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Abstract. The present article scrutinizes the prominent characteristics of the Cattaneo-Christov heat flux
on magnetohydrodynamic Oldroyd-B radiative liquid flow over two different geometries. The effects of
cross-diffusion are considered in the modeling of species and energy equations. Similarity transformations
are employed to transmute the governing flow, species and energy equations into a set of nonlinear ordinary
differential equations (ODEs) with the appropriate boundary conditions. The final system of dimensionless
equations is resolved numerically by utilizing the R-K–Fehlberg numerical approach. The behaviors of all
physical pertinent flow controlling variables on the three flow distributions are analyzed through plots. The
obtained numerical results have been compared with earlier published work and reveal good agreement.
The Deborah numbers γ1 and γ2 have quite opposite effects on velocity and energy fields. The increase in
thermal relaxation parameter β corresponds to a decrease in the fluid temperature. This study has salient
applications in heat and mass transfer manufacturing system processing for energy conversion.

1 Introduction

In recent years, the phenomenon of heat transfer has attracted interest due to its applications in industrial and
manufacturing engineering, cooling of nuclear reactors, heat conduction in pumps, production of energy. Fourier [1]
initially reported the basic heat conduction law and features of heat transfer. Subsequently, some modification in
Fourier’s law of heat conduction, which includes the additional term of relaxation time of energy flux, has been
described by Cattaneo [2]. Christov [3] has modified the Cattaneo model [2] by considering energy relaxation time
through Oldroyd upper-convected derivative and this is called the Cattaneo-Christov energy flux theory. The Cattaneo-
Christov heat flux model applied to the flow of an incompressible liquid has been examined by Tibullo and Zampoli [4].
Khan et al. [5] explored the numerical analysis of the Cattaneo-Christov heat flux on the viscoelastic liquid flow along
an exponentially sheet. Shehzad et al. [6] studied the mathematical simulation for the Cattaneo-Christov heat flux of
a third-grade fluid. Cattaneo-Christov heat flux and partial slip flow in a viscoelastic liquid past a moving sheet was
analyzed by Han et al. [7]. Recently, Gnaneswara Reddy and Rama Subba Reddy [8] examined the viscous dissipation
and the Cattaneo-Christov heat flux effects on the polar fluid across a nonlinear stretching vertical surface. From this
study, they found that the thermal relaxation time is efficient in reducing the dimensionless liquid temperature.

The phenomenon of thermal radiation has received prominent interest in the heat transfer mechanism due to its
broad range of applications, which include nuclear power plants, the design of reliable equipment in manufacturing
industries, propulsion gas turbines and assorted aircraft production, satellites, missiles and space launching vehicles.
Thermal radiative flows in the presence of a magnetic field at high temperature can be found in solar power tech-
nology, electrical power generation, geophysical flows, nuclear propulsion engineering. Boundary layer flow and the
impact of energy radiation through various geometries and aspects for the Newtonian and non-Newtonian liquids were
investigated by many researchers [9–18].

The study of heat and mass transfer fluid flows has considerable importance because of its numerous applications,
such as in petroleum reservoirs, geothermal processes, nuclear catalytic reactors, etc. The impacts of cross-diffusion,
such as diffusion-thermo effects (Dufour) and thermal-diffusion effects (Soret) become very notable when the con-
centration and temperature gradients are high, thus leading to second-order phenomena of liquids. In view of the
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above-mentioned crucial applications, some researchers [19–35] considered the effects of heat and mass transfer flow
with different aspects and varied conditions in the presence of Dufour and Soret effects.

