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Abstract. In this work we extend the standard model for a cubic isothermal auto-catalytic chemical system
(CIACS) to a new model of a fractional cubic isothermal auto-catalytic chemical system (FCIACS) based on
Caputo (C), Caputo-Fabrizio (CF) and Atangana-Baleanu in the Liouville-Caputo sense (ABC) fractional
time derivatives, respectively. We present approximate solutions for these extended models using the q-
homotopy analysis transform method (q-HATM). We solve the FCIACS with the C derivative and compare
our results with those obtained using the CF and ABC derivatives. The ranges of convergence of the
solutions are found and the optimal values of h, the auxiliary parameter, are derived. Finally, these solutions
are compared with numerical solutions of the various models obtained using finite differences and excellent
agreement is found.

1 Introduction

Two chemicals, which we label A and B, reacting through a mechanism known as cubic auto-catalysis are governed
by the chemical reaction equation [1, 2]

A + 2B → 3B, rate r1[A][B]2. (1)

The product B then produces the product C through the linear decay

B → C, rate r2[B]. (2)

Here ri, i = 1, 2, are the reaction rate constants and A and B are the concentrations of the two chemicals, measured
in moles. C is an inert product of the reaction. The chemical B is known as the auto-catalyst since it catalyses its own
production. The greater the concentration of B, the faster it is produced by the reaction (1). If these two chemicals A
and B then react in a long thin tube, so that their concentrations only vary in the ς direction along the tube, the main
physical processes that act, in the absence of any underlying fluid flow, are chemical reaction and one dimensional
diffusion. Under these assumptions the equation governing the chemical reaction (1) is the reaction-diffusion system

Dτu = d1
∂2u

∂ς2
− r1uv2 (3)

and

Dτv = d2
∂2v

∂ς2
+ r1uv2 − r2v. (4)
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Here, d1 and d2 are the diffusivity constants diffusivity of the chemicals. This system can be set in the non-dimensional
form

Dτu =
∂2u

∂ς2
− uv2 (5)

and

Dτv =
∂2v

∂ς2
+ uv2 − kv. (6)

Here τ is the dimensional time and the dimensionless constant k gives the strength of the auto-catalyst decay. If we
now replace the time derivatives by fractional time derivatives, the system (5)-(6) becomes

Dβ
τ u =

∂2u

∂ς2
− uv2 (7)

and

Dβ
τ v =

∂2v

∂ς2
− kv + uv2, 0 < β ≤ 1. (8)

The boundary conditions for the model system are

u(0, t) = u(L, t) = 1, v(0, t) = v(L, t) = 0. (9)

We solved this system without decay, i.e. k = 0, using the q-homotopy analysis method, the homotopy analysis
transform method, the variational iteration method and the Adomian decomposition method in Caputo fractional
derivatives [3].

Caputo and Fabrizio presented a new fractional differential operator that has the advantage of a kernel which is
non-singular. This new operator has attracted the attention of many researchers, with this operator being applied to
many model equations [4–10]. However, this operator has a major disadvantage: it is non-local since the associated
integral is not a fractional operator. To overcome this disadvantage, Atangana and Baleanu introduced a new fractional
operator in the Caputo and Riemann-Liouville sense [11], based on the Mittag-Leffler function. This operator has also
attracted attention and has been applied to study a number of physical problems. Results for the derivatives of all
the operators and their properties that used in this work have been proved previously [11–15]. Also, more recently,
definitions of fractional derivatives involving the kernels of the Mittag-Leffler function have been proposed. Xia [16]
structured nonlinear, local, fractional ODEs by means of a family of special functions via the Mittag-Leffler function
defined on Cantor sets. In [17–23] these new general fractional derivatives were addressed using kernels of extended
Mittag-Leffler–type functions.

The main goal of this paper is to obtain approximate solutions of the FCIACS system (7) and (8) by applying the C,
CF and ABC operators using q-HATM. The present paper is organized as follows. The second section is devoted to the
basic idea of the q-HATM and its application to (7)-(8) when β = 1. The third section is devoted to the computation
of q-HATM solutions using the C, CF and ABC operators. The fourth section is devoted to the discussion of the
numerical results. In the last section, conclusions are presented.

