x=0,L = 0, (31)

∫ L

0

(Dz) dx
∣∣∣z=−h

2 , h
2

= 0, or δφ
∣∣∣z=−h

2 , h
2

= 0, (32)

∫ h
2

−h
2

(Bx)dz |x=0,L = 0, or δψ |x=0,L = 0, (33)

∫ L

0

(Bz)dx
∣∣∣z=−h

2 , h
2

= 0, or δψ
∣∣∣z=−h

2 , h
2

= 0. (34)

By substituting eq. (12) and eqs. (13)–(18) into the governing equations and boundary conditions, all the equations
are developed as follows:

Ag111111
∂4u0

∂x4
− Ac1111

(
∂2u0

∂x2
+

1
2

∂

∂x

(
∂w

∂x

)2
)

− be311
∂

∂x

(∫ h
2

−h
2

∂φ

∂z
dz

)
− bq311

∂

∂x

(∫ h
2

−h
2

∂ψ

∂z
dz

)
= 0, (35)

− Ig111111
∂6w

∂x6
+ Ic1111

∂4w

∂x4
+ Ag113113

∂4w

∂x4
− bf3113

∂2

∂x2

(∫ h
2

−h
2

∂φ

∂z
dz

)
−

(
∂w

∂x

) [
Ac1111

(
∂2u0

∂x2
+

1
2

∂

∂x

(
∂w

∂x

)2
)

+ be311
∂

∂x

(∫ h
2

−h
2

∂φ

∂z
dz

)
+ bq311

∂

∂x

(∫ h
2

−h
2

∂ψ

∂z
dz

)]
−

(
∂2w

∂x2

) [
Ac1111

(
∂u0

∂x
+

1
2

(
∂w

∂x

)2
)

+ be311

(∫ h
2

−h
2

∂φ

∂z
dz

)
+ bq311

(∫ h
2

−h
2

∂ψ

∂z
dz

)
− NT

x

]
= 0, (36)

a11
∂2φ

∂x2
+ d11

∂2ψ

∂x2
+ a33

∂2φ

∂z2
+ d33

∂2ψ

∂z2
+ e311

∂2w

∂x2
− p3

∂

∂z
(ΔT ) = 0, (37)

μ11
∂2ψ

∂x2
+ d11

∂2φ

∂x2
+ μ33

∂2ψ

∂z2
+ d33

∂2φ

∂z2
+ q311

∂2w

∂x2
− λ3

∂

∂z
(ΔT ) = 0. (38)

The boundary conditions are as follows:
(
−Ag111111

∂3u0

∂x3
+ Ac1111

(
∂u0

∂x
+

1
2

(
∂w

∂x

)2
)

+ be311

(∫ h
2

−h
2

∂φ

∂z
dz

)
+ bq311

(∫ h
2

−h
2

∂ψ

∂z
dz

)
− NT

x

)∣∣∣∣∣
x=0,L

= 0,

or δu0|x=0,L = 0, (39)(
Ag111111

∂2u0

∂x2

)∣∣∣∣
x=0,L

= 0, or δ

(
∂u0

∂x

)∣∣∣∣
x=0,L

= 0, (40)
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(
Ig111111

∂5w

∂x5
− Ic1111

∂3w

∂x3
− Ag113113

∂3w

∂x3
+ bf3113

∂

∂x

(∫ h
2

−h
2

∂φ

∂z
dz

)
+

(
∂w

∂x

)(
Ac1111

(
∂u0

∂x
+

1
2

(
∂w

∂x

)2
)

+be311

(∫ h
2

−h
2

∂φ

∂z
dz

)
+ bq311

(∫ h
2

−h
2

∂ψ

∂z
dz

)
− NT

x

))∣∣∣∣∣
x=0,L

= 0, or δw |x=0,L = 0, (41)

(
−Ig111111

∂4w

∂x4
+ Ic1111

∂2w

∂x2
− bf3113

(∫ h
2

−h
2

∂φ

∂z
dz

)
+ Ag13113

∂2w

∂x2
+ MT

x

)∣∣∣∣∣
x=0,L

= 0, or δ

(
∂w

∂x

)
|x=0,L = 0,

(42)

Ig111111
∂3w

∂x3

∣∣∣∣
x=0,L

= 0, or δ

(
∂2w

∂x2

)∣∣∣∣
x=0,L

= 0, (43)

∫ h
2

−h
2

(
−a11

∂φ

∂x
− d11

∂ψ

∂x
+ p1ΔT

)
dz

∣∣∣∣∣
x=0,L

= 0, or δφ|x=0,L = 0, (44)

∫ L

0

(
−a33

∂φ

∂z
− d33

∂ψ

∂z
+ e311

(
∂u0

∂x
− z

∂2w

∂x2
+

1
2

(
∂w

∂x

)2
)