Researchers, engineers and scientists have concentrated on exploring the nature of non-Newtonian materials, which
are very complex and complicated, because it is very difficult to expand a single constitutive relationship model to
forecast the properties of these materials. Some of these non-Newtonian fluids are Oldroyd-B fluid, Maxwell fluid,
Carreau and Walters-B fluids. Hayat et al. [36] analyzed the second-grade liquid in a porous channel with magnetic
field. The MHD peristaltic flow of a Walters-B fluid in the presence of slip conditions was explored by Makinde
et al. [37]. Many studies on Oldroyd-B liquid flows were performed with varied conditions and dimensions [38–49].
Shehzad et al. [50] examined the impact of mass transport and radiation on the 3D flow of an Oldroyd-B fluid. Very
recently, an analysis of the hydromagnetic flow of an Oldroyd-B liquid was examined by Hayat et al. [51], which
revealed that the retardation time and fluid relaxation constants have opposite behaviors on the dimensionless axial
velocity and concentration profiles. Sandeep and Gnaneswara Reddy [52] presented the cross-diffusion effects and
double stratification on the hydromagnetic Oldroyd-B liquid flow over a melting surface.

Inspired by the aforementioned applications and analyses, the objective of the current study is to examine the
cross-diffusion effects on the hydromagnetic radiative Oldroyd-B liquid flow through a cone/wedge in the presence
of Cattaneo-Christove heat flux. The governing flow equations along related conditions are converted into a BVP
problem of ODEs by employing similarity transformation. The resultant transformed differential equations with flow
conditions are resolved by the R-K–Fehlberg numerical procedure. The influence of several embedded flow controlling
variables on the flow, thermal and species boundary layers is analyzed through plots and tables.

2 Model development and formulation

Consider a two-dimensional (2D) viscous and an incompressible laminar boundary layer time-independent flow in two
distinct geometries (cone and wedge). Thermal radiation and Cattaneo-Christov heat flux effects are introduced. The
effects of cross-diffusion are included in the species and energy equations. The geometry of the flow problem is shown
in fig. 1. A uniform transverse magnetic field of strength B0 is applied in the vertical direction of the flow surface of
the cone/wedge. Let us suppose that r is the cone radius and α is the half angle of the cone/wedge. The temperature
Tw = T∞ + axs and concentration Cw = C∞ + bxq are maintained near the surface. It is supposed that the magnetic
Reynolds number is small and, therefore, the induced magnetic field is less as compared to the externally applied
magnetic field. In view of the above suppositions, the flow governing equations reporting the physical model are
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The associate initial and boundary conditions are

u = uw = υx/l2, v = vw, T = Tw = T∞ + axs, C = Cw = C∞ + bxq, at y = 0,

u → 0, T → T∞, C → C∞, as y → ∞. (5)

The suggested problem exhibits two distinct geometries, which are based on the following suppositions:

a) the flow is generated by a wedge (m = 0 and α �= 0);
b) the flow is generated by a cone (m = 1 and α �= 0);

where the velocity components across the x- and y-directions are u and v, respectively, a, b are constants, s, q are
the temperature and concentration parameters, T∞ and C∞ are the ambient temperature and concentration, σ is the
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Fig. 1. Physical model of the problem.

electrical conductivity, υ is the viscosity (kinematic) of the fluid, B0 is the applied magnetic field strength, g is the
gravitational acceleration, ρ is the fluid density, βT and βC are the volumetric thermal and concentration expansion
coefficients, δ is the relaxation time of heat flux, k is the thermal conductivity, qr is the radiative heat flux, cp is the
heat capacitance, cs is the concentration, Dm is the mass diffusivity coefficient, kT is the thermal diffusion ratio, l is
the characteristic length.

The radiative energy flux qr is imposed according to the Rosseland approximation for thermal radiation [53] as

qr = −4σ∗

3k∗
∂T 4

∂y
, (6)

where k∗ is the mean absorption coefficient and σ∗ is the Stefan-Boltzmann constant.
It is considered that the temperature differences within the flow are sufficiently low and hence the term T 4 can be

expressed as the linear function of the temperature about T∞ and, omitting higher-order terms, we have

T 4 ∼= 4T 3
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We introduce the following similarity transformations:

ζ = yl−1, u = υxl−2f ′(ζ), v = −υ(m + 1)l−1f(ζ), T = T∞ + axsθ(ζ), C = C∞ + bxqφ(ζ). (8)

Utilizing eqs. (6), (7) and (8) in eqs. (2)–(5), we obtain
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and the dimensionless transformed boundary conditions are

f = S,
∂f

∂ζ
= 1, θ = 1, φ = 1, at ζ = 0,

∂f

∂ζ
→ 0, θ → 0, φ → 0, as ζ → ∞, (12)



Page 4 of 18 Eur. Phys. J. Plus (2018) 133: 24

Table 1. Comparison of the present results with those of [54] for the local Nusselt number (−θ′(0)) for several values M when
γ1 = γ2 = 0 = Ra = fw.