2 q-HATM solution when β = 1

In this section we apply the q-HATM to the FCIACS system (7) and (8) as in [24, 25]. We take the initial conditions
to satisfy the boundary conditions, namely

u(ς, 0) = 1 −
∞∑

n=1

a cos(0.5(L − 2ς)λn) sin(λL/2) (10)

and

v(ς, 0) =
∞∑

n=1

b cos(0.5(L − 2ς)λn) sin(λL/2), (11)

where λn = nπ/L. The q-HTAM is based on the continuous mapping [24–34]

u(ς, τ) → φ(ς, τ ; q), v(ς, τ) → ψ(ς, τ ; q),

such that, as the embedding parameter q increases from 0 to 1/n, φ(ς, τ ; q) and ψ(ς, τ ; q) vary from the initial iterate
to the exact solution.
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We now define the nonlinear operators

N (φ(ς, τ ; q)) = L (φ(ς, τ ; q)) − 1
s
u(ς, 0) +

1
s
L

(
−φςς(ς, τ ; q) + φ(ς, τ ; q)ψ2(ς, τ ; q)

)
,

M(ψ(ς, τ ; q)) = L (ψ(ς, τ ; q)) − 1
s
v(ς, 0) +

1
s
L

(
−ψςς(ς, τ ; q) + kψ(ς, τ ; q) − φ(ς, τ ; q)ψ2(ς, τ ; q)

)
.

Next, we develop a set of equations using the embedding parameter q

(1 − nq)L(φ(ς, τ ; q) − u0(ς, τ)) = qhH(ς, τ)N (φ(ς, τ ; q)),
(1 − nq)L(ψ(ς, τ ; q) − v0(ς, τ)) = qhH(ς, τ)M(ψ(ς, τ ; q)),

with the initial conditions φ(ς, 0; q) = u0(ς, 0) and ψ(ς, 0; q) = v0(ς, 0). Here, h �= 0 and H(ς, τ) �= 0 are the auxiliary
parameter and the auxiliary function, respectively. We expand φ(ς, τ ; q) and ψ(ς, τ ; q) in series form by employing the
Taylor theorem with respect to q to obtain

φ(ς, τ ; q) = u0(ς, τ) +
∞∑

m=1

um(ς, τ)qm (12)

and

ψ(ς, τ ; q) = v0(ς, τ) +
∞∑

m=1

vm(ς, τ)qm, (13)

where

um(ς, τ) =
1
m!

∂mφ(ς, τ ; q)
∂qm

∣∣∣∣
q=0

and

vm(ς, τ) =
1
m!

∂mψ(ς, τ ; q)
∂qm

∣∣∣∣
q=0

.

If we substitute q = 1/n into (12)-(13), the series becomes

u(ς, τ) = u0(ς, τ) +
∞∑

m=1

um(ς, τ)
(

1
n

)m

and

v(ς, τ) = v0(ς, τ) +
∞∑

m=1

vm(ς, τ)
(

1
n

)m

.

Now, we construct the m-th–order deformation equation [24,25] as follows:

L(um(ς, τ) −Xmu(m−1)(ς, τ)) = hH(ς, τ)R1((
u(m−1), 
v(m−1))),

L(vm(ς, τ) −Xmv(m−1)(ς, τ)) = hH(ς, τ)R2((
u(m−1), 
v(m−1))),

with the initial conditions um(ς, 0) = 0 and vm(ς, 0) = 0, m > 1. We have set

R1(
u(m−1), 
v(m−1)) = L
(
u(m−1)(ς, τ)

)
− 1

s
u(ς, 0)

(
1 − Xm

n

)

+
1
s
L

(
−u(m−1),ςς(ς, τ) + u(m−1)(ς, τ)v2

(m−1)(ς, τ)
)

and

R2(
u(m−1), 
v(m−1)) = L
(
v(m−1)(ς, τ)

)
− 1

s
v(ς, 0)

(
1 − Xm

n

)

+
1
s
L

(
−v(m−1),ςς(ς, τ) − v(m−1)(ς, τ)v2

(m−1)(ς, τ) + kv(m−1)(ς, τ)
)

,

with L denoting the Laplace transform. Taking the inverse Laplace transform gives

um = Xmu(m−1) + hL−1R1((
u(m−1), 
v(m−1))) (14)

and
vm = Xmv(m−1) + hL−1R2((
u(m−1), 
v(m−1))). (15)
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3 New q-HATM solution

In this section we apply the q-HATM to solve the FCIACS system (7) and (8) using the C, CF and ABC operators,
respectively.