+ p3ΔT − f3113

(
∂2w

∂x2

))
dx

∣∣∣∣∣
z=−h

2 , h
2

= 0,

or δφ
∣∣∣z=−h

2 , h
2

= 0, (45)

∫ h
2

−h
2

(
−μ11

∂ψ

∂x
− d11

∂φ

∂x
+ λ1ΔT

)∣∣∣∣
x=0,L

dz = 0, or δψ|x=0,L = 0, (46)

∫ L

0

(
−d33

∂φ

∂z
− μ33

∂ψ

∂z
+ q311

(
∂u0

∂x
− z

∂2w

∂x2
+

1
2

(
∂w

∂x

)2
)

+ λ3ΔT

)
dx

∣∣∣∣∣
z=−h

2 , h
2

= 0, or δψ
∣∣∣z=−h

2 , h
2

= 0.

(47)

Note that the open circuit boundary conditions (45) and (47) are as follows:

∫ L

0

(
−a33

∂φ

∂z
− d33

∂ψ

∂z
+ e311

(
∂u0

∂x
− z

∂2w

∂x2
+

1
2

(
∂w

∂x

)2
)

+ p3ΔT − f3113

(
∂2w

∂x2

))
dx

∣∣∣∣∣
z=−h

2 , h
2

= 0,

∫ L

0

(
−d33

∂φ

∂z
− μ33

∂ψ

∂z
+ q311

(
∂u0

∂x
− z

∂2w

∂x2
+

1
2

(
∂w

∂x

)2
)

+ λ3ΔT

)
dx

∣∣∣∣∣
z=−h

2 , h
2

= 0.

In the above equations, I, A represent area moment of inertia of sections about the y-axis and cross-section, respectively.
Also, NT

x and MT
x are thermal moment and thermal force resultants, respectively, which are expressed as follows:

NT
x =

∫
A

(c1111α11ΔT ) dz, MT
x =

∫
A

(c1111α11ΔT ) zdz. (48)

Types of thermal distributions

Uniform temperature rise (UTR)

For nanobeams made of isotropic and anisotropic materials at reference temperature T0, uniform temperature rise
in all points will reach the ultimate value T . Therefore, temperature variation among all points of the nanobeams is
expressed as

ΔT = T − T0. (49)
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Linear temperature rise (LTR)

For nanobeams made of isotropic materials whose thickness is assumed to be thin enough, approximate temperature
rise along nanobeam thickness varies linearly,

T = T1 + ΔT

(
1
2

+
z

h

)
, (50)

where ΔT = T2 − T1 is temperature difference, where T1 is the lower temperature of nanobeam and T2 is the upper
ones.

Pre-buckling deformation

This investigation attempts an analysis of the buckling of fully flat nanobeams. For this purpose, the deformation of
the piezoelectric and piezomagnetic nanobeams must be examined so as to ensure that the nanobeams remain flat
under transverse thermal load [39]. In the investigation of pre-buckling deformation, assuming that the equations are
linear and that nanobeam deformation prior to buckling equals zero (wp(x) = 0). Hence, by setting wp(x) = 0 in the
governing equations (35)–(38), an equilibrium position in the pre-buckling state follows the equations:

Ag111111
∂4u0

∂x4
− Ac1111

(
∂2u0

∂x2

)
− be311

∂

∂x

(∫ h
2

−h
2

∂ϕ

∂z
dz

)
− bq311

∂

∂x

(∫ h
2

−h
2

∂ψ

∂z
dz

)
= 0,

bf3113
∂2

∂x2

(∫ h
2

−h
2

∂ϕ

∂z
dz

)
= 0,

a11
∂2ϕ

∂x2
+ d11

∂2ψ

∂x2
+ a33

∂2ϕ

∂z2
+ d33

∂2ψ

∂z2
= 0,

μ11
∂2ψ

∂x2
+ d11

∂2ϕ

∂x2
+ μ33

∂2ψ

∂z2
+ d33

∂2ϕ

∂z2
= 0. (51)

Now, if the above equations in different boundary conditions (simply supported and clamped) are satisfied, the
bifurcation-type buckling exists because, under such conditions, the beam remains flat prior to buckling. To do this,
first, by solving the third and fourth relations of eq. (51), the electric potential and magnetic potential function are
obtained as

ϕ(x, z) =
∞∑

n=1

((
Cn sinh

(nπ

L
z
)

+ Dn cosh
(nπ

L
z
))

sin
(nπ

L
x
))

,

ψ(x, z) =
∞∑

n=1

((
En sinh

(nπ

L
z
)

+ Fn cosh
(nπ

L
z
))

sin
(nπ

L
x
))

