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Abstract. The present problem is concerned with the flow of a viscous steady incompressible fluid through
a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up
by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow
through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy’s
law. In this work, we discussed the effect of various fluid parameters like permeability parameter k0,
discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible
fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress
and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by
non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has
been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.

1 Introduction

The flow of a viscous fluid through porous media has received considerable attention by the number of researchers
because of its numerous applications in sedimentation, colloidal science, etc. In nature, such flows occur in cases of
water formation, instruction of sea water to the coastal area and dams, flows to wells from water bearing formation
and the flow of river water through the porous banks and thus land erosion. The most appropriate example of a
non-homogenous multiphasic porous system is soil. Thus the flow of viscous incompressible fluid through the porous
region plays an imperative role in the area of soil engineering. A major application of flow through porous media is
blood flow through human arteries. The researches concerning the problems related to applications of Stokes equations,
Darcy’s equation and Brinkman equations in physical and biological sciences were carried out during the last previous
years. A number of mathematical models, including an evaluation of a hydrodynamic permeability of different type
membranes regarded as conglomerates of incompletely porous spherical particles and influence of porous coating on
the flow rate through cylindrical capillaries have been generated by the researchers.

Stokes [1] discussed the theories of internal friction of viscous fluids when they are in motion, and of the equilibrium
and motion of elastic bodies. Stokes equations can be used to study problems such as locomotion of micro-organism,
flow of mucus in lungs and movement of minuscule particles having slow motion, small linear dimensions or high
viscosity. Darcy [2] has investigated the flow of water in vertical homogeneous sand filters. He concludes that the
rate of flow through porous media of low permeability is proportional to pressure drop, which is one of the basic
models that have been used extensively in the literature. The flow of a viscous, steady, incompressible fluid through
a porous spherical particle with the help of Darcy’s law was discussed by Joseph and Tao [3]. With this discussion,
they concluded that the drag on the porous sphere is same as that of solid sphere with reduced radius. However, this
law is not applicable for the flow of a viscous, steady, incompressible fluid through porous region with high porosity,
for flows in the neighbourhood of the surface of the bounded porous medium and large shear rates.
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Many early authors, e.g., Neild and Bejan [4] have used various types of extended Darcy models for flow through
porous media. The problem of the flow of a Newtonian fluid through porous media was studied by Preziosi and
Farina [5] by using Darcy’s law. The slip boundary condition at a naturally permeable wall was discussed by Beavers
and Joseph [6]. The low Reynolds number flow of a viscous, incompressible fluid through porous spherical shell enclosing
a cavity immersed in viscous fluid was investigated by Jones [7]. The creeping flow of a viscous, incompressible fluid
through the composite sphere enclosed by a porous layer was studied by Masliyah et al. [8]. An exact solution for the
creeping flow past a porous spherical shell was investigated by Qin and Kaloni [9]. The drag force experienced by a
porous spherical shell was also evaluated by them. The problem of the steady two-dimensional Stokes flow stirred by
an infinitesimal rotating cylinder in the annular region between two fixed concentric cylindrical walls was tackled by
Hackborn [10]. The drag force exerted by the fluid on the porous cylinders in a viscous fluid at low Reynolds number
was obtained by Stechkina [11]. The flow of a viscous steady incompressible fluid through a circular cylinder embedded
in another medium with constant porosity was discussed by Pop and Cheng [12]. In this work, they showed that the
separation of the fluid flow does not take place at the surface of the cylinder. The uniform flow of a steady, viscous,
incompressible fluid through an inhomogeneous permeable circular cylinder by using Darcy’s law was considered by
Singh and Gupta [13].

Recently, Deo [14] has discussed the Stokes flow through a swarm of porous cylinders with Happel and Kuwabara
boundary conditions. The problem of a fluid flow through a cylinder, when the fluid is viscoelastic was discussed
by Ellero et al. [15] by using a numerical scheme based on smoothed particle hydrodynamics. In the membrane
filtration process, the specific resistance of aggregated colloidal cake layers was evaluated by Kim and Yuan [16]. The
comparative study for Happel, Kuwabara, Kvashnin and Cunningham/Mehta-Morse models when the quasisteady
axisymmetric flow of an incompressible viscous fluid takes place in an axisymmetric porous spherical shell has been
done by Saad [17]. The problem of two-dimensional Stokes flow through the permeable cylinders was considered by
Palaniappan et al. [18]. The drag force exerted by fluid on a cylinder was discussed by Datta and Shukla [19] by
using the slip boundary condition with a conclusion that the slippage on the cylinder reduces the drag force. The
flow of viscous fluid through a porous circular cylinder, when the Reynolds number is small was considered by Verma
and Bhatt [20]. In this problem, they discussed the effect of permeability and slip conditions which was discussed by
Jones [7] on the flow through a porous cylinder. A theoretical derivation of Darcy’s law was done by Whitaker [21]
with the help of the volume averaging method by taking Stokes flow past a rigid porous region. The problem of flow
of a steady viscous fluid through a circular cylinder was discussed by Mandujano and Peralta-Fabi [22]. In this work,
they used the series truncation method to find the solutions to the problem. The flow of viscous, steady, incompressible
fluid through the swarm of porous nanocylindrical particles enclosing a solid cylindrical core was discussed by Deo
and Yadav [23].