3.1 q-HATM solution via the Caputo fractional time derivative

The FCIACS can be replaced by its equivalent FCIACS with the C fractional time derivative by replacing Dβ
τ u and

Dβ
τ v by C

0 Dβ
τ u and C

0 Dβ
τ v, respectively, where 0 < β ≤ 1. We then obtain the C fractional time derivative equations

C
0 Dβ

τ u(ς, τ) − uςς(ς, τ) + u(ς, τ)v2(ς, τ) = 0 (16)

and
C
0 Dβ

τ v(ς, τ) − vςς(ς, τ) − u(ς, τ)v2(ς, τ) + kv(ς, τ) = 0, (17)

where
C
0 Dβ

τ u =
1

Γ (n − β)

∫ τ

0

(τ − t)n−β−1Dnu(ς, t)dt

and
C
0 Dβ

τ v =
1

Γ (n − β)

∫ τ

0

(τ − t)n−β−1Dnv(ς, t)dt.

Taking the Laplace transform of (16)-(17), we obtain

sβL(u(ς, τ)) − sβ−1u(ς, 0) = L
(
uςς(ς, τ) − u(ς, τ)v2(ς, τ)

)
(18)

and
sβL(v(ς, τ)) − sβ−1v(ς, 0) = L

(
vςς(ς, τ) + u(ς, τ)v2(ς, τ) − kv(ς, τ)

)
. (19)

By the same procedure as in sect. 2 the m-th approximation solution is then given by

um = Xmu(m−1) + hL−1RC
1 ((
u(m−1), 
v(m−1))) (20)

and
vm = Xmv(m−1) + hL−1RC

2 ((
u(m−1), 
v(m−1))), (21)

where

RC
1

(

u(m−1), 
v(m−1)

)
= L

(
u(m−1)(ς, τ)

)
− 1

s
u(ς, 0)

(
1 − Xm

n

)

+
1
sβ

L
(
−u(m−1),ςς(ς, τ) + u(m−1)(ς, τ)v2

(m−1)(ς, τ)
)

and

RC
2

(

u(m−1), 
v(m−1)

)
= L(m−1)

(
v(m−1)(ς, τ)

)
− 1

s
v(ς, 0)

(
1 − Xm

n

)

+
1
sβ

L
(
−v(m−1),ςς(ς, τ) − v(m−1)(ς, τ)v2

(m−1)(ς, τ) + kv(m−1)(ς, τ)
)

.

3.2 q-HAM solution via the Caputo-Fabrizio fractional time derivative

The FCIACS system (7) and (8) can be replaced by its equivalent FCIACS with a CF fractional time derivative by
replacing Dβ

τ u and Dβ
τ v by CF

0 Dβ
τ u and CF

0 Dβ
τ v, respectively, where 0 < β ≤ 1. We then obtain the CF fractional time

derivative system [13,15]
CF
0 Dβ

τ u(ς, τ) − uςς(ς, τ) + u(ς, τ)v2(ς, τ) = 0 (22)

and
CF
0 Dβ

τ v(ς, τ) − vςς(ς, τ) − u(ς, τ)v2(ς, τ) + kv(ς, τ) = 0. (23)
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CF
0 Dβ

τ is known as the CF fractional time derivative of order β and is given by

CF
0 Dβ

τ u(ς, τ) =
M(β)
1 − β

∫ τ

0

exp
(
−β(τ − t)

1 − β

)
Du(ς, t)dt

and
CF
0 Dβ

τ v(ς, τ) =
M(β)
1 − β

∫ τ

0

exp
(
−β(τ − t)

1 − β

)
Dv(ς, t)dt,

where M(β) is a normalization function, such that M(0) = M(1) = 1.
Taking the Laplace transform of (22)-(23), we obtain

M(β)(sL(u(ς, τ)) − u(ς, 0))
(s + β(1 − s))

= L
(
uςς(ς, τ) − u(ς, τ)v2(ς, τ)