, (52)

where Cn, Dn, En, Fn are constant coefficients. Given the necessity of satisfying eq. (36), on the assumption of
(wp(x) = 0), it is clear that the electric potential field above and below the nanobeam must be set to zero (open circuit
condition). In other words, Cn, Dn, En, Fn are zero, and the second to fourth relations in eq. (52) are established.
Now, by solving first relation in eq. (51), the nanobeam axial displacement equation is determined as follows:

Ag111111

(
∂4u0

∂x4

)
− Ac1111

(
∂2u0

∂x2

)
= 0,

u0(x) = C1 + C2x + C3e
λx + C4e

−λx,

λ =
√

c1111

g111111
, (53)

where C4, C3, C2, C1 are constant coefficients. By applying the boundary conditions of the nanobeam as (u0(x)|x=0 =
u0(x)|x=L = (∂2u0(x)

∂x2 )|x=0,L = 0) and by calculating the constant coefficients, the axial displacement of the nanobeam
is determined. It should be noted that, although the beam has an axial displacement but the transvers displacement
of beam is zero and the beam remains flat prior to buckling.
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By determining axial displacement as well as electric and magnetic fields of the nanobeam, and by assuming that
nanobeam deflection prior to buckling is zero (on the assumption of uniform temperature rise for the simply supported
nanobeam and uniform and linear rise for the clamped nanobeam), all governing equations and boundary conditions
are satisfied in eq. (51).

Therefore, the assumed nanobeam remains flat under transverse thermal load and continues bifurcating buckling.

Buckling analysis

Many methods can be used to determine the elastic critical load of the beams. It should be noted that the main method
is based on the stability equations and solve the eigenvalue problem accordingly. But, here we used two methods: 1)
analytical method and 2) stability equations.

In the first method, the governing equations are solved and the deflection of beam is obtained. Therefore, by
increasing incrementally the applied temperature, and by detecting the large and sudden change of the deflection of
beam, critical buckling temperature can be obtained.

In the second method, the stability equations obtained and then the eigenvalue problem solve according to the
boundary conditions.

It should be noted that, to show the accuracy of the analytical method, the results of the analytical method and
stability equations are compared and can be seen there is good consistency between the results of the two methods.

It should be noted that, in the analytical method, the formulation of the nanobeam has been developed for
anisotropic materials and therefore the anisotropic beam can be investigated through this formulation. Note that
this formulation can be used for isotropic beams as well. Also, on the basis of the nonlinear model, which leads to
more realistic modeling of nanostructures, one can model more precisely many elements used in nanostructures, like
nanobeames.

Analytical method

Analysis of nanobeam made of isotropic materials

In order to analyse the buckling of nanotubes made of isotropic materials, as the first step, all piezoelectric and
piezomagnetic coefficients (e311 and q311) are set equal to zero. Afterwards, given the difficulty of simultaneous solution
of all the four differential couple equations, the semi-analytic Galerkin method is used. Hence, by solving eqs. (37)
and (38) as two-dimensional Laplace equations, and by considering boundary conditions (44) and (46) (φ|x=o,L =
0, ψ|x=0,L = 0) the electric and magnetic fields are determined as follows:

φ(x, z) = Ak sin
(π

L
x
)

sinh
(π

L
z
)

,

ψ(x, z) = Bk sin
(π

L
x
)

sinh
(π

L
z
)

. (54)

Coefficients Ak and Bk are determined using open circuit boundary conditions,

Ak =
(

1
X1

)((
d33

μ33

)
(λ3ΔTL) − 2f3113

(aπ

L

)
− p3ΔTL

)
,

Bk =
(

1
μ33

) (
−d33Ak +

λ3ΔTL

2 cosh
(

πh
2L

)
)

. (55)

Given the assumption of hinged conditions, the nanobeam deflection function is as follows:

w(x) =
∞∑

n=1

a sin
(nπ

L
x
)

. (56)

The nanobeam deflection function should satisfy the hinged boundary conditions as

w |x=0,L = 0,

(
−Ig111111

∂4w

∂x4
+ Ic1111

∂2w

∂x2
− bf3113

(∫ h
2

−h
2

∂φ

∂z
dz

)
+ Ag113113

∂2w

∂x2

)∣∣∣∣∣
x=0,L

= 0,

(
∂2w

∂x2

)∣∣∣∣
x=0,L

= 0,
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where a is the nanobeam deflection amplitude and the assumption n = 1 has been made. By considering the nanobeam
deflection function in the format of the forgoing equation, nanobeam axial displacement u0(x) is determined through
eq. (35), and constant coefficients are computed using boundary conditions as (u0(x)|x=0,L = 0, (∂2u0(x)

