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Abstract. This paper retrieves soliton solutions to an equation in nonlinear electrical transmission lines
using the semi-inverse variational principle method (SIVPM), the exp(−Ω(ξ))-expansion method (EEM)
and the improved tan(φ/2)-expansion method (ITEM), with the aid of the symbolic computation pack-
age Maple. As a result, the SIVPM, EEM and ITEM methods are successfully employed and some new
exact solitary wave solutions are acquired in terms of kink-singular soliton solution, hyperbolic solution,
trigonometric solution, dark and bright soliton solutions. All solutions have been verified back into their
corresponding equations with the aid of the Maple package program. We depicted the physical explanation
of the extracted solutions with the choice of different parameters by plotting some 2D and 3D illustrations.
Finally, we show that the used methods are robust and more efficient than other methods. More impor-
tantly, the solutions found in this work can have significant applications in telecommunication systems
where solitons are used to codify data.

1 Introduction

This study focuses on the nonlinear transmission line [1] described by the modified Zakharov-Kuznetsov (MZK)
equation. Based on [1], one can acquire the discrete differential equation as follows:

∂2Qn,m

∂T 2
=

1
L

(Vn+1,m − Vn,m + Vn−1,m) + Cs
∂2

∂T 2
(Vn,m+1 − Vn,m + Vn,m−1) (1)

and the nonlinear charge, in terms of Vn,m = Vn,m(T ), is given as

Qn,m = C0

(
Vn,m +

β1

2
V 2

n,m +
β2

3
V 3

n,m

)
, (2)

where β1 and β2 are constants. Putting (2) into eq. (1), we achieve

C0
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∂T 2

(
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2
V 2

n,m +
β2

3
V 3
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)
=

1
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(Vn+1,m − Vn,m + Vn−1,m) + Cs
∂2

∂T 2
(Vn,m+1 − Vn,m + Vn,m−1) . (3)

Inserting Vn,m(T ) = V (n,m, T ) into eq. (3), the following equation can be obtained:

C0
∂2

∂T 2

(
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2
V 2 +
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3
V 3

)
=

1
L

∂2

∂n2

(
V +

1
12

∂2V

∂n2

)
+ Cs

∂2

∂T 2∂m2

(
V +

1
12

∂2V

∂m2

)
. (4)

Using the independent variable transformations

x = χ1/2(n − vsT ), y = χ1/2m, t = χ1/2T, V (n,m, T ) = χu(x, y, t), (5)
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Fig. 1. Profile of the nonlinear electrical transmission line.

where χ is the formal parameter, vs = 1/(LC0), and by utilizing the reductive perturbation method, afterwards eq. (4)
can be transformed into the modified MZK equation [2, 3] as follows:

ut + Auux + Bu2ux + Muxxx + Nuxyy = 0, (6)

where

A = −β1vs, B = −β2vs, M =
1

24β1Lvs
, N =

β1

288L2vsC2
0

. (7)

The system model studied here is given by fig. 1. The mathematical model used in this work plays a prominent role in
the theory of a nonlinear network and arises also in other physical applications such as the lines in the transverse di-
rection [2]. During the last several years, exact solutions of the modified ZK equation and its related equations became
important for scientists and engineers due to their application to the wave propagation problems and in the transverse
direction modeling in the field of electrical engineering. Several researchers worked out some new solutions for the
modified ZK equation using different analytical methods. We will review some of the literature about the modified ZK
equation and analytical methods. In this respect, Yu and Feng [4] introduced and investigated the Darboux transfor-
mation to determine one-soliton solution as well as other soliton solutions for the modified ZK equation. Moreover,
Zhen et al. [5] applied the Hirota bilinear method to find soliton solutions of the MZK equation. Recently, Sardar and
coworkers adopted the especial analytical methods to seek soliton solutions of the MZK equation and obtained different
kinds of solutions which are presented in [3]. This equation also appeared in many scientific applications such as discrete
networks, wave propagating systems, laser [6–9]. Due to the rapid expansion of some powerful symbolic computations
based mathematical packages such as Maple and Mathematica, the extraction process of exact solutions is now much
easier than in the past. In this context, researchers have gained a platform to produce new exact solutions of well-
known partial differential equations (PDEs) that arise in applied sciences with numerous robust methods such as the
Exp-function method [10–12], the trial solution approach [13], the generalized Kudryashov method [14], the extended
Jacobi elliptic function expansion method [15], the improved tan(φ/2)-expansion method [16–19], the G′/G-expansion
method [20,21], the generalized G′/G-expansion method [22], the Bernoulli sub-equation function method [23,24], the
Ricatti equation expansion [25,26], the rational function transformations [27], the multiple exp-function method [28,29],
the invariant subspace method [30], the formal linearization method [31], the Lie symmetry [32], the Hirota bilinear
method [33–36] , the Darboux transformation(DT) [37–39], the inverse scattering transformation (IST) [40, 41], and
so on. The main aim of this study is to introduce the modified ZK equation for converting the PDE into the or-
dinary differential equation with the help of the semi-inverse variational principle method [22, 42–44], the improved
tan(φ/2)-expansion method [45, 46] and the exp(−Ω(ξ))-expansion method [47, 48]. Besides, we will explore the new
exact solutions for the modified ZK equation with the aid of the aforementioned methods. The obtained solutions are
expressed by exponential, hyperbolic, trigonometric and rational function forms.

The remainder of the paper is organized as follows. A brief discussion about the semi-inverse variational principle
method and its application to the modified ZK equation is presented in sect. 2. Section 3 and its sub-sections deal with
the applications of the EEM to look for new closed forms of exact solutions of the modified ZK equation. Moreover,
in sect. 4, we present the ITEM along with its application to MZK equation. Finally, we draw a conclusion about the
executed methods and generated results in sect. 5.