)
(24)

and
M(β)(sL(v(ς, τ)) − v(ς, 0))

(s + β(1 − s))
= L

(
vςς(ς, τ) + u(ς, τ)v2(ς, τ) − kv(ς, τ)

)
. (25)

By following the same procedure as in sect. 2, we hence obtain the iterates

um = Xmu(m−1) + hL−1RCF
1 ((
u(m−1), 
v(m−1))) (26)

and
vm = Xmv(m−1) + hL−1RCF

2 ((
u(m−1), 
v(m−1))). (27)

Here

RCF
1

(

u(m−1), 
v(m−1)

)
= L

(
u(m−1)(ς, τ)

)
− 1

s
u(ς, 0)

(
1 − Xm

n

)

+
β(1 − s) + s

sM(β)
L

(
−u(m−1),ςς(ς, τ) + u(m−1)(ς, τ)v2

(m−1)(ς, τ)
)

and

RCF
2

(

u(m−1), 
v(m−1)

)
= L(m−1)

(
v(m−1)(ς, τ)

)
− 1

s
v(ς, 0)

(
1 − Xm

n

)

+
β(1 − s) + s

sM(β)
L

(
−v(m−1),ςς(ς, τ) − v(m−1)(ς, τ)v2

(m−1)(ς, τ) + kv(ς, τ)
)

.

3.3 q-HAM solution via the Atangana-Baleanu fractional time derivative

The FCIACS system CF
0 Dβ

τ u can be replaced by its equivalent FCIACS system with ABC fractional time derivatives by
replacing Dβ

τ u and Dβ
τ v by ABC

0 Dβ
τ u and ABC

0 Dβ
τ v, respectively, where 0 < β ≤ 1. We then obtain the ABC fractional

time derivative system [35,36]
ABC
0 Dβ

τ u(ς, τ) − uςς(ς, τ) + u(ς, τ)v2(ς, τ) = 0 (28)

and
ABC
0 Dβ

τ v(ς, τ) − vςς(ς, τ) − u(ς, τ)v2(ς, τ) + kv(ς, τ) = 0. (29)

Here, ABC
0 Dβ

τ (·) is known as the ABC fractional time derivative of order β in the Liouville-Caputo sense, given by

ABC
0 Dβ

τ u(ς, τ) =
M(β)
1 − β

∫ τ

0

Eβ

(
−β(τ − t)

1 − β

)
Du(ς, t)dt

and
ABC
0 Dβ

τ v(ς, τ) =
M(β)
1 − β

∫ τ

0

Eβ

(
−β(τ − t)

1 − β

)
Dv(ς, t)dt,

where

Eβ(z) =
∞∑

k=0

zk

Γ (βk + 1)
(30)
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is the Mittag-Leffler function and M(β) is a normalization function. It has the same properties as in the Liouville-
Caputo and Caputo-Fabrizio cases. Taking the Laplace transform of (28)-(29), we obtain [35,36]

M(β)(L(u(ς, τ))sβ − u(ς, 0)sβ−1)
(1 − β)( β

1−β + sβ)
= L

(
uςς(ς, τ) − u(ς, τ)v2(ς, τ)

)
(31)

and
M(β)(L(v(ς, τ))sβ − v(ς, 0)sβ−1)

(1 − β)( β
1−β + sβ)

= L
(
vςς(ς, τ) + u(ς, τ)v2(ς, τ) − kv(ς, τ)

)
. (32)

By following the same procedure as in sect. 2, we have

um = Xmu(m−1) + hL−1RABC
1

(
(
u(m−1), 
v(m−1))

)
(33)

and
vm = Xmv(m−1) + hL−1RABC

2

(
(
u(m−1), 
v(m−1))

)
, (34)

where

RABC
1 (
u(m−1), 
v(m−1)) = L

(
u(m−1)(ς, τ)

)
− 1

s
u(ς, 0)

(
1 − Xm

n

)

+
s−β−1(βsβ+1 − sβ+1 − βs)

M(β)

× L
(
−u(m−1),ςς(ς, τ) + u(m−1)(ς, τ)v2

(m−1)(ς, τ)
)

(35)

and

RABC
2 (
u(m−1), 
v(m−1)) = L(m−1)