∂x2 )|x=0,L = 0)

u(x) = C1e
λ1x + C2e

−λ1x + C3x + λ2 sin
(

2π

L
x

)
+ C4,

λ1 =
√

c1111

g111111
, λ2 = −λ2

1

⎛
⎝ a2πL

8
(
L2 + 4( π

λ1
)2

)
⎞
⎠ . (57)

Now, by substituting eqs. (54), (56) and (57) in eq. (36), which is known as the beam deflection equation, this equation
becomes based upon parameter (a) or nanobeam deflection amplitude (see eq. (58)). In this equation, the critical
beam temperature which is assumed to be uniform along beam thickness, is unknown. By computing beam deflection
amplitude through the equation below, the critical buckling temperature, which leads to nanobeam instability, can be
determined:

Y0a
3 + Y1a + Y2 = 0,

Y0 =
(

Ac11111

2

)2 (π

L

)3
(((

−X2

4AX3

)(
1 +

X2L

2π

)
−

(
1

X4

)2 (
π

4AX3L

)(
1 −

(
X2L

2π

)2
))(

2(cosh(X4L) − 1)2

sinh(X4L)

)

+
(

2
Ac1111

) (π

L

)(
π

4
+

L

8

))
,

Y1 =
(

L

2

)(π

L

)4
(
−

2f2
3113 sinh

(
πh
2L

)
(

π
L

)
X1

+ Ig111111

(π

L

)2

+ Ic1111 + Ag113113

)
,

+ (Ac11111)
(π

L

) (
NT

x

) ((
X2

4AX3

)
+

(
1

X4

)2 (π

L

) (
1

4AX3

)(
1 − X2L

2π

)) (
2 (1 − cosh(X4L))2

sinh(X4L)

)
,

Y2 = f3113

(π

L

)2
(

L

2

)
sinh

(
πh

2L

) ⎛
⎝

(
d33
μ33

)
(λ3ΔTL) − (p3ΔTL)

2X1

⎞
⎠ ,

X1 = 2 cosh
(

πh

2L

) (
−a33 +

d33
2

μ33

)
, X2 =

(
L
2π

)
1 +

(
1

X4

)2 (
L
2π

)2
, X3 = (c1111g111111)

1
2 ,

X4 =
(

c1111

g111111

) 1
2

. (58)

In order to investigate clamped nanobeams, the nanobeam deflection function is formulated as in the following format:

w(x) =
∞∑

n=1

a sin2
(nπ

L
x
)

(59)

and clamped boundary condition is as

w |x=0,L = 0,

(
∂w

∂x

) ∣∣∣∣
x=0,L

= 0,

(
∂3w

∂x3

)∣∣∣∣
x=0,L.

= 0.

So the previous procedure should be repeated on eq. (36), and the critical buckling temperature can be obtained in
similar way. Note that in this boundary condition temperature distribution is considered uniform and linear.

Analysis of nanobeam made of anisotropic materials

In order to analysis the buckling of anisotropic nanobeam, the Galerkin method is utilized and the nanobeam deflection
function is assumed according to eq. (56). Also by solving eqs. (37) and (38) and considering boundary conditions
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as (φ|x=o,L = 0, ψ|x=0,L = 0), the electric potential field and magnetic potential field on the assumption of uniform
temperature are obtained as follows:

φ(x, z) = AkX ′
2 sin

(π

L
x
)(

1 − sin
(
X ′

1

π

L
z
))

,

ψ(x, z) = BkX22 sin
(π

L
x
)(

1 − sin
(
X11

π

L
z
))

,

X ′
1 =

(
a11 − d11

a33 − d33

)
, X ′

2 = a

(
q311 − e311

a11 − d11

)
, X11 =

(
d11 − μ11

d33 − μ33

)
, X22 = a

(
q311 − e311

d11 − μ11

)
. (60)

Coefficients Ak and Bk are determined using open circuit boundary conditions:

Ak =

⎛
⎝

(
1
8

) (
(πa)2 + 4πah

)
(d3q311 − e311μ3) + 4L2ΔT (d3λ3 − p3μ3) − 8πaf3113μ33

LX ′
1X

′
2 cos

(
πhX′

1
2L

)
(a3μ3 − d2

3)

⎞
⎠ ,

Bk =

⎛
⎝

(
−1

8

) Akd33

(
LX ′

1X
′
2 cos

(
πhX′

1
2L

))
+

(
(πa)2 + 4πah

)
q311 + 4L2ΔTλ3

LX11X22μ33 cos
(

πhX11
2L

)
⎞
⎠ . (61)

Thus, by considering eqs. (56) and (60), the axial nanobeam displacement u0(x) can be computed using eq. (35) and
boundary conditions as (u0(x)|x=0,L = 0, (∂2u0(x)

∂x2 )|x=0,L = 0). Also, by substituting beam deflection function, axial
nanobeam displacement, and electric and magnetic potential functions into eq. (36), this equation is developed as an
equation based upon parameter (a) and critical buckling temperature can be obtained as before. It should be noted
that uniform temperature distribution is considered here.