Eur. Phys. J. Plus (2018) 133: 119 Page 3 of 19

2 The SIVPM

The main steps of the SIVPM are as follows:

Step 1. Consider a general form of a PDE, say in two independent variables x and t as

N (u, ux, uy, ut, uxx, utt, . . .) = 0. (8)

In eq. (8) u = u(x, t) is an unknown function, N is a polynomial in u(x, t) and its various partial derivatives, in which
the nonlinear terms and highest order derivatives are involved. The PDE can be converted to an ODE

Q(U, r1U
′, r2U

′,−r3U
′, r2

1U
′′, r2

3U
′′, . . .) = 0, (9)

by the transformation ξ = r1x + r2y − r3t in which the wave variable is. Also, r1, r2 and r3 are arbitrary constants to
be determined later.

Step 2. According to He’s semi-inverse method, we construct the following trial-functional:

J(U) =
∫

Ldξ, (10)

where L is an unknown function of U and its derivatives.

Step 3. Utilizing the Ritz method, we can acquire various forms of solitary wave solutions, such as

U(ξ) = F sech(Gξ), (11)

U(ξ) = F sech2(Gξ), (12)

u(ξ) =
F

D + cosh(Gξ)
, (13)

where F and G are constants to be further determined. Upon substituting (11)–(13) into (10) and making J stationary
with respect to F and G results in

∂J

∂F
= 0, (14)

∂J

∂G
= 0. (15)

Solving eqs. (14) and (15), we obtain F and G. Therefore, the solitary wave solutions (11), (12) and (13) are well
determined.

2.1 Application of semi-inverse variational principle

By using He’s semi-inverse principle [42–44], one can get the variational formulation as follows

J =
∫ ∞

0

[
r3

2
u(ξ)2 +

Ar1

6
u(ξ)3 +

Br1

12
u(ξ)4 +

Mr3
1 + Nr1r

2
2

2

(
du(ξ)

dξ

)2
]

dξ. (16)

Utilizing a Ritz-like method, a solitary wave solution will be as follows.

Case I:
u(ξ) = F sech(Gξ), (17)

where F and G are unknown constants to be further determined. Upon substituting (17) into (16) and carrying out
the integration gives

J =
1
6
F 2GMr3

1 +
1
6
F 2GNr1r

2
2 − 1

2
r3F

2

G
+

1
24

Ar1F
3π

G
+

1
18

Br1F
4

G
. (18)
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Making J stationary with A and B supplies

∂J(F,G)
∂F

=
1
3
FGMr3

1 +
1
3
FGNr1r

2
2 − r3F

G
+

1
8

Ar1F
2π

G
+

2
9

Br1F
3

G
= 0, (19)

∂J(F,G)
∂G

=
1
6
F 2Mr3

1 +
1
6
F 2Nr1r

2
2 +

1
2

r3F
2

G2
− 1

24
Ar1F

3π

G2
− 1

18
Br1F

4

G2
= 0. (20)

Solving eqs. (19) and (20), one can obtain

F =
−5Ar1π ±

√
25A2r2

1π
2 + 1536Br1r3

16Br1
,

G =

√
−6r1(Mr2

1 + r2
2N)

(
A(5Ar1π−

√
25A2r2

1π2+1536Br1r3)π

16B + 24r3

)

12r1(Mr2
1 + r2

2N)
. (21)

The domain of definition of the above relations is:

25A2r2
1π

2 + 1536Br1r3 > 0, 6r1(Mr2
1 + r2

2N)

(
A(5Ar1π −

√
25A2r2

1π
2 + 1536Br1r3)π

16B
+ 24r3

)
< 0. (22)

Hence, finally, the 1-soliton solution to the nonlinear electrical transmission lines is given by

u(x, y, t) =
−5Ar1π ±

√
25A2r2

1π
2 + 1536Br1r3

16Br1

× sech

⎡
⎢⎢⎢⎢⎣

√
−6r1(Mr2

1 + r2
2N)

(
A(5Ar1π−

√
25A2r2

1π2+1536Br1r3)π

16B + 24r3

)

12r1(Mr2
1 + r2

2N)
(r1x + r2y − r3t)

⎤
⎥⎥⎥⎥⎦ . (23)

Also, a bright soliton wave solution can be found as follows.

Case II:
u(ξ) =

F

cosh2(Gξ)
, (24)

where F and G are unknown constants to be further determined. Upon inserting (24) into (16) and carrying out the
integration gives

J =
1

315
F 2(84r3

1G
2M + 84r1G

2Nr2
2 − 105r3 + 28Ar1F + 12Br1F

2)
G

. (25)

Making J stationary with F and G one obtains

∂J(F,G)
∂F

=
2

315
F (84r3

1G
2M + 84r1G

2Nr2
2 − 105r3 + 28Ar1F + 12Br1F

2)
G

+
1

315
F 2(28Ar1 + 24Br1F )

G
= 0, (26)

∂J(F,G)
∂G

=
168
315

F 2(r3
1M + r1Nr2

2) −
1

315
F 2(84r3

1G
2M + 84r1G

2Nr2
2 − 105r3 + 28Ar1F + 12Br1F

2)
G2

= 0. (27)

Solving eqs. (26) and (27), one can acquire

F =
−35Ar1 ±

√
1225A2r2

1 + 7560Br1r3

36Br1
,

G = ± 1
36

√
−2Br1(Mr2

1 + Nr2
2)(270Br3 + 35A2r1 − A

√
35r1(35A2r1 + 216Br3))

Br1(Mr2
1 + Nr2

2)
. (28)

The domain of definition of the above relations is

1225A2r2
1 + 7560Br1r3 > 0, 2Br1(Mr2

1 + Nr2
2)(270Br3 + 35A2r1 − A

√
35r1(35A2r1 + 216Br3)) < 0. (29)
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Thus, finally, the 1-soliton solution to the nonlinear electrical transmission lines is given by

u(x, y, t) =
−35Ar1 ±

√
1225A2r2

1 + 7560Br1r3

36Br1

× sech2

⎡
⎣± 1

36

√
−2Br1(Mr2

1+Nr2
2)(270Br3+35A2r1−A

√
35r1(35A2r1 + 216Br3))

Br1(Mr2
1 + Nr2

2)
(r1x+r2y−r3t)

⎤
⎦ .