The comparison of results for nonlinear fluid flow through porous media obtained by Quadratic and Power Law
was discussed by Cheng et al. [24]. The flow of a viscous incompressible fluid through a membrane built up by porous
cylindrical particles enclosing a solid core was studied by Deo et al. [25]. The flow of a steady, viscous, incompressible
fluid through a swarm of porous particles with an impermeable core along the axis of a cylinder and perpendicular
to the axis of a cylinder was discussed by Deo et al. [26]. The study of flow when a porous sphere is placed in an
arbitrary oscillatory Stokes flow by using the Brinkman model was studied by Prakash and Raja Sekhar [27]. The
problem of two-dimensional flow of incompressible gas with suspended particles in the flow around the porous cylinder
under the assumption that particle concentration is low and the negligible influence of dispersed phase on the gas
was discussed by Grigoreva and Zaripov [28]. The problem of a slow flow of viscous incompressible fluid through a
deformed porous spheroid embedded in another porous medium has been discussed by Yadav and Deo [29] with the
conclusion that the drag coefficient increases and the shearing stress decreases with the increase of permeability of
the porous region. The slow flow of a viscous incompressible fluid through a porous cylindrical shell in a concentric
cylindrical cavity was studied by Yadav [30]. Numerical modeling of two-dimensional fluid flow around and through a
porous diamond-square cylinder was done by Valipour et al. [31]. The problem of the onset of convection in a vertical
porous cylinder with the assumption that the lower and upper plane boundaries of the cylinder are impermeable walls
was discussed by Barletta and Storesletten [32]. Srinivasan and Rajagopal [33] discussed the flow of fluids through
inhomogeneous porous media due to high pressure gradients. The Cell models for viscous flow through a swarm of
Reiner-Rivlin liquid spherical drops and for micropolar fluid through the viscous fluid sphere was discussed by Jaiswal
and Gupta [34] and Saad [35] respectively. Chernyshev [36] studied the problem of the Stokes flow for a porous particle
with radially non-uniform porosity.

Although a lot of work has been done on flow past a body with porous layer, in most of the above-mentioned works,
it was found that the researchers have taken the homogeneous medium, i.e. lack of non-homogeneity of the porous
region was observed. By considering the above fact in our mind, in this paper, we discussed the motion of a viscous,
steady incompressible fluid through a non-homogenous porous membrane. The hydrodynamic drag force acting on
non-homogeneous porous cylinder by the viscous, steady incompressible fluid and the hydrodynamic permeability of
a membrane were evaluated. The influence of various parameters like permeability parameters of non-homogeneous
porous media, viscosity ratio, particle volume fraction, etc., on the hydrodynamic drag force and hydrodynamic
permeability of the membrane was discussed graphically.
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Fig. 1. The physical model.

Fig. 2. Co-ordinate system.

2 Statement and mathematical formulation

In the present problem, we consider the motion of a viscous incompressible fluid through a non-homogenous porous
medium which is in the form of a membrane and built up by non-homogenous porous cylindrical particles of radius
ã (fig. 1). In a membrane, a system of co-axial non-homogenous porous cylinders of radii ã has been considered with
their axes being parallel. Here, we assume that the membrane built up by non-homogenous porous cylindrical particles
is also in the form of a cylinder. To know the hydrodynamic permeability of the membrane, we used the cell model
technique. According to the cell model technique, we choose a single particle from the membrane and assume that
each non-homogenous porous cylindrical particle is enveloped by a hypothetical cylindrical cell of radius b̃ (fig. 2).

Let us consider that the non-homogenous porous cylinder is stationary and the viscous incompressible fluid per-
pendicular to the axis of the cylinder (z-axis) with a uniform velocity Ũ(|Ũ| = U) is approaching towards the cell
and partially passing through the non-homogeneous porous cylinder. The slow flow of a Newtonian fluid with absolute
viscosity is assumed as steady and axisymmetric. Let (r, θ, z) denote a cylindrical polar co-ordinate system with the
origin on the axis of the cylinder of radius ã and the line of motion of the viscous incompressible fluid as an initial line.
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Due to the axisymmetric flow, all the physical quantities are independent of z. Therefore, the velocity component ṽz

vanishes along the z-direction. We shall denote i an entity for inside and o for outside regions of the non-homogenous
porous cylinder, respectively.

The flow of the viscous, steady, incompressible fluid inside the non-homogenous porous region (i.e. r̃ ≤ ã) is
governed by Darcy’s [2] equation together with the continuity equation

μ̃OṽO = −K(r̃)∇̃p̃O, (1)

∇̃ · ṽO = 0. (2)

The flow of the viscous, steady, incompressible fluid outside the non-homogenous porous region (ã ≤ r̃ ≤ b̃) is governed
by the Stokes equation (Happel and Brenner [37]) with continuity condition:

∇̃p̃i = μ̃iΔ̃ṽi, (3)

∇̃ · ṽi = 0, (4)

where the symbols ∼, above the variables mark dimensional values; K̃(r) being the permeability coefficient of the
non-homogeneous porous region which can be assumed as k0r̃

2, ṽo, ṽi are velocity outside and inside the porous
region; p̃o, p̃i are pressure outside and inside the porous region; μ̃o and μ̃i are viscosities of the fluid region and the
effective viscosity of the non-homogeneous porous region. The relation between μ̃o and μ̃i will depend on the type of
porous media, i.e. μ̃o may be either greater or smaller than μ̃i.

3 Solution of the problem

Let us define the following non-dimensional variables to make the governing equation in dimensionless form:

1
γ

=
b̃

ã
, r =

r̃

ã
, ∇ = ã∇̃, Δ = Δ̃ · ã2, p =

p̃

p̃o
, p̃o =

Ũ μ̃o

ã
,

λ2 =
μ̃o

μ̃i
, v =

ṽ
Ũ

, K(r) =
K̃(r)
ã2

, and ψo,i =
ψ̃o,i

Ũ ã2
. (5)

Now using the relation (5), we can reduce the equations of flow (1)–(4) into non-dimensional form as follows.

For inside the non-homogeneous porous region:

ṽi = −K̃(r)
μ̃i

∇̃p̃i ⇒ viŨ = −K(r)ã2

μ̃i

∇
ã

pip̃o ⇒ viŨ = −K(r)ã
μ̃i

p̃o∇pi

⇒ viŨ = −K(r)ã
μ̃i

Ũ μ̃o

ã
∇pi ⇒ vi = −λ2K(r)∇pi, (6)

∇̃ · ṽi = 0 ⇒ 1
ã2

∇ · viŨ = 0 ⇒ Ũ

ã2
∇ · vi = 0 ⇒ ∇ · vi = 0. (7)

For outside the non-homogeneous porous region:

∇̃p̃o = μ̃oΔ̃ṽo ⇒ ∇
ã

pop̃o = μ̃o Δ

ã2
voŨ ⇒ ∇

ã
po Ũ

ã
μ̃o = μ̃o Δ

ã2
voŨ , ⇒ ∇po = Δvo. (8)

Similarly, the non-dimensional form of the continuity equation for outside the non-homogeneous porous region can be
written as

∇ · vo = 0. (9)

Thus the system of governing equations (eqs. (1)–(4)) in dimensionless form can be written as:{
∇po = Δvo,