Stability equations

To obtain the stability equations, the adjacent equilibrium criterion is utilized. The small increments to the displace-
ment variables have been given in order to investigate the possible existence of adjacent equilibrium configurations.
Afterwards, the two adjacent configurations indicated by displacements before and after increment are investigated [10,
40]. Thus

u0 = U0 + U1,

w = W0 + W1, (62)

where U0 and W0 are displacement components of the equilibrium state and U1 and W1 are arbitrary small increment.
Similar to eq. (62), the electric potential and magnetic potential are found to be the sum of those related to the

equilibrium and neighboring states as

ϕ = ϕ0 + ϕ1,

ψ = ψ0 + ψ1. (63)

By substituting eqs. (62) and (63) into eqs. (35)–(38), the stability equations are obtained. It should be noted that
the terms U0, W0, φ0, ψ0 satisfy the equilibrium conditions and drop out and the nonlinear terms with subscript 1 are
small in comparison to the linear terms, therefore this terms are ignored. The stability equations are obtained as

Ag111111
∂4U1

∂x4
− Ac1111

(
∂2U1

∂x2

)
= 0, (64)

− Ig111111
∂6W1

∂x6
+ Ic1111

∂4W1

∂x4
+ Ag113113

∂4W1

∂x4
− N ′

x

∂2W1

∂x2
= 0, (65)

a11
∂2ϕ1

∂x2
+ d11

∂2ψ1

∂x2
+ a33

∂2ϕ1

∂z2
+ d33

∂2ψ1

∂z2
+ e311

∂2W1

∂x2
= 0, (66)

μ11
∂2ψ1

∂x2
+ d11

∂2ϕ1

∂x2
+ μ33

∂2ψ1

∂z2
+ d33

∂2ϕ1

∂z2
+ q311

∂2W1

∂x2
= 0, (67)

N ′
x is expressed as follows:

N ′
x = be311V0 + bq311Ω0 + NT

x . (68)
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Table 1. Properties of BiTiO3-CoFe2O4 materials.

Properties BiTiO3-CoFe2O4

Elastic (Gpa) c11 = 226, c12 = 125, c13 = 124,

c33 = 216, c44 = 44.2

Piezoelectric (C/m) e31 = −2.2, e33 = 9.3, e15 = 5.8

Dielectric (10−9 C/Vm) a11 = 5.64, a33 = 6.35

Piezomagnetic (N/Am) q15 = 275, q13 = 290.1, q33 = 349.9

Magneto-electric (10−12 Ns/VC) d11 = 5.367, d33 = 2737.5

Magnetic (10−6 Ns2/C2) μ11 = −297, μ31 = 83.5

Thermal moduli (105 N/Km2) β1 = 4.74, β3 = 4.53

Pyroelectric (10−6 C/N) p3 = 25

Pyromagnetic (10−6 N/AmK) λ3 = 5.19

Mass density (103 kg/m3) ρ = 5.55

In order to analysis the effect of external electrical voltage and magnetic potential on critical buckling temperature, the
electrical potential difference V0 and magnetic potential Ω0 is applied to the upper and lower levels of the anisotropic
nanobeam.

For clamped nanobeams subjected to constant voltage, the boundary condition is as follows:

W1 |x=0,L = 0,

(
∂W1

∂x

)
|x=0,L = 0,

(
∂3W1

∂x3

)∣∣∣∣
x=0,L.

= 0. (69)

By considering eq. (65), the nanobeam deflection W1(x) can be computed. To determine the critical buckling tem-
peratures of clamped nanobeams in eq. (65), by applying boundary condition and constant voltage and solving the
eigenvalue problem, the amount of critical buckling temperatures is determined [41].

Also, for hingeded nanobeams subjected to constant magnetic potential, the boundary condition is as follows:

W1 |x=0,L = 0,

(
−Ig111111

∂4W1

∂x4
+ Ic1111

∂2W1

∂x2
+ Ag113113

∂2W1

∂x2

)∣∣∣∣
x=0,L

= 0,

(
∂2W1

∂x2

)∣∣∣∣
x=0,L

= 0. (70)

As in the previous section, by applying boundary condition and constant magnetic potential and solving the eigenvalue
problem, the amount of critical buckling temperatures of hinged anisotropic nanobeam is determined.

Results and discussion

This section addresses the thermal buckling of piezoelectric and piezomagnetic nanobeams. First, in order to investigate
the accuracy of the developed equations, the results of the present paper are compared with those of other studies.
Afterwards, the effect of different parameters on critical buckling temperature is demonstrated.