(30)

Finally, another singular wave solution can be considered as follows.

Case III:

u(ξ) =
F

D + cosh(Gξ)
, (31)

where F and G are unknown constants to be further determined. Upon putting (31) into (16) and carrying out the
integration gives

J =
F 2

36G(D + 1)2(D − 1)5(D2 − 1)
3
2

(
3X(D − 1)3Ω1 +

√
D2 − 1Ω2

)
;

Ω1 = −6G2r1D(D2 − 1)(Mr2
1 + r2

2N) + Br1F
2D(2D2 + 3) + 2Ar1F (D2 − 1)(2D2 + 1) − 12r3D(D2 − 1),

Ω2 = Br1F
2(6D2 − D + 3)(3D2 − D + 2) + 6G2r1D(D2 − 1)(9D2 + 10D + 13)(Mr2

1 + r2
2N)

+ 6Ar1F (D + 1)(4D2 − D + 1)(D − 1)2 − 36r3(D + 1)2(D − 1)4,

X = arctan
(

D − 1√
D2 − 1

)
. (32)

Making J stationary with F and G yields

∂J(F,G)
∂F

=
F

18G(D + 1)2(D − 1)5(D2 − 1)
3
2

(
3X(D − 1)3Ω1 +

√
D2 − 1Ω2

)

+
F 2

36G(D + 1)2(D − 1)5(D2 − 1)
3
2

(
3X(D − 1)3Ω1F +

√
D2 − 1Ω2F

)
= 0,

Ω1F = 2Br1FD(2D2 + 3) + 2Ar1(D2 − 1)(2D2 + 1),

Ω2F = 2Br1F (6D2 − D + 3)(3D2 − D + 2) + 6Ar1(D + 1)(4D2 − D + 1)(D − 1)2, (33)

∂J(F,G)
∂G

= − F 2

36G2(D + 1)2(D − 1)5(D2 − 1)
3
2

(
3X(D − 1)3Ω1 +

√
D2 − 1Ω2

)

+
F 2

36G(D + 1)2(D − 1)5(D2 − 1)
3
2

(
3X(D − 1)3Ω1G +

√
D2 − 1Ω2G

)
= 0,

Ω1G = −12Gr1D(D2 − 1)(Mr2
1 + r2

2N), Ω2G = 12Gr1D(D2 − 1)(9D2 + 10D + 13)(Mr2
1 + r2

2N). (34)



Page 6 of 19 Eur. Phys. J. Plus (2018) 133: 119

Solving eqs. (33) and (34), one can get

F = −1
2
(D − 1)2(D + 1)

[
5r1XA(2D2 + 1)(D − 1)2 + 5r1

√
D2 − 1A(4D2 − D + 1) − Ω

1
2
3

]
;

Ω3 = 25A2(D − 1)r2
1

[
X2(2D2 + 1)2(D − 1)3 + 2X

√
D2 − 1(D − 1)(2D2 + 1)(4D2 − D + 1)

+ (D + 1)(4D2 − D + 1)2
]

+ 96B(D − 1)r1r3

[
3D2X2(2D2 + 3)(D − 1)3

+ DX
√

D2 − 1(24D4 − 21D3 + 37D2 − 23D + 15) + (D + 1)(6D2 − D + 3)(3D2 − D + 2)
]
, (35)

G = −1
3
(D − 1)

√
−3Dr1Ω4Ω5

Dr1Ω6
, Ω4 = −9DX2(2D2 + 3)(D − 1)5(Nr2

2 + r2
1M) + 6

√
D2 − 1X(9D5 + D4

+ 31D3 + 4D2 + 22D − 3)(D − 1)2(Nr2
2 + r2

1M) + (D + 1)(6D2 − D + 3)(3D2 − D + 2)(9D2 + 10D

+ 13)(Nr2
2 + r2

1M),

Ω5 = 18r3D
2X2(D + 1)(2D2 + 3)(D − 1)4 + Ar1R

√
D2 − 1DX(−49D6 + 10 + 36D5 + 18D4 + 54D7)

+ 6Dr3(−12D2 + 8D3 − 1 − 5D4 − 11D + 18D6 + 9D5) − 36r3 − 27Ar1R,

Ω6 = −9DX2(2D2 + 3)(D − 1)5(Nr2
2 + r2

1M) + 6
√

D2 − 1X(9D5 + D4 + 31D3 + 4D2 + 22D − 3)(D − 1)2(Nr2
2

+ r2
1M) + (D + 1)(6D2 − D + 3)(3D2 − D + 2)(9D2 + 10D + 13)(Nr2

2 + r2
1M). (36)

The domain of definition of above relations is

D2 − 1 > 0, Ω3 > 0, Dr1Ω4Ω5 < 0, Dr1Ω6 �= 0. (37)

Thus, one can state that the 1-soliton solution to the nonlinear electrical transmission lines is given by

u(x, y, t) = −
1
2 (D − 1)2(D + 1)

[
5r1XA(2D2 + 1)(D − 1)2 + 5r1

√
D2 − 1A(4D2 − D + 1) − Ω

1
2
3

]

D + cosh
[

1
3 (D − 1)

√
−3Dr1Ω4Ω5

Dr1Ω6
(r1x + r2y − r3t)

] . (38)

3 The EEM

The EEM has been utilized to discover traveling wave solutions of nonlinear PDEs [47, 48]. Consider the following
steps.

Step 1. Consider a general form of a PDE, say in two independent variables x and t as

N (u, ux, uy, ut, uxx, utt, . . .) = 0. (39)

In eq. (39) u = u(x, t) is an unknown function, N is a polynomial in u(x, t) and its various partial derivatives, in which
the nonlinear terms and highest order derivatives are involved. The PDE can be converted to an ODE

Q
(
U, r1U

′, r2U
′,−r3U

′, r2
1U

′′, r2
3U

′′, . . .
)

= 0, (40)

by the transformation ξ = r1x + r2y − r3t in which the wave variable is. Also, r1, r2 and r3 are arbitrary constants to
be determined later.