M Reddy et al. [54] Present results

Cone Wedge Cone Wedge

0.1 1.0082 1.3130 1.008215 1.313082

0.5 0.9854 1.2661 0.985405 1.266161

1.0 0.9597 1.2135 0.959724 1.213508

2.0 0.9166 1.1255 0.916676 1.125525

Fig. 2. Velocity curves for distinct values of γ1.

in which M = σ0B2
0 l2

ρυ is the magnetic field parameter, Gr = l2gβT (Tw−T∞)
υuw

is the energy Grashof number, Gc =
l2gβT (Cw−C∞)

υuw
is the mass Grashof number, Pr = μcp

k is the Prandtl number, β = δυ
l2 is the thermal relaxation

parameter, Ra = 4σ∗T 3
∞

kk∗ is the radiation parameter, Sr = DmKT (Tw−T∞)
cscpυ(Cw−C∞) is the Soret number, Df = DmKT (Cw−C∞)

cscpυ(Tw−T∞) is

the Dufour number, S = −lvw

υ(m+1) is the suction parameter, and Sc = υ
Dm

is the Schmidt number.
Due to the several physical applications, the dimensionless friction factor Cf , rate of heat transfer (Nusselt number

Nu) and rate of mass transfer (Sherwood number Sh) are defined by
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3 Results and discussion

The dimensionless flow governing equations (9)–(11) along the related boundary conditions (12) are numerically
resolved by the R-K–Fehlberg integration technique. The main goal in this section is to scrutinize the physical
characteristics of embedded variables on the three fields, such as dimensionless velocity, energy and concentration,
respectively. The values of several variables are assumed for numerical computations: Gc = Sr = s = q = 2.0,
Gr = M = α = β = Df = Ra = 0.5, Pr = 0.7, S = 1, γ1 = γ2 = 0.2, Sc = 0.6, and these values are kept fixed unless
differently stated in figures and tables.

Table 1 is displayed for the comparison of the obtained numerical results with those of the existing literature on
the heat transfer coefficient for assorted values of M . It is found that there is very good agreement with the obtained
results. Therefore, this ensures accuracy and effectiveness of the present numerical method.

Behavior of the Deborah number γ1 on the velocity f ′(η) and temperature θ(η) is sketched in figs. 2 and 3,
respectively. From fig. 2, it is clear that increasing the values of γ1 leads to a decrease in the fluid velocity and related
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Fig. 3. Temperature curves for distinct values of γ1.

Fig. 4. Velocity curves for distinct values of γ2.

thickness of the boundary layer. The liquid temperature increases to the higher values of γ1, which is inferred from
fig. 3. This is due to the fact that the Deborah number γ1 is a function of the relaxation time and it is maximum
for higher γ1, decreasing the fluid velocity and increasing the temperature field. This result agrees with that of the
published work of Hayat et al. [55]. The temperature is higher over the cone rather than over the wedge for the Deborah
number γ1. In addition, the effect of the Deborah number γ1 on the velocity and on energy fields has opposite behavior.

The variations of the Deborah number with respect to retardation time γ2 on the non-dimensional velocity and
energy distribution are portrayed in figs. 4 and 5. The dimensionless velocity field increases with an increase in γ2,
which enhances the corresponding energy boundary layer thickness, while a reverse effect on the fluid temperature
(fig. 5) is seen. It is also seen that the Deborah number γ2 has small variations in the temperature over cone and
wedge.