∇ · vo = 0,

(
1 ≤ r ≤ 1

γ

)
, (10)

{
vi = −λ2K(r)∇pi,

∇ · vi = 0,
(r ≤ 1). (11)
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Taking divergence of both sides of the first equation of eq. (11), we have

∇ · vi = −λ2∇(K(r)) · (∇pi) − λ2K(r)(∇ · ∇pi). (12)

Using the second equation of eq. (11), we have

0 = grad k(r) · grad pi + K(r)∇2pi ⇒ ∂K(r)
∂r

∂pi

∂r
+ K(r)

(
∂2pi

∂r2
+

1
r

∂pi

∂r
+

1
r2

∂2pi

∂θ2

)
= 0. (13)

By the method of variable and separable, we can obtain the solution of eq. (13).
Let us assume that

pi = g(r) cos θ. (14)

By using power’s law of porosity, we can also assume the variable porosity of material as

K(r) = kor
2, ko > 0. (15)

Using eqs. (14) and (15) in eq. (13), we can get a second-order homogeneous partial differential equation:

r2 ∂2g(r)
∂r2

+ 3r
∂g(r)
∂r

− g(r) = 0. (16)

Solving eq. (16), we have
g(r) = A1r

−1+
√

2 + A2r
−1−

√
2. (17)

Therefore, the suitable solution of eq. (16) for the flow inside the non-homogeneous porous cylinder will be (the
constant A2 will be zero because of singularity inside the non-homogeneous porous cylinder)

g(r) = A1r
−1+

√
2. (18)

Thus, the pressure inside the non-homogeneous porous cylinder will be

pi = A1r
−1+

√
2 cos θ. (19)

Hence, the components of velocity of the viscous, steady, incompressible fluid in the non-homogeneous porous medium
will come out as follows:

vi
r = −λ2koA1

(
−1 +

√
2
)

r
√

2 cos θ, (20)

vi
θ = λ2koA1r

√
2 sin θ. (21)

The stream function ψ(r, θ) for outside and inside the non-homogeneous porous cylinder may be defined as

vi
r =

1
r

∂ψi

∂θ
, vi

θ = −∂ψi

∂r
, (22)

vo
r =

1
r

∂ψo

∂θ
, vo

θ = −∂ψo

∂r
. (23)

By using the relation (22) and eqs. (20), (21), the stream function formulation for the flow inside the non-homogeneous
porous cylinder will comes out as

ψi(r, θ) = −λ2koA1

(
−1 +

√
2
)

r1+
√

2 sin θ. (24)

Now, taking curl of first equation of eq. (10) and using the velocities-stream function relation (23) we get the fourth-
order partial differential equation for the flow outside the non-homogeneous porous cylinder as follows:

∇4ψo = ∇2(∇2ψo) = 0, (25)

where ∇2 is an operator and given as

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
. (26)



Page 6 of 26 Eur. Phys. J. Plus (2018) 133: 1

A suitable stream function solution of the Stokes equation (25) can be written as

ψo(r, θ) = [B1r + B2r
3 + B3/r + B4r ln r] sin θ. (27)

Using eq. (27) in eq. (23), the components of velocity of viscous, steady, incompressible fluid in cylindrical container
outside the non-homogeneous porous cylinder can be obtained which is given as follows:

vo
r(r, θ) = [B1 + B2r

2 + B3/r2 + B4 ln r] cos θ, (28)

vo
θ(r, θ) = −[B1 + 3B2r

2 − B3/r2 + B4(1 + ln r)] sin θ. (29)

Further, we have mathematical expression for tangential and normal stresses for outside and inside the non-
homogeneous porous cylinder as follows:

τo
rθ = λ2

[
1
r2

∂2ψo

∂θ2
+

1
r

∂ψo

∂r
− ∂2ψo

∂r2

]
, (30)

τo
rr = −po +

2λ2

r

[
∂2ψo

∂r∂θ
− 1

r

∂ψo

∂θ

]
, (31)

τ i
rθ =

[
1
r2

∂2ψi

∂θ2
+

1
r

∂ψi

∂r
− ∂2ψi

∂r2

]
, (32)

τ i
rr = −pi +

2
r

[
∂2ψi

∂r∂θ
− 1

r

∂ψi

∂θ

]
, (33)

where the pressure outside the non-homogeneous porous cylinder may be obtained with the help of the following
relations

∂po

∂r
= λ2

[
∇2vo

r − vo
θ

r2
− 2

r2

∂vo
θ

∂θ

]
, (34)

1
r

∂po

∂r
= λ2

[
∇2vo

θ − vo
θ

r2
+

2
r2

∂vo
r

∂θ

]
. (35)

By using the appropriate velocities in eqs. (30)–(35), we can obtain the stresses in both regions and pressure outside
the non-homogeneous porous layer, respectively, as

τo
rθ = −4λ2

(
rB2 +

1
r3

B3

)
sin θ, (36)

τo
rr = −4λ2

[
rB2 +

1
r3

B3 −
1
r
B4

]
cos θ, (37)

τ i
rθ = 2

(
−1 +

√
2
)

r−1+
√

2λ2koA1 sin θ, (38)

τ i
rr = −r−1+

√
2
(
−1 + 2

(
−2 +

√
2
)

λ2ko

)
A1 cos θ, (39)

po = 2λ2

[
4B2r −

1
r
B4

]
cos θ. (40)

3.1 Boundary conditions and determination of arbitrary constants

In order to find the complete solution of the boundary value problems (1) and (3), we need suitable boundary conditions
at non-homogeneous porous-fluid interfaces and on the hypothetical cell surface. The boundary conditions at the
mentioned surfaces, which are physically realistic and mathematically consistent for this problem, can be taken as

At non-homogeneous porous-fluid interfaces, i.e. at r = 1

The pressure in a non-homogeneous porous region is equal to normal stress in fluid Chernyshev [36], i.e.

pi = −po + 2λ2 ∂vo
r

∂r
. (41)
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The normal components of velocity in a non-homogeneous porous region are equal to the normal components of
velocity in the outside region of non-homogeneous porous medium Masliyah [8], i.e.

vi
r = vo

r . (42)

The tangential components of velocities outside and inside the non-homogeneous porous region have discontinuity
and are proportional to the derivative of the tangential component of velocity in the outside of the non-homogeneous
porous region with respect to the outward normal Pop and Cheng [12], i.e.

vo
θ − vi

θ = β
√

k(r)
∂vo

θ

∂r
, (43)

where β is the dimensionless constant and this constant depends on the physical nature of the porous material and
the geometry of its surface. For very small values of permeability coefficient on the surface, β varies from 0.25 to 10
(Masliyah [8], Pop and Cheng [12]).