Step 2. Suppose the solution of the nonlinear equation (40) can be expressed by an exponential polynomial in F (ξ) as

U(ξ) =
N∑

i=0

AiF
i(ξ) +

N∑
i=1

BiF
−i(ξ), (41)

where F (ξ) = exp(−Ω(ξ)), Ai(0 ≤ i ≤ N), and Bi(1 ≤ i ≤ M) are constants to be determined, such that AN �= 0,
BN �= 0, and, Ω = Ω(ξ) gratifies the following ODE:

Ω′ = μF−1(ξ) + F (ξ) + λ. (42)

The exact solutions [49,50] can be considered from eq. (42) as follows.
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Solution 1: If μ �= 0 and λ2 − 4μ > 0, then get to

Ω(ξ) = ln

(
−
√

λ2 − 4μ

2μ
tanh

(√
λ2 − 4μ

2
(ξ + E)

)
− λ

2μ

)
, (43)

where E is integral constant.

Solution 2: If μ �= 0 and λ2 − 4μ < 0, then achieve to

Ω(ξ) = ln

(√
−λ2 + 4μ

2μ
tan

(√
−λ2 + 4μ

2
(ξ + E)

)
− λ

2μ

)
. (44)

Solution 3: If μ = 0, λ �= 0, and λ2 − 4μ > 0, the solution will be as

Ω(ξ) = − ln
(

λ

exp(λ(ξ + E)) − 1

)
. (45)

Solution 4: If μ �= 0, λ �= 0, and λ2 − 4μ = 0, the solution will be as

Ω(ξ) = ln
(
−2λ(ξ + E) + 4

λ2(ξ + E)

)
. (46)

Solution 5: If μ = 0, λ = 0, and λ2 − 4μ = 0, the solution can be found at

Ω(ξ) = ln (ξ + E) , (47)

where Ai (0 ≤ i ≤ N), Bi (1 ≤ i ≤ M), λ and μ are constants to be determined. The N is a natural number which is
determined by the homogeneous balance principle.

Step 3. Inserting a new solution from eq. (41) into eq. (40) along with eq. (42) and comparing the terms results in a set
of nonlinear equations which by solving it using the Maple package, we will acquire new exact solutions of the fractional
partial differential equation. Solving the algebraic equations including coefficients of A0, . . . , AN , B1, . . . , BN , r1, r2,
r3, λ, and μ into (41) one gets the exact solution of the considered problem.

3.1 Application of the EEM

This section is devoted to the application of the EEM to discover the exact solutions of eq. (6). By utilizing u(x, y, t) =
u(ξ) and ξ = r1x + r2y − r3t eq. (6) can be reduced to the following ODE:

−r3u + Ar1
u2

2
+ Br1

u3

3
+ (Mr3

1 + Nr1r
2
2)u

′′ = 0. (48)

Balancing u′′ and u3, we obtain m = 1; thus, (41) reduce to

u(ξ) = d0 + d1 exp(−Ω(ξ)) + e1 exp(Ω(ξ)). (49)

Putting (49) along with (42) into (48) and collecting all the coefficients of Y j = exp(−jΩ(ξ)); (j = 0, 1, . . . , 6) and
setting them to zero, the following results get:

Set I:

μ = μ, λ =
1

Be1

√
A2μ2 + 4μB2e2

1, λ2 − 4μ =
A2μ2

B2e2
1

, d0 =
Be1λ − μA

2μB
, d1 = 0, e1 = e1,

r1 =
1
μ

√
−6Nr2

2μ
2 + Be2

1

6M
, r2 = r2, r3 = − A2

6μB

√
−6Nr2

2μ
2 + Be2

1

6M
, (50)
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Fig. 2. Graph of eq. (51) by taking the parameters A = B = 0.5, e1 = 2, r2 = 1, N = 1, M = −1, y = E = 0, and (a) 3D plot,
(b) contourplot, (c) density plot, and (d) 2D plot t = 1.

via (43), the exact solution can be found at

u1(x, t) = − μA

2μB
− A

2B
tanh

[
Aμ

2Be1

(
1
μ

√
−6Nr2

2μ
2 + Be2

1

6M
x + r2y − A2

6μB

√
−6Nr2

2μ
2 + Be2

1

6M
t + E

)]
(51)

(see fig. 2).

Set II:

μ =
B2d2

1λ
2 − A2

4B2d2
1

, λ = λ, λ2 − 4μ =
A2

B2d2
1

, d0 = − A

2B
+

d1λ

2
, d1 = d1, e1 = 0,

r1 =

√
−6Nr2

2 + Bd2
1

6M
, r2 = r2, r3 = −A2

6B

√
−6Nr2

2 + Bd2
1

6M
. (52)
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Fig. 3. Graph of eq. (53) by taking the parameters A = B = 0.5, d1 = 2, λ = 2, r2 = 1, N = 1, M = −1, y = E = 0, and (a)
3D plot, (b) contourplot, (c) density plot, and (d) 2D plot t = 1.

Via (43), the exact solution can be found at

u2(x, t) = − A

2B
+

d1λ

2
+ d1

{
− 2A2

B2d2
1λ

2 − A2
tanh

[
A

2Bd1

(√
−6Nr2

2 + Bd2
1

6M
x + r2y

− A2

6B

√
−6Nr2

2 + Bd2
1

6M
t + E

)]
− 2λB2d2

1

B2d2
1λ

2 − A2

}−1

(53)

(see fig. 3).

Set III:

μ =
A2 − ABd1λ

8B2d2
1

, λ = λ, λ2 − 4μ =
d1λAB + 2B2d2

1λ
2 − A2

2B2d2
1

,

d0 = − A

2B
+

d1λ

2
, d1 = d1, e1 =

A2 − ABd1λ

B2d1
,

r1 =

√
−6Nr2

2 + Bd2
1

6M
, r2 = r2, r3 = −2A2 + d1ABλ − B2d2

1λ
2

12B

√
−6Nr2

2 + Bd2
1

6M
. (54)
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Fig. 4. Graph of eq. (55) by taking the parameters A = B = 0.5, d1 = 2, λ = 2, r2 = 1, N = 1, M = −1, y = E = 0, and (a)
3D plot, (b) contourplot, (c) density plot, and (d) 2D plot t = 1.