The characteristics of the magnetic parameter M on dimensionless velocity, energy and species fields are illustrated
figs. 6–8. It is observed, from fig. 6, that the velocity function diminishes with increasing values of M . This is due
to the fact that the Lorentz force acts as a resistance force and this force increases the frictional resistance opposing
the liquid flow in the viscous boundary layer thickness. However, a reverse trend is seen for the temperature and
concentration functions, which are shown in figs. 7 and 8, and these results agree with those of [9].

Figures 9 and 10 are plotted to show the influence of the Grashof number Gr on the velocity function f ′(η)
and temperature profile θ(η). It is observed, from fig. 9, that the velocity of the Oldroyd-B fluid increases with
increasing values of Gr, while the energy field decreases for increasing values of Gr, which is clear from fig. 10.
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Fig. 5. Temperature curves for distinct values of γ2.

Fig. 6. Velocity curves for distinct values of M .

Fig. 7. Temperature curves for distinct values of M .
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Fig. 8. Concentration curves for distinct values of M .

Fig. 9. Velocity curves for distinct values of Gr.

Fig. 10. Temperature curves for distinct values of Gr.
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Fig. 11. Velocity curves for distinct values of Gc.

Fig. 12. Temperature curves for distinct values of Gc.

Furthermore, the temperature is more affected by the thermal Grashof number in the flow past a cone as compared
to the flow across a wedge. Figures 11 and 12 are sketched for the impacts of mass/species Grashof number Gc on the
velocity and dimensionless energy distribution θ(η). It is observed, from fig. 11, that the flow and the hydrodynamic
boundary layer thickness are an increasing function of Gc, whereas opposite behavior is found for the temperature
(see fig. 12.). Figure 13 shows the behavior of α on the axial velocity f ′(η), which reveals that the velocity diminishes
for increasing values of α in both cone and wedge.

Figures 14–16 show the characteristics of the thermal radiation parameter Ra on the velocity f ′(η), θ(η) and
concentration φ(η), respectively. It is observed, from figs. 14 and 15, that both the velocity and temperature functions
increase for higher Ra, while an opposite effect is found for the dimensionless concentration function. Because of higher
values of Ra additional heat is produced in the energy radiation process to the working liquid, which results in the
improvement of fluid temperature. It may also be shown that the influence of Ra is a little stronger in the temperature
over the cone than over the wedge. The results for the radiation on the three flow distributions have the same physical
behavior as those of Pal and Mondal [11].

Figure 17 displays the influence of thermal relaxation parameter β on the temperature distribution function θ(η).
It is quite evident from this figure that larger values of β decrease the temperature profile. It is clearly observed that
an increase in β causes a decrease in the molecular heat, which diminishes the fluid flow temperature. It is further
observed that the variations in dimensionless energy of the flow over the cone are notably superior to those over the
wedge.
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Fig. 13. Velocity curves for distinct values of α.

Fig. 14. Velocity curves for distinct values of Ra.

Fig. 15. Temperature curves for distinct values of Ra.
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Fig. 16. Concentration curves for distinct values of Ra.

Fig. 17. Temperature curves for distinct values of β.

The variations in the curves of velocity, energy and concentration to the influence of the Soret number Sr are
analyzed through figs. 18–20. From figs. 18 and 20, it is found that an increase in the Soret number Sr shows an
increase in concentration and velocity and the related boundary layer thickness. But an opposite behavior appears in
the case of dimensionless temperature and is evident from fig. 19. This is due to the fact that an increase in the Soret
number Sr makes the energy diffusion of the material decrease, which is responsible for the reduction of the liquid
temperature. This behavior coincides with the results of Gnaneswara Reddy and Bhaskar Reddy [26]. Furthermore, it
is also seen that the liquid reaches maximum temperature over the cone than over the wedge.