At the surface of a hypothetical cell, i.e. at r = 1
γ

The condition of uniform velocity at the hypothetical cell surface is

vo
r = cos θ. (44)

According to Happel’s model :
τo
rθ(m, θ) = 0. (45a)

According to Kuwabara’s model :
∇2ψo(m, θ) = 0. (45b)

According to Kvashnin’s model :
∂vo

θ

∂r
= 0. (45c)

According to Mehta-Morse’s model :
vo

θ = − sin θ. (45d)

Using eqs. (19)–(21), (28), (29) and (40) in eqs. (41)–(45), we have

4λ2B2 + 4λ2B3 − 4λ2B4 + A1 = 0, (46)

− B1 − B2 − B3 −
(
−1 +

√
2
)

λ2k0A1 = 0, (47)

B1 +
(
3 − 6β

√
k0

)
B2 −

(
1 + 2β

√
k0

)
B3 +

(
1 − β

√
k0

)
B4 + λ2k0A1 = 0, (48)

γ2B1 + B2 + γ4B3 + γ2 ln
(

1
γ

)
B4 = γ2, (49)

B2 + γ4B3 = 0, (50a)

4B2 + γ2B4 = 0, (50b)

6B2 + 2γ4B3 + γ2B4 = 0, (50c)

γ2B1 + 3B2 − γ4B3 + γ2

(
1 + ln

(
1
γ

))
B4 = γ2. (50d)

Solving the system of eqs. (46)–(49) together with one of eqs. (50), i.e. for Happel’s model, Kuwabara’s model,
Kvashnin’s model and Mehta-Morse’s model, respectively, we can evaluate the arbitrary constants B1, B2, B3, B4 and
A1 for all the models, respectively. Therefore the stream function formulation for both the regions has been determined
completely for all the models.
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4 Hydrodynamic permeability and stresses

4.1 Evaluation of the drag force

The hydrodynamic drag force F̃ experienced by a non-homogeneous porous cylinder in a cylindrical container from
the side of a liquid is defined as

F̃ =
∫ 2π

0

(τo
rr cos θ − τo

rθ sin θ)r=1ãdθ. (51)

Integrating the normal and tangential stresses (eqs. (37) and (36)) over the non-homogeneous porous cylindrical
particle, we can obtain the experienced hydrodynamic drag force F which is given as

F̃ = 4πλ2ãŨB4. (52)

Hence, the drag force F for all models, respectively, will come as follows.

Happel’s model :

F = ãŨ
[
8πλ2

(
−1 − γ4 + β(−1 + 3γ4)

√
k0 + 2

(
−2 +

√
2
)

(−1 + γ4)λ4k0

)] /
[
1 − γ4 − 2(1 + γ4) Log

(
1
γ

)
+ β

(
−1 + γ4 + (−2 + 6γ4) Log

(
1
γ

)) √
k0 + 4λ4

(
− 1 +

(
5 − 4

√
2
)

γ4

+
(
−2 +

√
2
)

(−1 + γ4) Log
(

1
γ

))
k0 + 4

(
−1 +

√
2
)

β(−3 + 7γ4)λ4k
3/2
0

]
. (53a)

Kuwabara’s model :

F = −ãŨ
[
16πλ2

(
1 + β

√
k0 + 2

(
−2 +

√
2
)

λ4k0

)] /[
3 − 4γ2 + γ4 − 4Log

[
1
γ

]
− β

(
1 − 4γ2

+ 3γ4 + 4Log
[

1
γ

] )√
k0 − 2λ4

(
6 −

√
2 + 4

(
−3 + 2

√
2
)

γ2 +
(
−2 +

√
2
)

γ4 + 4
(
−2 +

√
2
)

Log
[

1
γ

])
k0

+ 8
(
−1 +

√
2
)

β(−3 + γ2)λ4k
3/2
0

]
. (53b)

Kvashnin’s model :

F =
(
4πλ2

(
−3 − γ4 + 3β(−1 + γ4)

√
k0 + 2

(
−2 +

√
2
)

(−3 + γ4)λ4k0

))/(
2 − 2γ2 − (3

+ γ4) Log
[

1
γ

]
+ β(−1 + γ2)

(
1 − γ2 + 3(1 + γ2) Log

[
1
γ

]) √
k0 + λ4

(
− 8 +

√
2 +

(
12 − 8

√
2
)

γ2

+
(
12 − 9

√
2
)
γ4 + 2

(
−2 +

√
2
)

(−3 + γ4) Log
[

1
γ

])
k0 + 2

(
−1 +

√
2
)

β
(
−9 + 2γ2 + 7γ4

)
λ4k

3/2
0

)
.

(53c)

Mehta-Morse’s model :

F̃ = ãŨ

[ (
4πλ2

(
−1 + γ4 − (β + 3βγ4)

√
k0 + 2

(
−2 +

√
2
)

(1 + γ4)λ4k0

)) /(
(−1 + γ2)

(
− 1

+ γ2 + (1 + γ2) ln
(

1
γ

))
− β

(
2γ2(−1 + γ2) + (1 + 3γ4) ln

(
1
γ

)) √
k0 + λ4

(
− (−1 + γ2)

(
4 −

√
2

+
(
−8 + 7

√
2
)

γ2
)

+ 2
(
−2 +

√
2
)

(1 + γ4) ln
(

1
γ

))
k0 + 2

(
−1 +

√
2
)

β(3 − 2γ2 + 7γ4)λ4k
3/2
0

)]
. (53d)
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4.2 Evaluation of the dimensionless hydrodynamic permeability of the membrane

Hydrodynamic permeability of membrane L̃11 built up by porous cylinder in a cylindrical container is defined as the
ratio of uniform flow rate Ũ to the cell gradient pressure F̃ /Ṽ (Vasin et al. [38])

L̃11 =
Ũ

F̃ /Ṽ
, (54)

where Ṽ = πb̃2 is the volume of the cylindrical container of the unit length.
Using the value of F̃ from eq. (52) and the value of Ṽ from above in eq. (54) we get

L̃11 =
1

4λ2γ2B4
ã = L11ã, (55)

where L11 = 1
4λ2γ2B4

is the dimensionless hydrodynamic permeability of a membrane.
Substituting the value of B4 in the above equation, we have the following.