Via (43), the exact solution can be determined at

u3(x, t) = − A

2B
+

d1λ

2
+ d1

{
−2

√
2Bd1

√
d1λAB + 2B2d2

1λ
2 − A2

A2 − ABd1λ

× tanh

[√
d1λAB + 2B2d2

1λ
2 − A2

2
√

2Bd1

(√
−6Nr2

2 + Bd2
1

6M
x + r2y − 2A2 + d1ABλ − B2d2

1λ
2

12B

√
−6Nr2

2 + Bd2
1

6M
t + E

)]

− 4λB2d2
1

A2 − ABd1λ

}−1

+
A2 − ABd1λ

B2d1

{
−2

√
2Bd1

√
d1λAB + 2B2d2

1λ
2 − A2

A2 − ABd1λ

× tanh

[√
d1λAB + 2B2d2

1λ
2 − A2

2
√

2Bd1

(√
−6Nr2

2 + Bd2
1

6M
x + r2y − 2A2 + d1ABλ − B2d2

1λ
2

12B

√
−6Nr2

2 + Bd2
1

6M
t + E

)]

− 4λB2d2
1

A2 − ABd1λ

}
(55)

(see fig. 4).
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Also, via (44), the exact solution can be determined at

u4(x, t) = − A

2B
+

d1λ

2
+ d1

{
2
√

2Bd1

√
A2 − d1λAB − 2B2d2

1λ
2

A2 − ABd1λ

× tan

[√
A2 − d1λAB − 2B2d2

1λ
2

2
√

2Bd1

(√
−6Nr2

2 + Bd2
1

6M
x + r2y

− 2A2 + d1ABλ − B2d2
1λ

2

12B

√
−6Nr2

2 + Bd2
1

6M
t + E

)]
− 4λB2d2

1

A2 − ABd1λ

}−1

+
A2 − ABd1λ

B2d1

{
2
√

2Bd1

√
A2 − d1λAB − 2B2d2

1λ
2

A2 − ABd1λ

× tan

[√
A2 − d1λAB − 2B2d2

1λ
2

2
√

2Bd1

(√
−6Nr2

2 + Bd2
1

6M
x + r2y

− 2A2 + d1ABλ − B2d2
1λ

2

12B

√
−6Nr2

2 + Bd2
1

6M
t + E

)]
− 4λB2d2

1

A2 − ABd1λ

}
. (56)

Moreover, via (45), the exact solution can be determined at

u5(x, t) = d1

⎛
⎜⎜⎝

A
Bd1

exp
[

A
Bd1

(√
− 6Nr2

2+Bd2
1

6M x + r2y − A2

6B

√
− 6Nr2

2+Bd2
1

6M t + E

)]
− 1

⎞
⎟⎟⎠ . (57)

Set IV:

μ = μ, λ =
A

6(Nr2
2 + Mr2

1)

√
−6Nr2

2 + 6Mr2
1

B
, λ2 − 4μ = −A2 + 24Bμ(Nr2

2 + Mr2
1)

6B(Nr2
2 + Mr2

1)
, d0 = −A

B
,

d1 =

√
−6Nr2

2 + 6Mr2
1

B
, e1 = μ

√
−6Nr2

2 + 6Mr2
1

B
,

r1 = r1, r2 = r2, r3 = −r1(A2 + 24Bμ(Nr2
2 + Mr2

1))
6B

. (58)
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Fig. 5. Graph of eq. (59) by taking the parameters A = 2, B = 0.5, d1 = λ = 1, r2 = 1, N = 1, M = −1, y = E = 0, and (a)
3D plot, (b) contourplot, (c) density plot, and (d) 2D plot t = 10.

Via (43) and (44), the exact solutions, respectively, will be as

u6(x, t) = −A

B
+

√
−6Nr2

2 + 6Mr2
1

B

{
−
√

λ2 − 4μ

2μ
tanh

(√
λ2 − 4μ

2
(ξ + E)

)
− λ

2μ

}−1

+ μ

√
−6Nr2

2 + 6Mr2
1

B

{
−
√

λ2 − 4μ

2μ
tanh

(√
λ2 − 4μ

2
(ξ + E)

)
− λ

2μ

}
, (59)

u7(x, t) = −A

B
+

√
−6Nr2

2 + 6Mr2
1

B

{√
−λ2 + 4μ

2μ
tan

(√
−λ2 + 4μ

2
(ξ + E)

)
− λ

2μ

}−1

+ μ

√
−6Nr2

2 + 6Mr2
1

B

{√
−λ2 + 4μ

2μ
tan

(√
−λ2 + 4μ

2
(ξ + E)

)
− λ

2μ

}
, (60)

in which ξ = r1x + r2y − r1(A
2+24Bμ(Nr2

2+Mr2
1))

6B t and E is a free constant (see figs. 5 and 6).
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Fig. 6. Graph of eq. (60) by taking the parameters A = B = 2, d1 = λ = 1, r2 = 1, N = 1, M = −1, y = E = 0, and (a) 3D
plot, (b) contourplot, (c) density plot, and (d) 2D plot t = 1.

3.2 Discussion and remarks

With the aid of the EEM, we obtain solutions including exponential, hyperbolic and trigonometric functions forms
of the modified ZK equation. Whereas in [37], Yu and Feng used Darboux transformation and obtained one-soliton
solution and other soliton solutions. Sardar and coworkers acquired various types of solutions which are solitary, shock,
singular, periodic, rational and kink-shaped solitons obtained by using the special analytical methods given in [3].
Meanwhile, in this paper there are results, including the kink-singular soliton solution, the hyperbolic solution, the
trigonometric solution, dark and bright soliton solutions which agree with the results of [3]. Moreover, in the current
paper the better results are obtained when comparing these travelling wave solutions with the solutions achieved by
Krishnan and Biswas [6]. These travelling wave solutions are shown to obey the modified ZK equation with the aid of
Maple 13. To the best of our knowledge, the application of the EEM to the eq. (6) has not been submitted to literature
so far.