Table 1 presents the material properties of the BiTiO3-CoFe2O4 in the nanobeams [36].
The higher-order elastic material properties must be determined through laboratory methods or molecular dynamics

simulation. At present, there is scant research available on this subject. For elastic crystal centrosymmetric dielectric
isotropy materials, higher-order constants are computed using g111111 = c1111l

2, g113113 = c1313l
2 relationships [42–

46], where l is the size scale parameter. Piezoelectric materials are commonly central asymmetric materials. For 4mm
symmetry piezoelectric materials, higher-order constant coefficient are approximately considered according to the
forgoing equations, and, the higher-order electro-mechanical coupling coefficient is considered f = 5pCm−1 according
to laboratory results, [44–46]. Nanobeam length and thickness are assumed to be L = (100 nm) and h = (5 nm).
In addition, the temperature difference of the nanobeam ends from the reference temperature T0 is assumed to be
Tl − T0 = 5K [47].

Validation of results

In order to validate the results, considering that the thermal buckling of the elastic electromagnetic nanobeam is
being investigated for the first time using the modified couple stress theory, the results obtained through the classical
continuum theory are compared with those of refs. [47,48], as shown in tables 2 and 3. As is visible, the results obtained
have good consistency with those of refs. [47,48].
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Table 2. Comparing critical buckling temperatures of hinged and clamped nanobeams with uniform temperature variation for
different L/h values.

(L/h)
Clamped

Present
Simply support

Present
ref. [48] ref. [48]

10 1426.67 1430.38 354.16 357.5

20 354.2 357.59 90.09 89.4

30 166.7 165.35 42.14 41.33

40 90.22 89.4 22.55 22.34

Table 3. Comparing critical buckling temperatures of clamped nanobeam with uniform temperature rise (L = 0.25 m, h =
0.01 m).

Ref. [47] Present

228.860 228.8604

711.323 711.3228

Table 4. Comparing nondimensional critical buckling temperatures ( Tcr
I/αAL2 ) of hinged isotropic nanobeam with uniform

temperature rise (L/h = 5).

Ref. [49]
Present, l = 0 l = 0.01 l = 0.25 l = 0.5 l = 0.75 l = 1 l = 1.5 l = 2 l = 2.5 l = 3

l = 0

35.54 35.53 35.64 36.96 37.97 40.59 44.57 52.14 57.09 61.71 70.95

Fig. 2. Critical buckling temperatures of hinged isotropic and anisotropic nanobeams with uniform temperature rise for different
values of thickness.

Another comparison study is carried out in table 4. As is clear, the results obtained based on the classical continuum
theory (l = 0) have appropriate precision; besides, the results obtained through the modified couple stress theory
(l > 0) are higher than those gained through the classical continuum theory which is in accordance with the literature.
Consequently, tables 2–4 show the accuracy of the current study and interestingly, this model is able to accurately
predict the buckling response of nanobeam.
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Fig. 3. Critical buckling temperature of hinged isotropic and anisotropic nanobeams with uniform temperature rise for different
values of length.

Effect of thickness on critical buckling temperature

Figure 2 presents the critical buckling temperature variation of the hinged isotropic and anisotropic nanobeams
for different values of thickness (h). Uniform temperature rise has been taken into account, the nanobeam length
parameter is considered constant, and the assumption l = 3nm has been made. As can be seen, the two diagrams
follow a similar trend, i.e. an increase in thickness leads to an increase in the critical buckling temperature in isotropic
and anisotropic nanobeam. As thickness increases, the nanobeam becomes thicker and, hence, stiffer, and the critical
buckling temperature is increased.

In fact, a decrease in the nanobeam thickness increases the length-to-thickness ratio and causes the thinner
nanobeam, which is more susceptible, to be unstable at lower temperatures.

In order to have deep insight on the influence of thickness parameter on critical buckling temperature, table 5 is
presented for isotropic and anisotropic nanobeams for different thickness values. Accordingly, the difference between
the critical buckling temperatures of isotropic and anisotropic nanobeams is infinitesimal.

Effect of length on critical buckling temperature

Table 5. Critical buckling temperature of hinged nanobeam with uniform temperature rise for different values of thickness
(L = 100 nm, l = 3 nm).

h (nm) 1 2 3 4 5 6 7 8 9 10

Critical buckling temperature (K) Isotropic 139.7 159.14 190.76 235.66 292.7 363.1 446.22 541.88 649.51 771.54

Critical buckling temperature (K) Anisotropic 141.28 160.42 192.34 237.02 294.47 364.7 447.65 543.41 651.93 773.11

Figure 3 illustrates the effect of length parameter on critical buckling temperature of isotropic and anisotropic
nanobeams with hinged boundary conditions. Uniform temperature rise is considered, nanobeam thickness is assumed
to be constant, and the assumption l = 3nm is made. As illustrated, the diagrams follow a similar trend, i.e. an
increase in the length parameter leads to a decrease in the nanobeam stiffness and, consequently, decreases the critical
buckling temperature of isotropic and anisotropic nanobeams; this effect is stronger on the anisotropic beam, though.