Happel’s model :

L11 =
[
1 − γ4 − 2(1 + γ4) Log

[
1
γ

]
+ β

(
−1 + γ4 + (−2 + 6γ4) Log

[
1
γ

]) √
k0

+4λ4

(
− 1 +

(
5 − 4

√
2
)

γ4 +
(
−2 +

√
2
)

(−1 + γ4) Log
[

1
γ

] )
k0 + 4

(
−1 +

√
2
)

β(−3 + 7γ4)λ4k
3
2
0

]/
[
8γ2λ2

(
− 1 − γ4 + β(−1 + 3γ4)

√
k0 + 2

(
−2 +

√
2
)

(−1 + γ4)λ4k0

)]
. (56a)

Kuwabara’s model :

L11 =
[
−3 + 4γ2 − γ4 + 4Log

[
1
γ

]
+ β

(
1 − 4γ2 + 3γ4 + 4Log

[
1
γ

]) √
k0 + 2λ4

(
6 −

√
2

+ 4
(
−3 + 2

√
2
)

γ2 +
(
−2 +

√
2
)

γ4 + 4
(
−2 +

√
2
)

Log
[

1
γ

] )
k0 − 8

(
−1 +

√
2
)

β(−3 + γ2)λ4k
3
2
0

] /
[
16γ2λ2

(
1 + β

√
k0 + 2

(
−2 +

√
2
)

λ4k0

)]
. (56b)

Kvashnin’s model :

L11 =
(

2 − 2γ2 − (3 + γ4) Log
[

1
γ

]
+ β(−1 + γ2)

(
1 − γ2 + 3(1 + γ2) Log

[
1
γ

])√
k0 + λ4

(
− 8 +

√
2

+ 4
(
3 − 2

√
2
)

γ2 + 3
(
4 − 3

√
2
)

γ4 + 2
(
−2 +

√
2
)

(−3 + γ4) Log
[

1
γ

] )
k0 + 2

(
−1 +

√
2
)

β(−9 + 2γ2

+ 7γ4)λ4k
3/2
0

)/ (
4γ2λ2

(
−3 − γ4 + 3β(−1 + γ4)

√
k0 + 2

(
−2 +

√
2
)

(−3 + γ4)λ4k0

))
. (56c)

Mehta-Morse’s model :

L11 =
(

(−1 + γ2)2 + (−1 + γ4) ln
(

1
γ

)
− β

(
2γ2(−1 + γ2) + (1 + 3γ4) ln

(
1
γ

)) √
k0 + λ4

(
− (−1

+ γ2)
(
4 −

√
2 +

(
−8 + 7

√
2
)

γ2
)

+ 2
(
−2 +

√
2
)

(1 + γ4) ln
(

1
γ

))
k0 + 2

(
−1 +

√
2
)

β(3 − 2γ2

+ 7γ4)λ4k
3/2
0

)/ (
4γ2λ2

(
−1 + γ4 − (β + 3βγ4)

√
k0 + 2

(
−2 +

√
2
)

(1 + γ4)λ4k0

))
. (56d)

When permeability ko of the non-homogeneous porous region vanishes, then the above model behaves like a creeping
flow of a viscous steady incompressible fluid through a membrane composed of impermeable cylinder of radius ã. In
this case, the value of the drag force experienced by the membrane and the dimensionless hydrodynamic permeability
of a membrane comes out as follows.
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Happel’s model :

F =
8π(1 + γ4)λ2

−1 + γ4 + 2(1 + γ4) log( 1
γ )

;

L11 =
−1 + γ4 + 2(1 + γ4) log( 1

γ )

8γ2(1 + γ4)λ2
, (57)

which agrees with the previously established results of Deo et al. [25].
Kuwabara’s model :

F = − 16πλ2

3 − 4γ2 + γ4 − 4 log( 1
γ )

;

L11 = −
3 − 4γ2 + γ4 − 4 log( 1

γ )

16γ2λ2
. (58)

This result agrees with the earlier result as reported by Deo et al. [23].
Kvashnin’s model :

F =
4π(3 + γ4)λ2

2(−1 + γ2) + (3 + γ4) log( 1
γ )

;

L11 =
2(−1 + γ2) + (3 + γ4) log( 1

γ )

4γ2(3 + γ4)λ2
. (59)

Mehta-Morse’s model :

F =
4π(1 + γ2)λ2

−1 + γ2 + (1 + γ2) log( 1
γ )

;

L11 =
−1 + γ2 + (1 + γ2) log( 1

γ )

4γ2(1 + γ2)λ2
. (60)

Results (59) and (60) agree with the earlier result as reported by Yadav [30].

4.3 Evaluation of the stresses inside and outside the non-homogeneous porous region

The stresses inside and outside the membrane for all models can be evaluated by using the value of appropriate
constants in eqs. (36)–(39), which are as follows.

Happel’s model :

τo
rθ = −

[
4

(
−1 + r4γ4

)
λ2 sin[θ]

(
1 − β

√
k0 + 4

(
−2 +

√
2
)

λ4k0

)] /[
r3

(
1 − γ4 − 2(1

+ γ4) log
(

1
γ

)
+ β

(
−1 + γ4 + (−2 + 6γ4) log

(
1
γ

)) √
k0 + 4λ4

(
− 1 +

(
5 − 4

√
2
)

γ4 +
(
−2 +

√
2
)

(−1

+ γ4) log
(

1
γ

))
k0 + 4

(
−1 +

√
2
)

β(−3 + 7γ4)λ4k
3/2
0

)]
, (61)
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τ i
rθ = −

[
8

(
−1 +

√
2
)

r−1+
√

2λ4 sin[θ]
(
−1 − 3γ4 + β(−3 + 7γ4)

√
k0

)
k0

] /[
1 − γ4 − 2(1

+ γ4) log
(

1
γ

)
+ β

(
−1 + γ4 + (−2 + 6γ4) log

(
1
γ

)) √
k0 + 4λ4

(
− 1 +

(
5 − 4

√
2
)