The impact of the Dufour parameter Df on the velocity f ′(η), temperature function θ(η), and species profile φ(η)
is shown in figs. 21–23, respectively. From figs. 21 and 22, it can be found that the velocity and fluid temperature
enhance with increasing the values of Df and, significantly, the hydrodynamical and energy boundary layer thickness.
The opposite effect on the dimensionless concentration function is observed from fig. 23. The curves of concentration
increase near the cone compared to the wedge to the peak values of Df . Figure 24 shows that the dimensionless
velocity f ′(η) is a decreasing function, for higher values, of the suction parameter S. The behavior of the variable wall
temperature parameter s and concentration parameter q is illustrated in figs. 25 and 26. It can be observed from these
plots that both liquid temperature and concentration reduce with increasing values of s and q.

The numerical values of the friction factor (f ′′(0)), Nusselt number (−θ′(0)) and Sherwood number (−φ′(0)) near
the wall over the cone and wedge are displayed in tables 2–4 under the characteristics of embedded flow variables. It can
be seen, from table 2, that the friction factor increases with increasing values of Gr, Gc, γ2, β, Sr and Df , whereas the
opposite happens for the flow variables, such as M , γ1, and Ra. With higher values of Gr, Gc, γ2, β, and Sr, the Nusselt
number increases, but an opposite behavior is seen for dimensionless parameters M , γ1, β, Ra and Df (see table 2).
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Fig. 18. Velocity curves for distinct values of Sr.

Fig. 19. Temperature curves for distinct values of Sr.

Fig. 20. Concentration curves for distinct values of Sr.
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Fig. 21. Velocity curves for distinct values of Df .

Fig. 22. Temperature curves for distinct values of Df .

Fig. 23. Concentration curves for distinct values of Df .
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Fig. 24. Velocity curves for distinct values of S.

Fig. 25. Temperature curves for distinct values of s.

Fig. 26. Concentration curves for distinct values of q.
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Table 2. Numerical values of skin-friction coefficient (f ′′(0)) to the flow in the cone and that in the wedge.

M Gr Gc γ1 γ2 β Ra Sr Df Skin-friction coefficient

Cone Wedge

0.5 −0.868005 −0.273988

1.0 −1.047456 −0.475857

2.0 −1.354790 −0.820201

1.0 −1.253497 −0.573132

2.0 −0.868005 −0.273988

3.0 −0.527967 −0.007326

1.0 −1.075243 −0.578909

2.0 −0.868005 −0.273988

3.0 −0.665738 0.022366

0.1 −0.760542 −0.205721

0.5 −1.251494 −0.552605

1 −2.084570 −1.245752

0.1 −0.913996 −0.196866

0.5 −0.774907 −0.356257

1 −0.685379 −0.385335

0.2 −0.955316 −0.281400

0.5 −0.868005 −0.273988

0.9 −0.795587 −0.267552

0.5 −0.868005 −0.273988

1.0 −0.842600 −0.253935

2.0 −0.799643 −0.220218

0.5 −0.769079 −0.548964

1.0 −1.018942 −0.470270

2.0 −0.868005 −0.273988

0.5 −0.868005 −0.273988

1.0 −0.775015 −0.205991

2.0 −0.651441 −0.115614
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Table 3. Numerical values of the local Nusselt number (−θ′(0)) to the flow in the cone and that in the wedge.

M Gr Gc γ1 γ2 β Ra Sr Df Nusselt number

Cone Wedge

0.5 0.985373 1.266055

1.0 0.959702 1.213527

2.0 0.916599 1.125537

1.0 0.920109 1.184997

2.0 0.985373 1.266055

3.0 1.036673 1.329905

1.0 0.964741 1.203756

2.0 0.985373 1.266055

3.0 1.004859 1.323100

0.1 0.999417 1.294440

0.5 0.947439 1.187710

1 0.897407 1.085268

0.1 0.978393 1.267183

0.5 1.001691 1.271227

1 1.021330 1.284583

0.2 1.133105 1.237807

0.5 0.985373 1.266055

0.9 0.895006 1.301601

0.5 0.985373 1.266055

1.0 0.888651 1.099616

2.0 0.753653 0.889955

0.5 1.094251 1.477073

1.0 1.070473 1.425278

2.0 0.985373 1.266055

0.5 0.985373 1.266055

1.0 0.608290 0.809696

2.0 0.162174 0.347503
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Table 4. Numerical values of the local Sherwood number (−φ′(0)) to the flow in the cone and that in the wedge.