(
v(m−1)(ς, τ)

)
− 1

s
v(ς, 0)

(
1 − Xm

n

)

+
s−β−1(βsβ+1 − sβ+1 − βs)

M(β)

× L
(
−v(m−1),ςς(ς, τ) − v(m−1)(ς, τ)v2

(m−1)(ς, τ) + kvm−1(ς, τ)
)

. (36)

4 Numerical results

In this section we evaluate the first approximations based on the C, CF and ABC operators. We then explore the
intervals of convergence given by the h-curves and the averaged residual error for the C, CF and ABC, respectively.
Finally, we test the accuracy of the q-HATM for the C, CF and ABC operator equations by comparing the analytical
results with numerical results obtained using the NDSolve of Mathematica, which is based on the finite difference
method.

We take the initial approximation as

u0(ς, τ) = u0(ς, 0), v0(ς, τ) = v0(ς, 0). (37)

For m = 1, we hence obtain the first approximation as

u1(ς, τ) = hL−1

(
L (u0(ς, τ)) − 1

s
u(ς, 0)

(
1 − Xm

n

)
+ Ωi(s)L

(
−u0,ςς(ς, τ) + u0(ς, τ)v2

0(ς, τ)
))

(38)

and

v1(ς, τ) = hL−1

(
L (v0(ς, τ)) − 1

s
v(ς, 0)

(
1 − Xm

n

)
+ Ωi(s)L

(
−v0,ςς(ς, τ) + kv0(ς, τ) − u0(ς, τ)v2

0(ς, τ)
))

, (39)

for i = 1, 2, 3. Now if we take

Ω1(s) = 1/sβ , Ω2(s) =
(s + β(1 − s))

sM(β)
, Ω3(s) =

s−β−1(βsβ+1 − sβ+1 − βs)
M(β)

, (40)
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we can obtain the first approximation for the C, CF and ABC operator equations as

u1(ς, τ) = f(θ,Θ) + ω
(·)
i (τ, β)

(
aL−2(88.83 cos(Θ) − 9.87 cos(θ)) + f(θ,Θ)(g(θ))2

)
(41)

and
v1(ς, τ) = g(θ) + ω

(·)
i (τ, β)

(
bL−2(−88.83 cos(Θ) + 9.87 cos(θ)) + kg(θ) − f(θ,Θ)g2(θ)

)
, (42)

where

f(θ,Θ) = 1 − a cos(θ) + a cos(Θ), g(θ) = b cos(θ) − b cos(Θ),

θ = 1.57(1 − 2ςL−1), Θ = 4.71(1 − 2ςL−1)

and

ωC
1 (τ) =

hτβ

nΓ (β + 1)
,

ωCF
2 (τ) =

h

nM(β)
(1 − β + βτ),

ωABC
2 (τ) =

h

nM(β)

(
1 − β +

βτβ

Γ (β + 1)

)
.

By the same procedure we can evaluate further approximations. We therefore have q-HATM solutions for the C
fractional time derivative equations (16)-(17), the CF fractional time derivative equations (22)-(23) and the ABC
fractional time derivative equations (28)-(29) as

u(ς, τ) = u0(ς, τ) +
m∑

i=1

ui(ς, τ)
ni

(43)

and

v(ς, τ) = v0(ς, τ) +
m∑

i=1

vi(ς, τ)
ni

. (44)

To obtain the intervals of convergence of the q-HATM solutions, we plot the h-curves for 6 terms of the q-HATM
solutions for the C fractional time derivative equations (16)-(17), the CF fractional time derivative equations (22)-(23)
and the ABC fractional time derivative equations (28)-(29), respectively. In figs. 1–4 we plot uτ (ς, 0) and vτ (ς, 0)
against h. These figures represent the h-curves for the C, CF and ABC operator equations, respectively, at k = 0.01,
L = 100, ς = 3, a = 0.001 and b = 0.001 for different values of β and n. From these figures, we note that the straight
line that parallels the h-axis provides the region of convergence [30]. Also, the h curves at β = 1 for the three operators
coincide. We notice, however, that h-curve does not give the optimal value of the parameter h. So, we compute the
optimal values of the convergence control parameter from the minimum of the averaged residual errors [25,34,37–46]