γ4 +
(
−2 +

√
2
)

(−1

+ γ4) log
(

1
γ

))
k0 + 4

(
−1 +

√
2
)

β(−3 + 7γ4)λ4k
3/2
0

]
, (62)

τo
rr = −

[
4λ2 cos[θ]

(
− 1 + r2

(
2 + (2 + r2)γ4

)
+ β

(
1 + r2(2 − (6 + r2)γ4)

) √
k0 + 4

(
− 2

+
√

2
) (

−1 + r2
) (

1 + r2γ4
)
λ4k0

)]/[
r3

(
1 − γ4 − 2(1 + γ4) log

(
1
γ

)
+ β

(
− 1 + γ4 + (−2

+ 6γ4) log
(

1
γ

) )√
k0 + 4λ4

(
−1 + (5 − 4

√
2)γ4 +

(
−2 +

√
2
)

(−1 + γ4) log
(

1
γ

))
k0 + 4

(
− 1

+
√

2
)
β(−3 + 7γ4)λ4k

3/2
0

)]
, (63)

τ i
rr = −

[
4r−1+

√
2λ2 cos[θ]

(
−1 − 3γ4 + β(−3 + 7γ4)

√
k0

) (
−1 + 2

(
−2 +

√
2
)

λ2k0

)] /[
1 − γ4

− 2(1 + γ4) log
(

1
γ

)
+ β

(
−1 + γ4 + (−2 + 6γ4) log

(
1
γ

)) √
k0 + 4λ4

(
− 1 +

(
5 − 4

√
2
)

γ4 +
(
− 2

+
√

2
)
(−1 + γ4) log

(
1
γ

))
k0 + 4

(
−1 +

√
2
)

β(−3 + 7γ4)λ4k
3/2
0

]
. (64)

Kuwabara’s model :

τo
rθ =

[
4λ2 sin[θ]

(
− 2 + (1 + r4)γ2 + β

(
2 + (−3 + r4)γ2

) √
k0 + 2

(
−2 +

√
2
)

(−4 + (−1 + r4)γ2)λ4k0

)]/
[
r3

(
− 3 + 4γ2 − γ4 + 4 log

(
1
γ

)
+ β

(
1 − 4γ2 + 3γ4 + 4 log

(
1
γ

)) √
k0 + 2λ4

(
6 −

√
2

+4
(
−3+2

√
2
)

γ2+
(
−2+

√
2
)

γ4+4
(
−2+

√
2
)

log
(

1
γ

) )
k0−8

(
−1+

√
2
)

β(−3+γ2)λ4k
3/2
0

)]
, (65)

τ i
rθ =

[
16

(
−1 +

√
2
)

r−1+
√

2λ4 sin[θ]
(
−1 − γ2 + β(−3 + γ2)

√
k0

)
k0

] /[
− 3 + 4γ2 − γ4

+ 4 log
(

1
γ

)
+ β

(
1 − 4γ2 + 3γ4 + 4 log

(
1
γ

)) √
k0 + 2λ4

(
6 −

√
2 + 4

(
−3 + 2

√
2
)

γ2 +
(
−2 +

√
2
)

γ4

+ 4
(
−2 +

√
2
)

log
(

1
γ

) )
k0 − 8

(
−1 +

√
2
)

β(−3 + γ2)λ4k
3/2
0

]
, (66)

τo
rr =

[
4λ2 cos[θ]

(
−2+4r2+γ2+r4γ2+β(2+4r2−3γ2+r4γ2)

√
k0+2

(
−2+

√
2
)

(−1+r2)(4+(1+r2)γ2)λ4k0

)]/
[
r3

(
−3+4γ2−γ4+4 log

(
1
γ

)
+β

(
1−4γ2+3γ4+4 log

(
1
γ

)) √
k0+2λ4

(
6−

√
2+4

(
−3+2

√
2
)

γ2

+
(
−2 +

√
2
)

γ4 + 4
(
−2 +

√
2
)

log
(

1
γ

))
k0 − 8

(
−1 +

√
2
)

β(−3 + γ2)λ4k
3/2
0

)]
, (67)

τ i
rr =

[
8r−1+

√
2λ2 cos[θ]

(
−1 − γ2 + β(−3 + γ2)

√
k0

) (
−1 + 2

(
−2 +

√
2
)

λ2k0

)] /[
− 3 + 4γ2

− γ4 + 4 log
(

1
γ

)
+ β

(
1 − 4γ2 + 3γ4 + 4 log

(
1
γ

)) √
k0 + 2λ4

(
6 −

√
2 + 4

(
−3 + 2

√
2
)

γ2 +
(
− 2

+
√

2
)
γ4 + 4

(
−2 +

√
2
)

log
(

1
γ

))
k0 − 8

(
−1 +

√
2
)

β(−3 + γ2)λ4k
3/2
0

]
. (68)
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Kvashnin’s model :

τo
rθ = −

( (
2λ2 sin[θ]

(
−3 + γ2

(
1 + r4(1 + γ2)

)
− β(−1 + γ)(1 + γ)

(
3 + r4γ2

) √
k0 + 2

(
− 2

+
√

2
) (

−6 + (−1 + r4)γ2 + 2r4γ4
)
λ4k0

)) /(
r3

(
2 − 2γ2 − (3 + γ4) log

(
1
γ

)
+ β(−1 + γ2)

(
1 − γ2

+ 3(1 + γ2) log
(

1
γ

) )√
k0 + λ4

(
− 8 +

√
2 + 4

(
3 − 2

√
2
)

γ2 + 3
(
4 − 3

√
2
)

γ4 + 2
(
−2 +

√
2
)

(−3

+ γ4) log
(

1
γ

))
k0 + 2

(
−1 +

√
2
)

β
(
−9 + 2γ2 + 7γ4

)
λ4k

3/2
0

)) )
, (69)

τ i
rθ =

(
4

(
−1 +

√
2
)

r−1+
√

2λ4 sin[θ]
(
3 + 2γ2 + 3γ4 + β(9 − 2γ2 − 7γ4)

√
k0

)
k0

) /(
2 − 2γ2 − (3

+ γ4) log
(

1
γ

)
+ β(−1 + γ2)