4 Description of the ITEM

In this section, all procedures of the ITEM for solving the nonlinear PDEs are described. The essential steps of this
method are as follows.

Step 1. Consider a general form of a PDE, say in two independent variables x and t as

N (u, ux, uy, ut, uxx, utt, . . .) = 0. (61)
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In eq. (61) u = u(x, t) is an unknown function, N is a polynomial in u(x, t) and its various partial derivatives, in which
the nonlinear terms and highest-order derivatives are involved. The PDE can be converted to an ODE

Q
(
U, r1U

′, r2U
′,−r3U

′, r2
1U

′′, r2
3U

′′, . . .
)

= 0, (62)

by the transformation ξ = r1x + r2y − r3t in which the wave variable is. Also, r1, r2 and r3 are arbitrary constants to
be determined later.

Step 2. Suppose the traveling wave solution of eq. (62) can be expressed as follows:

u(ξ) = S(φ) =
m∑

k=−m

Ak [p + tan(φ/2)]k , (63)

where Ak(0 ≤ k ≤ m), Bk(1 ≤ k ≤ m) and p are constants to be determined, such that Am �= 0, Bm �= 0 and φ = φ(ξ)
gratifies the following ODE:

φ′(ξ) = a sin(φ(ξ)) + b cos(φ(ξ)) + c, (64)

where m is a natural number which is determined by the homogeneous balance principle.

Step 3. Inserting a new solution from eq. (63) into eq. (62) along with eq. (64) and comparing the terms results in a set
of nonlinear equations which by solving it using the Maple package, we will acquire new exact solutions of the fractional
partial differential equation. Solving the algebraic equations including coefficients of A0, . . . , AN , B1, . . . , BN , p, a, b,
c, and r1, r2, r3 into (41) one gets the exact solution of the considered problem.

Consider the following special solutions of eqs. (64):

Family 1: When Δ = a2 + b2 − c2 < 0 and b − c �= 0, then φ(ξ) = 2 tan−1
[

a
b−c −

√
−Δ

b−c tan
(√

−Δ
2 ξ

)]
.

Family 2: When Δ = a2 + b2 − c2 > 0 and b − c �= 0, then φ(ξ) = 2 tan−1
[

a
b−c +

√
Δ

b−c tanh
(√

Δ
2 ξ

)]
.

Family 3: When Δ = a2 + b2 − c2 > 0, b − c �= 0 and a = 0, then φ(ξ) = 2 tan−1
[√

b+c
b−c tanh

(√
b2−c2

2 ξ
)]

.

Family 4: When a = 0 and c = 0, then φ(ξ) = tan−1
[

e2bξ−1
e2bξ+1

, 2ebξ

e2bξ+1

]
.

Family 5: When c = a, then φ(ξ) = −2 tan−1

[
(a+b)ebξ−1

(a−b)ebξ−1

]
.

Family 6: When b = −c, then φ(ξ) = 2 tan−1
[

aeaξ

1−ceaξ

]
.

Family 7: When b = 0 and a = c, then φ(ξ) = −2 tan−1
[

cξ+2

cξ

]
.

Family 8: When a = 0 and b = c, then φ(ξ) = 2 tan−1
[
cξ
]
.

Family 9: When a = 0 and b = −c, then φ(ξ) = −2 tan−1
[

1
cξ

]
.

Here, ξ = ξ + C, p, A0, Ak, Bk (k = 1, 2, . . . ,m), a, b and c are constants to be determined later.

4.1 Application of the ITEM

In this subsection, the ITEM will be performed to handle the MZK equation for acquiring new soliton solutions. To
this end, we use the transformation u(x, y, t) = u(ξ) and ξ = r1x+r2y−r3t to reduce eq. (6) to the following nonlinear
ODE:

−r3u + Ar1
u2

2
+ Br1

u3

3
+ (Mr3

1 + Nr1r
2
2)u

′′ = 0. (65)

Balancing u′′ and u3, we obtain m = 1; thus, (63) reduce to

u(ξ) = A0 + A1 tan(φ/2) + B1 cot(φ/2). (66)
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Substituting (66) along with (64) into (65) and collecting all the coefficients of Y j = tanj(φ/2); (j = 0, 1, . . . , 6) and
inserting them to zero, the algebraic equations conclude:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y 0: r1B1(2BB2
1 + 3r2

1b
2M + 6r2

1bcM + 3r2
1c

2M + 6bcr2
2N + 3c2r2

2N + 3b2r2
2N) = 0,

Y 1: 3r1B1(2B1A0B + B1A + 3r2
1baM + 3r2

1caM + 3bar2
2N + 3acr2

2N) = 0,

Y 2: 3B1(2Br1A1B1 + 2Nr1r
2
2a

2 + r1Nr2
2c

2 − r1Nr2
2b

2 − 2r3 − Mr3
1b

2

+2Br1A
2
0 + 2Ar1A0 + Mr3

1c
2 + 2Mr3

1a
2) = 0,

Y 3: 3r1B1(−r2
1baM + r2

1caM − bar2
2N + acr2

2N + 4A1A0B) + A0(2Br1A
2
0 + 3Ar1A0 − 6r3)

+3r1A1(r2
1baM + r2

1caM + bar2
2N + acr2

2N + 2B1A) = 0,

Y 4: 3A1(2Br1A1B1 + N(2r1r
2
2a

2 + r1r
2
2c

2 − r1r
2
2b

2) − 2r3 + M(r3
1c

2 + 2r3
1a

2 − r3
1b

2) + 2Br1A
2
0 + 2Ar1A0) = 0,

Y 5: 3r1A1(A1A + 2A1A0B − 3r2
1baM + 3r2

1caM + 3acr2
2N − 3bar2

2N) = 0,

Y 6: r1A1(2BA2
1 + 3r2

1c
2M − 6r2

1bcM + 3r2
1b

2M − 6bcr2
2N + 3c2r2

2N + 3b2r2
2N) = 0.