Eu(h) =
1

(N + 1)(M + 1)

N∑

i=0

M∑

j=0

[
N

(
m∑

k=0

uk

(
10i

N
,
10j

M

))]2

(45)

and

Ev(h) =
1

(N + 1)(M + 1)

N∑

i=0

M∑

j=0

[
M

(
m∑

k=0

vk

(
10i

N
,
10j

M

))]2

, (46)

corresponding to the nonlinear algebraic equations

dEu(h)
dh

= 0 and
dEv(h)

dh
= 0. (47)

We show Eu(h) and Ev(h) in figs. 5–7 and in table 1 for the C, CF and ABC operator equations. Figures 5–7 and
table 1 show that Eu(h) and Ev(h) for the 6-term q-HATM solutions using the C, CF and ABC operators, respectively.
We have used the parameter values N = 10 and M = 10 with k = 0.01, L = 10, a = 0.001 and b = 0.001 in (45)-(46).
We split table 1 into two sections, one for the optimal values of hu and Eu(h) and other for hu and Eu(h). We used
the command Minimize of Mathematica and plotted the residual error against h to obtain the optimal values h.
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Fig. 1. Plotting the h-curves for 6 terms of q-HATM solutions with β = 0.5, n = 1, ς = 3, τ = 0, k = 0.01, L = 100, a = 0.001,
b = 0.001. Dash-dotted line (C), dotted line (CF), and solid line (ABC).
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Fig. 2. Plotting the h-curves for 6 terms of q-HATM solutions with β = 0.5, n = 5, ς = 3, τ = 0, k = 0.01, L = 100, a = 0.001,
b = 0.001. Dash-dotted line (C), dotted line (CF), and solid line (ABC).
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Fig. 3. Plotting the h-curves for 6 terms of q-HATM solutions with β = 1, n = 1, ς = 3, τ = 0, k = 0.01, L = 100, a = 0.001,
b = 0.001. Dash-dotted line (C), dotted line (CF), and solid line (ABC).
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Fig. 5. Plotting the average residual error for 6 terms of q-HATM solutions with β = 0.5, n = 5, ≤ ς ≤ 10, 0 ≤ τ ≤ 10,
k = 0.01, a = 0.001, b = 0.001 for the C operator.
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Fig. 6. Plotting the average residual error for 6 terms of q-HATM solutions with β = 0.5, n = 5, ≤ ς ≤ 10, 0 ≤ τ ≤ 10,
k = 0.01, a = 0.001, b = 0.001 for the CF operator.
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Fig. 7. Plotting the average residual error for 6 terms of q-HATM solutions with β = 0.5, n = 5, 0 ≤ ς ≤ 10, 0 ≤ τ ≤ 10,
k = 0.01, a = 0.001, b = 0.001 for the ABC operator.

Table 1. The average residual error for 6 terms of q-HATM solutions with β = 0.5, n = 5, 0 ≤ ς ≤ 10, 0 ≤ τ ≤ 10, k = 0.01,
a = 0.001, b = 0.001 using C, CF, and ABC operators, respectively.

Operators Optimal value of hu Minimum of Eu(h)

C −3.99021 8.65012 × 10−17

CF −3.01658 4.18446 × 10−10

ABC −3.2452 5.88902 × 10−10

Operators Optimal value of hv Minimum of Ev(h)

C −1.6323 2.1557 × 10−12

CF −3.55406 3.87353 × 10−10

ABC −3.17425 4.90194 × 10−10
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Table 2. The absolute error of 6 terms of q-HATM solution (43) using C, CF and ABC operators with numerical solution by
Mathematica at β = 0.95, k = 0.01, ς = 20, n = 5, a = 0.001, b = 0.001.