(
1 − γ2 + 3(1 + γ2) log

(
1
γ

)) √
k0 + λ4

(
− 8 +

√
2 + 4

(
3 − 2

√
2
)

γ2

+ 3
(
4 − 3

√
2
)

γ4 + 2
(
−2 +

√
2
)

(−3 + γ4) log
(

1
γ

) )
k0 + 2

(
−1 +

√
2
)

β(−9 + 2γ2 + 7γ4)λ4k
3/2
0

)
, (70)

τo
rr = −

((
2λ2 cos[θ]

(
− 3 + γ2 + 2r2(3 + γ4) + r4(γ2 + γ4) − β(−1 + γ2)

(
3 + r2

(
6 + (6

+ r2)γ2
))√

k0 + 2
(
−2 +

√
2
)

(−1 + r2)(6 + (1 + r2)γ2 + 2r2γ4)λ4k0

))/(
r3

(
2 − 2γ2 − (3

+ γ4) log
(

1
γ

)
+ β(−1 + γ2)

(
1 − γ2 + 3(1 + γ2) log

(
1
γ

)) √
k0 + λ4

(
− 8 +

√
2 + 4

(
3 − 2

√
2
)

γ2

+ 3
(
4 − 3

√
2
)

γ4 + 2
(
−2 +

√
2
)

(−3 + γ4) log
(

1
γ

))
k0 + 2

(
−1 +

√
2
)

β(−9 + 2γ2 + 7γ4)λ4k
3/2
0

)))
,

(71)

τ i
rr =

(
2r−1+

√
2λ2 cos[θ]

(
3 + 2γ2 + 3γ4 + β(9 − 2γ2 − 7γ4)

√
k0

) (
−1 + 2

(
−2 +

√
2
)

λ2k0

))/(
2

− 2γ2 − (3 + γ4) log
(

1
γ

)
+ β(−1 + γ2)

(
1 − γ2 + 3(1 + γ2) log

(
1
γ

)) √
k0 + λ4

(
− 8 +

√
2 + 4

(
3

− 2
√

2
)
γ2+3

(
4−3

√
2
)

γ4+2
(
−2+

√
2
)

(−3+γ4) log
(

1
γ

) )
k0 + 2

(
−1+

√
2
)

β(−9+2γ2+7γ4)λ4k
3/2
0

)
.

(72)

Mehta-Morse’s model :

τo
rθ = −

((
2λ2 sin[θ]

(
(−1 + γ2)(−1 + r4γ2) − β

(
1 + γ2(−3 + r4(1 + γ2))

) √
k0 + 2

(
− 2

+
√

2
) (

2 + γ2(1 + r4(−1 + 2γ2))
)
λ4k0

)) / (
r3

(
−(−1 + γ2)2 − (−1 + γ4) log

(
1
γ

)
+ β

(
2γ2(−1

+ γ2) + (1 + 3γ4) log
(

1
γ

) )√
k0 + λ4

(
− (−1 + γ2)

(
4 −

√
2 +

(
−8 + 7

√
2
)

γ2
)

+ 2
(
−2 +

√
2
)

(1

+ γ4) log
(

1
γ

))
k0 + 2

(
−1 +

√
2
)

β
(
3 − 2γ2 + 7γ4

)
λ4k

3/2
0

)))
, (73)
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τ i
rθ = −

( (
4

(
−1 +

√
2
)

r−1+
√

2λ4 sin[θ]
(
1 + 2γ2 − 3γ4 + β(3 − 2γ2 + 7γ4)

√
k0

)
k0

)/
(
− (−1 + γ2)2 − (−1 + γ4) log

(
1
γ

)
+ β

(
2γ2(−1 + γ2) + (1 + 3γ4) log

(
1
γ

)) √
k0

+ λ4

(
− (−1 + γ2)

(
4 −

√
2 +

(
−8 + 7

√
2
)

γ2
)

+ 2
(
−2 +

√
2
)

(1 + γ4) log
(

1
γ

) )
k0

+ 2
(
−1 +

√
2
)

β(3 − 2γ2 + 7γ4)λ4k
3/2
0

))
, (74)

τo
rr = −

((
2λ2 cos[θ]

(
(−1 + γ2)(−1 + r2(2 + (2 + r2)γ2)) − β

(
1 + 2r2 + (−3 + r4)γ2 + r2(6

+ r2)γ4
)√

k0 + 2
(
−2 +

√
2
)

(−1 + r)(1 + r)(−2 − (1 + r2)γ2 + 2r2γ4)λ4k0

))/
(

r3

(
− (−1 + γ2)2 − (−1 + γ4) log

(
1
γ

)
+ β

(
2γ2(−1 + γ2) + (1 + 3γ4) log

(
1
γ

)) √
k0

+ λ4

(
− (−1 + γ2)

(
4 −

√
2 +

(
−8 + 7

√
2
)

γ2
)

+ 2
(
−2 +

√
2
)

(1 + γ4) log
(

1
γ

) )
k0

+ 2
(
−1 +

√
2
)

β(3 − 2γ2 + 7γ4)λ4k
3/2
0

)))
, (75)

τ i
rr = −

( (
2r−1+

√
2λ2 cos[θ]

(
1 + 2γ2 − 3γ4 + β(3 − 2γ2 + 7γ4)

√
k0

)(
−1 + 2

(
−2 +

√
2
)

λ2k0

)) /
(
− (−1 + γ2)2 − (−1 + γ4) log

(
1
γ

)
+ β

(
2γ2(−1 + γ2) + (1 + 3γ4) log

(
1
γ

)) √
k0 + λ4

(
− (−1

+ γ2)
(
4 −

√
2 +

(
−8 + 7

√
2
)

γ2
)

+ 2
(
−2 +

√
2
)

(1 + γ4) log
(

1
γ

) )
k0

+ 2
(
−1 +

√
2
)

β(3 − 2γ2 + 7γ4)λ4k
3/2
0

))
. (76)

5 Results and discussion

In the present work, the author is interested to see the effect of permeability parameter k0, the viscosity ratio of
both regions, the particle volume fraction and discontinuity coefficient on the hydrodynamic drag force and the
hydrodynamic permeability of a membrane built up by non-homogeneous porous cylindrical particles.