(67)
Solving the above algebraic (67), the following sets of coefficients can be written as

Set I:

a = ±
√

A2(b + c)2 − 4B2B2
1(b2 − c2), b = b, c = c, Δ = a2 + b2 − c2 =

A2(b + c)2

4B2B2
1

,

A0 = −Ab − 2aBB1 + Ac

2B(b + c)
,

A1 = 0, B1 = B1, r1 = ±
√

−3M(3Nr2
2(b + c)2 + 2BB2

1)
3M(b + c)

, r1 = r2, r3 = −A2r1

6B
. (68)

Set II:

a = ±
√

A2(b − c)2 − 4B2A2
1(b2 − c2), b = b, c = c, Δ = a2 + b2 − c2 =

A2(b − c)2

4B2A2
1

,

A0 = −Ab + 2aBA1 − Ac

2B(b − c)
,

A1 = A1, B1 = 0, r1 = ±
√

−3M(3Nr2
2(b − c)2 + 2BA2

1)
3M(b − c)

, r1 = r2, r3 = −A2r1

6B
. (69)

Set III:

a = 0, b = b, c = c, A0 = − A

2B
, A1 =

A

2B

√
− b − c

2(b + c)
, B1 =

A

4B

√
−2(b + c)

b − c
,

r1 = ±
√

3MB(b2 − c2)(A2 − 12NBr2
2(b2 − c2))

6MB(b2 − c2)
, r1 = r2, r3 = −A2r1

6B
. (70)

Set IV:

a = 0, b = b, c = c, A0 = − A

2B
, A1 =

A

4B

√
b − c

b + c
, B1 =

A

4B

√
b + c

b − c
,

r1 = ±
√

−6MB(b2 − c2)(A2 − 24NBr2
2(b2 − c2))

12MB(b2 − c2)
, r1 = r2, r3 = −A2r1

6B
. (71)
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Set V:

a = 3

√
c2 − b2

5
, b = b, c = c, A0 = −5A

4B
, A1 = − 5Aa

12B(b + c)
, B1 =

5Aa

12B(b − c)
,

r1 = ±
√

6MB(b2 − c2)(5A2 − 24NBr2
2(b2 − c2))

12MB(b2 − c2)
, r1 = r2, r3 =

7A2r1

48B
. (72)

Set VI:

a =
A(b − c)
2BA1

, b = b, c = c, A0 = −A

B
, A1 = A1, B1 = − (b + c)A1

b − c
,

r1 = ±
√

−3M(2BA2 + 3Nr2
2(b − c)2)

3M
, r1 = r2, r3 = − (A2(b − c) + 4BA2

1(b + c))r1

6B(b − c)
. (73)

Set VII:

a = −A2(b − c) + 8B2A2
1(b + c)

2ABA1
, b = b, c = c, A0 =

4(b + c)BA2
1

A(b − c)
, A1 = A1,

B1 = − (b + c)A1

b − c
, r1 = r2,

r1 = ±
√

−3M(2BA2 + 3Nr2
2(b − c)2)

3M
, r3 = − (A2(b − c) − 8B2A2

1(b + c))(A2(b − c) + 4B2A2
1(b + c))r1

6B(b − c)2A2
. (74)

To Set I, the following solution results:

u(ξ) = −Ab − 2aBB1 + Ac

2B(b + c)
+ B1 cot(φ/2). (75)

To Set II, the following solution results:

u(ξ) = −Ab + 2aBA1 − Ac

2B(b − c)
+ A1 tan(φ/2). (76)

To Set III, the following solution concludes:

u(ξ) = − A

2B
+

A

2B

√
− b − c

2(b + c)
tan(φ/2) +

A

4B

√
−2(b + c)

b − c
cot(φ/2). (77)

To Set IV, the following solution results:

u(ξ) = − A

2B
+

A

4B

√
b − c

b + c
tan(φ/2) +

A

4B

√
b + c

b − c
cot(φ/2). (78)

To Set V, the following solution results:

u(ξ) = −5A

4B
− 5A

4B

√
c − b

5(b + c)
tan(φ/2) +

5A

4B

√
− b + c

5(b − c)
cot(φ/2). (79)

To Set VI, the following solution concludes:

u(ξ) = −A

B
+ A1 tan(φ/2) − (b + c)A1

b − c
cot(φ/2). (80)

To Set VII, the following solution results:

u(ξ) =
4(b + c)BA2

1

A(b − c)
+ A1 tan(φ/2) − (b + c)A1

b − c
cot(φ/2). (81)
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For different values of a, b and c, we have the following results:

Result 1: If we take Family 2, then we have the following (75) solution as

u(ξ) = −Ab − 2BB1

√
A2(b + c)2 − 4B2B2

1(b2 − c2) + Ac

2B(b + c)

+ B1

[√
A2(b + c)2 − 4B2B2

1(b2 − c2)
b − c

+
A(b + c)

2BB1(b − c)
tanh

(
A(b + c)

4BB1(b − c)
ξ̃

)]−1

, (82)

where ξ̃ = ±
√

−3M(3Nr2
2(b+c)2+2BB2

1)

3M(b+c) x + r2y − A2
√

−3M(3Nr2
2(b+c)2+2BB2

1)

18MB(b+c) t + C.

Result 2: If we take Family 2, then we have the following (76) solution as

u(ξ) = −Ab + 2BA1

√
A2(b − c)2 − 4B2A2

1(b2 − c2) − Ac

2B(b − c)

+ A1

[√
A2(b − c)2 − 4B2A2

1(b2 − c2)
b − c

+
A

2BA1
tanh

(
A

4BA1
ξ̃

)]
, (83)

where ξ̃ = ±
√

−3M(3Nr2
2(b−c)2+2BA2

1)

3M(b−c) x + r2y − A2
√

−3M(3Nr2
2(b−c)2+2BA2

1)

18MB(b+c) t + C.