In order to carry out an accurate investigation, the critical buckling temperatures of the isotropic and anisotropic
nanobeams for different values of the length parameter are presented in table 6.

As the nanobeam length parameter increases, the difference between the critical buckling temperature of isotropic
and anisotropic nanobeams decreases, such that in lengths over 100 nm, no difference can be detected between two
diagrams.
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Table 6. Critical buckling temperature of hinged isotropic and anisotropic nanobeam with uniform temperature rise for different
values of length (h = 5 nm, l = 3 nm).

L (nm) 10 20 30 40 50 60 70 80 90 100

Critical buckling temperature (K) Isotropic 701.1 287.2 199.6 172.18 159.24 151.2 146.69 143.64 141.16 140.15

Critical buckling temperature (K) Anisotropic 780.6 298.7 208.11 178.41 164.04 154.56 148.86 145.3 142.7 141.06

Fig. 4. Critical buckling temperature of hinged isotropic and anisotropic nanobeams with uniform temperature rise for different
h/l values.

Table 7. Critical buckling temperature of hinged nanobeam with uniform temperature rise for different h/l values (L = 100 nm,
h = 5nm).

h/l 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Critical buckling temperature (K) Isotropic 1556.1 824.82 532.21 397.49 324.24 280.05 251.48 218.13 199.51

Critical buckling temperature (K) Anisotropic 1557.7 825.81 534.36 399.39 326.7 281.92 253.27 219.59 201.33

Effect of dimensionless length scale parameter on critical buckling temperature

Figure 4 illustrates the effect of length scale parameter on the critical buckling temperature of isotropic and anisotropic
piezoelectric and piezomagnetic nanobeams. Uniform temperature rise is considered, and nanobeam length and thick-
ness are assumed to be constant (L = 100, h = 5). According to the illustration, the increase in the dimensionless
length scale parameter (h/l), which is equivalent to a decrease in length scale parameter, leads to a decrease in the
critical buckling temperature of isotropic and anisotropic nanotubes. In fact, as the length scale parameter decreases,
nanobeam rigidity decreases, and consequently the critical buckling temperature decreases.

As illustrated, as the dimensionless length scale parameter increases, the results obtained from the modified couple
stress theory approach to those obtained from the classical continuum theory, which shows the ability of the classical
continuum theory to predict the buckling response of large-scale structures.

Table 7 presents the effect of the dimensionless length scale parameter on the critical buckling temperature of
isotropic and anisotropic piezoelectric and piezomagnetic nanobeams obviously. According to the results, as the length
scale parameter decreases, the critical buckling temperature of isotropic and anisotropic nanobeams decreases, too.
Given the fact that the thermal expansion coefficient is considered identical for the isotropic and anisotropic elec-
tromagnetic nanobeams, it exerts no effect on the difference between the critical buckling temperatures of the two
nanobeams, and there is no considerable difference in critical buckling temperature.
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Fig. 5. Critical buckling temperature of hinged and clamped isotropic nanobeams with uniform temperature rise for different
(h/L) values.

Fig. 6. Critical buckling temperature of clamped isotropic nanobeams with uniform, linear temperature rise for different h/L
values.

Effect of boundary conditions on critical buckling temperature

Figure 5 presents the effect of boundary conditions on the critical buckling temperature of isotropic piezoelectric and
piezomagnetic nanobeams for different nanobeam thickness-to-length ratios (h/L) and l = 3nm.

The diagram has been drawn for hinged and clamped boundary conditions, and temperature variation is assumed
to be uniformed. As illustrated, due to the higher stiffness of clamped nanobeams as compared with hinged ones, the
critical buckling temperature attains larger values in the clamped boundary condition in all thickness-to-length ratios.
Besides, an increase in the thickness-to-length parameter leads to an increase in the effect of boundary conditions on
the critical buckling temperature.

Effect of types of temperature rise on critical buckling temperature

Figure 6 presents critical buckling temperature variation of the isotropic clamped electromagnetic nanobeam with
uniform and linear temperature variation for different nanobeam thickness-to-length rations (h/L) and l = 2nm.

As illustrated, the two diagrams follow a similar trend, in which, on the assumption of constancy of the length
parameter, increase in thickness is accompanied by increase in critical buckling temperature. On the assumption of
uniform temperature rise, temperature variation at all nanobeam points is identical, whereas temperature varies along
nanobeam thickness in linear rise. Therefore, as thickness increases, increase in critical buckling temperature in linear
temperature rise is higher than that in uniform temperature rise.
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Fig. 7. Critical buckling temperature of clamped anisotropic nanobeam with uniform temperature rise for different value of
electrical voltage.