M Gr Gc γ1 γ2 β Ra Sr Df Sherwood number

Cone Wedge

0.5 1.505918 0.369637

1.0 1.502883 0.394098

2.0 1.496138 0.433068

1.0 1.500283 0.407859

2.0 1.505918 0.369637

3.0 1.508818 0.338409

1.0 1.501222 0.397651

2.0 1.505918 0.369637

3.0 1.510030 0.342657

0.1 1.508264 0.356437

0.5 1.496318 0.404585

1 1.476425 0.447815

0.1 1.504265 0.368832

0.5 1.508499 0.367303

1 1.509642 0.360655

0.2 1.232575 0.424657

0.5 1.505918 0.369637

0.9 1.668817 0.302140

0.5 1.505918 0.369637

1.0 1.682038 0.662092

2.0 1.924237 1.020503

0.5 2.062547 1.426702

1.0 2.070006 1.009664

2.0 1.505918 0.369637

0.5 1.505918 0.369637

1.0 2.187275 1.154678

2.0 2.978708 1.920941
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Finally, the Sherwood number increases for larger values of the variables Gr, Gc, γ2, β, Ra and Df , while a reverse
behavior is seen for the flow variables M , γ1, and Sr. Furthermore, a preferable heat transfer production can be
obtained on the flow over the wedge as compared to that over the cone.

4 Concluding remarks

The influence of the Cattaneo-Christov heat flux on a hydromgnatic Oldroyd-B radiative liquid flow across two different
geometries in the presence of cross-diffusion has been investigated. The described problem has been modeled and the
partial differential equations (PDEs) are reduced into ordinary differential equations (ODEs) by employing suitable
similarity transformations. The resulting equations are resolved numerically by Runge-Kutta–Fehlberg algorithm with
shooting scheme. The key observations for the current study are listed as follows:

1) The magnetic parameter M reduces the dimensionless velocity and the related boundary layer thickness.
2) The impact of the Deborah numbers, γ1 and γ2, on the velocity and liquid temperature is opposite.
3) The thermal radiation parameter Ra has a dominant effect on the fluid temperature field across the cone compared

to that across the wedge.
4) The thickness of the thermal boundary layer and temperature decrease for larger values of species and thermal

buoyancy parameters.
5) The fluid temperature θ(η) reduces with increasing values of thermal relaxation time β.
6) The Nusselt number is high over the wedge with the cone for the larger thermal radiation while the opposite

influences on the Sherwood number.

Nomenclature

a, b Constants Ra Radiation parameter
B0 Applied magnetic field strength s Temperature parameter of the wall
cp Heat capacitance Sr Soret number
cs Concentration S Suction parameter
C∞ Ambient concentration Sc Schmidt number
Cw Concentration near the surface Tw Temperature near the surface
Dm Mass diffusivity coefficient T∞ Ambient temperature
Df Dufour number u Velocity component along x

Gr Grashof number in temperature v Velocity component along y

Gc Grashof number in concentration α Half angle of the wedge/cone
g Gravitational acceleration β Thermal relaxation parameter
k Thermal conductivity βT Volumetric thermal expansion coefficient
k∗ Mean absorption coefficient βC Volumetric concentration expansion coefficient
kT Thermal diffusion ratio γ1 Deborah number with respect to relaxation time
l Characteristic length γ2 Deborah number with respect to retardation time
M Magnetic field parameter υ Viscosity (kinematic) of the fluid
Pr Prandtl number, σ Electrical conductivity
q Concentration parameter of the wall σ∗ Stefan-Boltzmann constant
qr Radiative heat flux ρ Fluid density
r Radius of the cone δ Relaxation time of heat flux
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