Result 3: If we take Family 3 and 4, then we have the following (77) solutions, respectively, as

u(ξ) = − A

2B
+

A

4B

√
−2 tanh

(√
b2 − c2

2
ξ̃

)
+

A

4B

√
−2 coth

(√
b2 − c2

2
ξ̃

)
, (84)

where ξ̃ = ±
√

3MB(b2−c2)(A2−12NBr2
2(b2−c2))

6MB(b2−c2) x + r2y −
√

3MB(b2−c2)(A2−12NBr2
2(b2−c2))A2

36MB2(b2−c2) t + C,

u(ξ) = − A

2B
+

A

4B

√
−2 tan

(
1
2

arctan

[
e2beξ − 1

e2beξ + 1
,

2ebeξ

e2beξ + 1

])

+
A

4B

√
−2 cot

(
1
2

arctan

[
e2beξ − 1

e2beξ + 1
,

2ebeξ

e2beξ + 1

])
, (85)

where ξ̃ = ±
√

3MB(A2−12NBr2
2b2)

6MBb x + r2y −
√

3MB(A2−12NBr2
2b2)A2

36MB2b t + C.

Result 4: If we take Family 3 and 4, then we have the following (78) solutions, respectively, as

u(ξ) = − A

2B
+

A

4B
tanh

(√
b2 − c2

2
ξ̃

)
+

A

4B
coth

(√
b2 − c2

2
ξ̃

)
, (86)

where ξ̃ = ±
√

−6MB(b2−c2)(A2−24NBr2
2(b2−c2))

12MB(b2−c2) x + r2y −
√

−6MB(b2−c2)(A2−24NBr2
2(b2−c2))A2

36MB2(b2−c2) t + C,

u(ξ) = − A

2B
+

A

4B
tan

(
1
2

arctan

[
e2beξ − 1

e2beξ + 1
,

2ebeξ

e2beξ + 1

])

+
A

4B
cot

(
1
2

arctan

[
e2beξ − 1

e2beξ + 1
,

2ebeξ

e2beξ + 1

])
, (87)

where ξ̃ = ±
√

−6MB(A2−24NBr2
2b2)

12MBb x + r2y −
√

−6MB(A2−24NBr2
2b2)A2

36MB2b t + C.

Result 5: If we take Family 1 and 2, then we have the following (79) solutions, respectively, as

u(ξ) = −5A

4B
−

√
5A

4B

[
3 −

√
−4

5
tan

(√
b2 − c2

5
ξ̃

)]
+

√
5A

4B

[
3 −

√
−4

5
tan

(√
b2 − c2

5
ξ̃

)]−1

, (88)

u(ξ) = −5A

4B
−

√
5A

4B

[
3 +

√
4
5

tanh

(√
c2 − b2

5
ξ̃

)]
+

√
5A

4B

[
3 +

√
4
5

tanh

(√
c2 − b2

5
ξ̃

)]−1

, (89)
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where ξ̃ = ±
√

−6MB(b2−c2)(A2−24NBr2
2(b2−c2))

12MB(b2−c2) x + r2y + 7
√

−6MB(b2−c2)(A2−24NBr2
2(b2−c2))A2

576MB2(b2−c2) t + C.

Result 6: If we take Family 6, then we have the following (80) solutions, as

u(ξ) = −A

B
+

⎡
⎣ A(b−c)

2B e
A(b−c)
2BA1

ξ

1 − ce
A(b−c)
2BA1

ξ

⎤
⎦− (b + c)A1

b − c

⎡
⎣ A(b−c)

2BA1
e

A(b−c)
2BA1

ξ

1 − ce
A(b−c)
2BA1

ξ

⎤
⎦
−1

, (90)

where ξ̃ = ±
√

−3M(2BA2+3Nr2
2(b−c)2)

3M x + r2y − (A2(b−c)+4BA2
1(b+c))

6B(b−c)

√
−3M(2BA2+3Nr2

2(b−c)2)

3M t + C,

u(ξ) = −A

B
− A

2B

[
cξ + 2

cξ
+

cξ

cξ + 2

]
, (91)

where ξ̃ = ±
√

−3M(2BA2+3Nr2
2c2)

3M x + r2y − (A2−4BA2
1)

6B

√
−3M(2BA2+3Nr2

2c2)

3M t + C.

Result 7: If we take Family 6, then we have the following (81) solutions, as

u(ξ) =
4(b + c)BA2

1

A(b − c)
+

⎡
⎣−A2(b−c)+8B2A2

1(b+c)
2AB e−

A2(b−c)+8B2A2
1(b+c)

2ABA1
ξ

1 − ce−
A2(b−c)+8B2A2

1(b+c)
2ABA1

ξ

⎤
⎦

− (b + c)A1

b − c

⎡
⎢⎣−A2(b−c)+8B2A2

1(b+c)
2ABA1

e−
A2(b−c)+8B2A2

1(b+c)
2ABA1

ξ

1 − ce−
A2(b−c)+8B2A2

1(b+c)
2ABA1

ξ

⎤
⎥⎦
−1

, (92)

where ξ̃ = ±
√

−3M(2BA2+3Nr2
2(b−c)2)

3M x + r2y − (A2(b−c)−8B2A2
1(b+c))(A2(b−c)+4B2A2

1(b+c))
6B(b−c)2A2

√
−3M(2BA2+3Nr2

2(b−c)2)

3M t + C.

5 Conclusion

The basic goal of this work was to execute the SIVPM, the EEM and the ITEM methods for exactly solving the
equation of nonlinear electrical transmission lines described by a MZK equation. As a result, we received many new
exact soliton solutions for the equation of nonlinear electrical transmission lines which are expressed by rational,
hyperbolic, trigonometric and exponential functions forms.

The rational, hyperbolic, trigonometric and exponential functions forms are based on arbitrary parameters which
can be zero or nonzero. To the best of our knowledge, the received results have not been reported in other studies
on the MZK equation. Therefore, the obtained results show that the implemented method along with the symbolic
computation package suggests a promising, robust, and the well-built mathematical tool for handling any nonlinear
PDEs arising in mathematical physics and other applied fields.
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