τ Error for C Error for CF Error for ABC

0 1.03529 × 10−8 1.39257 × 10−7 1.39257 × 10−7

10 1.79961 × 10−4 1.77823 × 10−4 1.80382 × 10−4

20 3.35654 × 10−4 3.29769 × 10−4 3.36600 × 10−4

30 4.68161 × 10−4 4.57944 × 10−4 4.69612 × 10−4

40 5.80085 × 10−4 5.65189 × 10−4 5.82026 × 10−4

50 6.73774 × 10−4 6.53966 × 10−4 6.76194 × 10−4

60 7.51785 × 10−4 7.26895 × 10−4 7.54673 × 10−4

70 8.16269 × 10−4 7.86171 × 10−4 8.19616 × 10−4

80 8.69044 × 10−4 8.33644 × 10−4 8.72842 × 10−4

90 9.11737 × 10−4 8.70963 × 10−4 9.15977 × 10−4

100 9.45882 × 10−4 8.99678 × 10−4 9.50555 × 10−4

Table 3. The absolute error of 6 terms of q-HATM solution (44) using C, CF and ABC operators with numerical solution by
Mathematica at β = 0.95, k = 0.01, ς = 20, n = 5, a = 0.001, b = 0.001.

τ Error for C Error for CF Error for ABC

0 1.03530 × 10−8 1.39257 × 10−7 1.3925691 × 10−7

10 1.79961 × 10−4 1.77823 × 10−4 1.80382 × 10−4

20 3.35654 × 10−4 3.29769 × 10−4 3.366 × 10−4

30 4.68161 × 10−4 4.57944 × 10−4 4.69612 × 10−4

40 5.80085 × 10−4 5.65189 × 10−4 5.82026 × 10−4

50 6.73774 × 10−4 6.53966 × 10−4 6.76194 × 10−4

60 7.51785 × 10−4 7.26895 × 10−4 7.54673 × 10−4

70 8.16269 × 10−4 7.86171 × 10−4 8.19616 × 10−4

80 8.69044 × 10−4 8.33644 × 10−4 8.72842 × 10−4

90 9.11737 × 10−4 8.70963 × 10−4 9.15977 × 10−4

100 9.45882 × 10−4 8.99678 × 10−4 9.50555 × 10−4

From figs. 5–7 and table 1 we observe that the average residual error is of order 10−10 − 10−17. This observation
shows that the q-HATM solutions for the C, CF and ABC operator equations converge rapidly.

We now compare the 6-term q-HATM solutions with numerical solutions of the C fractional time derivative equa-
tions (16)-(17), the CF fractional time derivative equations (22)-(23) and the ABC fractional time derivative equa-
tions (28)-(29), these numerical solutions obtained using Mathematica 9. These comparisons are shown in tables 2
and 3 and figs. 8 and 9. These tables and figures show the absolute error of the q-HATM solutions based on the
numerical solutions with β = 0.95 and 1.0, respectively, with n = 5, k = 0.01, L = 100, a = 0.001, b = 0.001.
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Fig. 8. Plotting the absolute error of 6 terms of q-HATM solutions (43) and (44), respectively, using C, CF and ABC operators
with numerical solution by Mathematica at β = 0.95, k = 0.01, ς = 20, n = 5, a = 0.001, b = 0.001. Dash-dotted line (C),
dotted line (CF), and solid line (ABC). (a) u(ς, τ) and (b) v(ς, τ).
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Fig. 9. Plotting the absolute error of 6 terms of q-HATM solutions (43) and (44), respectively, using C, CF and ABC operators
with numerical solution by Mathematica at β = 1, k = 0.01, ς = 20, n = 5, a = 0.001, b = 0.001. Dash-dotted line (C), dotted
line (CF), and solid line (ABC). (a) u(ς, τ) and (b) v(ς, τ).

We observe from these tables and figures that the q-HATM solutions for all the operators are in excellent agreement
with the results from Mathematica. In the case β = 1, the absolute errors are identical for all operators. This case
shows that all the operators approach the classical system and solution when β → 1.

5 Conclusions

In this paper the q-HATM was employed analytically to compute approximate solutions of the FCIACS system (7)
and (8) using C, CF and ABC operator time derivatives. Therefore, CF and ABC were used in this paper to present
alternative solutions of the FCIACS system. We compared these approximate solutions with numerical solutions and
excellent agreement was found. Also, the interval of the convergence of the q-HATM and the optimal values of h were
computed. The orders of the average residual error show that the approximations that have been calculated using the
q-HATM with C, CF, and ABC have high accuracy.

I would like to thank Prof. Atangana Abdon, University of the Free State, South Africa for stimulating discussions during the
preparation of this article and Prof. Noel Frederick Smyth, University of Edinburgh, United Kingdom for editing this article.
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