Fig. 8. Critical buckling temperature of hinged anisotropic nanobeam with uniform temperature rise for different values of
magnetic potential.

Effect of external electric voltage and magnetic potential on critical buckling temperature

Figure 7 presents the critical buckling temperature variation of the clamped anisotropic nanobeams for different
values of external electric voltage. The assumption l = 2nm has been made. Uniform temperature rise is considered
and nanobeam length is assumed to be constant. According to fig. 7, as the nanobeam thickness parameter increases,
the difference between the critical buckling temperature of nanobeams decreases for different external electric voltage.
Additionally, fig. 8 represents the critical buckling temperature variation of the hinged anisotropic nanobeams for
different values of magnetic potential. According to fig. 8, the trend of critical buckling temperature changes with
respected to thickness parameter is the same as fig. 7; such that as the thickness parameter decreases, the deference
between critical buckling temperatures of nanobeam increase extremely for different values of magnetic potential. As
illustrated, the positive electric voltage and positive magnetic potential decreases the critical buckling temperature.
The reason is that compressive in plane force is generated in the nanobeams by imposing positive voltage and positive
magnetic potential.
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Table 8. Critical buckling temperature of clamped anisotropic nanobeam with uniform temperature rise for different values of
electrical voltage.

h (nm) h = 1 h = 1.5 h = 2 h = 2.5 h = 3 h = 3.5 h = 4 h = 4.5 h = 5

Stability equations
261.16 308.59 374.86 458.75 560.47 679.76 817.56 973.45 1146.97

(V = 0)

Analytical method
261.07 308.37 374.40 458.67 560.28 679.59 817.50 973.07 1146.56

(V = 0)

Stability equations
223.62 283.64 356.19 443.83 548.63 669.06 808.37 965.05 1139.28

(V = 0.5)

Analytical method
223.24 283.41 356.03 443.71 548.19 668.89 808.16 964.87 1138.96

(V = 0.5)

Table 9. Critical buckling temperature of hinged anisotropic nanobeam with uniform temperature rise for different values of
magnetic potential.

h (nm) h = 1 h = 1.5 h = 2 h = 2.5 h = 3 h = 3.5 h = 4 h = 4.5 h = 5

Stability equations
65.74 73.68 84.79 99.09 116.55 137.19 161.02 188.26 218.52

(Ω = 0)

Analytical method
65.69 73.52 84.58 98.98 116.51 137.11 160.82 188.13 218.18

(Ω = 0)

Stability equations
55.28 68.43 81.81 97.09 115.17 136.39 160.24 187.39 217.68

(Ω = 0.25)

Analytical method
55.19 68.14 81.68 96.89 114.89 136.18 160.18 187.24 217.39

(Ω = 0.25)

The critical buckling temperatures of the clamped and hinged anisotropic nanobeams for different values of the
thickness parameter and different values of external electric voltage and magnetic potential are presented in tables 8
and 9, respectively. According to the results, the difference between the critical buckling temperatures of anisotropic
clamped and hinged nanobeams for different solution method is infinitesimal.

Conclusion

In this paper, the thermal buckling of electromagnetic nanobeam was investigated on the basis of modified couple stress
theory, which is capable to consider higher-order electro-mechanical coupling effect. The formulation was developed
based on the Euler-Bernoulli beam model. The principle of minimum potential energy was utilized to develop the
governing equations and boundary conditions. The thermal buckling of the nanobeam was investigated under two types
of temperature rise and on the assumption of hinged and clamped boundary conditions. Besides, the equation was
investigated in a semi-analytic fashion using the Galerkin method. The buckling behavior of isotropic and anisotropic
nanobeams were studied as well. Finally, the following results were obtained:

1) By increase in thickness parameter which increases the nanobeam stiffness, the critical buckling temperature
increase; while the influence of length parameter is in the opposite way; as such increase in length parameter leads
to decrease in nanobeam stiffness.

2) The critical buckling temperature of the isotropic nanobeam is obtained lower than that of the anisotropic ones.

3) The increase in length scale parameter increases the nanobeam stiffness; also it is accompanied by increase in
critical buckling temperature.

4) The boundary conditions have significant effect on the critical buckling temperature; as such, because clamped
boundary conditions with respect to simply supported boundary conditions increases the stiffness of nanobeams,
the critical buckling temperature increases, too.

5) The critical buckling temperature of the clamped nanobeam with uniform temperature rise is lower than that with
linear temperature variation.

6) Due to generating compressive in plane force in the nanobeams, the imposing positive voltage and positive magnetic
potential, reduce the critical buckling temperature.
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