5.1 Effect of permeability parameter k0

The variation of the dimensionless hydrodynamic permeability, L11 of a membrane with permeability parameter k0

when β = 0.5, λ = 0.3, and γ = 0.5 for all models is shown in fig. 3. Figure 3 shows that the dimensionless hydrodynamic
permeability, L11 of a membrane increases with increase of permeability parameter k0 for all models. From this figure,
it is also found that the dimensionless hydrodynamic permeability, L11 of a membrane is highest for Happel’s model
and lowest for Mehta-Morse’s model.

The velocity profile outside the non-homogeneous porous region is decreased with increase of permeability parame-
ter k0 for all models when β = 0.5, λ = 0.3, ko = 0.3, θ = π/4 & r = 0.5 (fig. 4). It is also found that velocity is higher
for Kuwabara’s model for low values of permeability parameter k0 but for high values of permeability parameter k0,
the value of velocity is higher for Mehta-Morse’s model.
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Fig. 3. Variation of the dimensionless hydrodynamic permeability of a membrane with permeability parameter k0 for all models.

Fig. 4. Variation of velocity profile outside the non-homogeneous porous region with permeability parameter k0 for all models.

Fig. 5. Variation of normal stress outside the non-homogeneous porous region with permeability parameter k0 for all models.

From figs. 5 and 6, the author observed that the normal and shear stresses outside the non-homogeneous porous
medium decrease with increase of permeability parameter k0 when β = 0.5, λ = 5, ko = 0.3, θ = π/4 & r = 0.5. It is
also observed that the shear stress is higher than normal stress outside the non-homogeneous porous medium for all
models.
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Fig. 6. Variation of shear stress outside the non-homogeneous porous region with permeability parameter k0 for all models.

Table 1. Variation of normal and shearing stresses with permeability parameter.

ko = 0.01 ko = 0.03 ko = 0.06 ko = 0.09 ko = 0.1 ko = 0.3 ko = 0.6

Happel’s model : τo
rr 72.5454 101.325 105.661 104.987 104.514 94.2423 84.3421

λ = 0.3, γ = 0.5, τ i
rr 9.4168 4.4153 2.8987 2.3650 2.2568 1.6062 1.4554

β = 0.5, r = 0.5, τo
rθ 65.178 120.800 131.98 133.062 132.843 121.895 109.601

θ = π/4 τ i
rθ −0.6351 −0.7502 −0.7943 −0.8143 −0.8190 −0.8630 −0.8887

Kuwabara’s model : τo
rr 87.6579 108.545 109.96 108.169 107.458 95.5629 85.1049

λ = 0.3, τ i
rr 10.3028 4.6011 2.9759 2.4148 2.3017 1.6257 1.4694

γ = 0.5, β = 0.5, τo
rθ 84.0407 130.584 137.95 137.529 136.989 123.822 110.756

r = 0.5, θ = π/4, τ i
rθ −0.6949 −0.7818 −0.8154 −0.8314 −0.8353 −0.8734 −0.8972

Kvashnin’s model : τo
rr 82.4963 106.159 108.555 107.133 106.5 95.1362 84.8591

λ = 0.3, τ i
rr 10.0002 4.5397 2.9507 2.3986 2.2871 1.6194 1.4649

γ = 0.5, β = 0.5, τo
rθ 77.5983 127.355 136.0 136.075 135.641 123.199 110.384

r = 0.5, θ = π/4 τ i
rθ −0.6744 −0.7714 −0.8049 −0.8258 −0.8300 −0.8700 −0.8944

Mehta-Morse’s model : τo
rr 103.945 115.578 114.02 111.138 110.199 96.7688 85.7959

λ = 0.3, τ i
rr 11.276 4.7820 3.0588 2.4612 2.3434 1.6436 1.4820

γ = 0.5, β = 0.5, τo
rθ 104.369 140.103 143.543 141.697 140.848 125.581 111.803

r = 0.5, θ = π/4 τ i
rθ −0.7593 −0.8126 −0.8354 −0.8474 −0.8505 −0.8830 −0.9050

During the analysis, it is found that normal and shear stresses inside the non-homogeneous porous region decrease
with increase of permeability parameter k0 for all models (table 1). From table 1, it is also concluded that the normal
stress for Mehta-Morse’s model is highest and lowest for Happel’s model. The normal and shear stresses outside the
non-homogeneous porous region is always greater than the normal and shear stresses inside the non-homogeneous
porous region, respectively, for all models.

5.2 Effect of particle volume fraction

The effect of particle volume fraction γ on the dimensionless hydrodynamic permeability, L11 of a membrane, when
β = 0.5, λ = 0.3, and ko = 0.3 for all models is shown in fig. 7. Figure 7 shows that the dimensionless hydrodynamic
permeability, L11 of a membrane, decreases with increase of particle volume fraction γ. It is also found that the rate
of decrease of dimensionless hydrodynamic permeability L11 is higher for lower values of the particle volume fraction
(γ ≤ 0.6) and it becomes almost constant for higher values of the particle volume fraction (γ > 0.6).
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Fig. 7. Variation of the dimensionless hydrodynamic permeability of a membrane with particle volume fraction γ for all models.

Fig. 8. Variation of velocity profile outside the non-homogeneous porous region with particle volume fraction γ for all models.

Fig. 9. Variation of normal stress outside the non-homogeneous porous region with particle volume fraction γ for all models.

From fig. 8, it is observed that the velocity profile outside the non-homogeneous porous region increases with
increase of particle volume fraction γ for all models, when β = 0.5, λ = 0.3, ko = 0.3, θ = π/4 and r = 0.5 and the rate
of increase is high for higher values of the particle volume fraction (γ ≥ 0.5). Figures 9 and 10 show the variation of
normal and shear stresses with particle volume fraction γ when β = 0.5, λ = 5, ko = 0.3, θ = π/4 & r = 0.5. From these
figures, it is interesting to note that the normal and shear stresses decrease with increase of the particle volume fraction
till γ = 0.48 but after γ ≥ 0.48 the normal and shear stresses increase with increase of particle volume fraction γ.
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Fig. 10. Variation of shear stress outside the non-homogeneous porous region with particle volume fraction γ for all models.

Fig. 11. Variation of the dimensionless hydrodynamic permeability of a membrane with viscosity ratio λ for all models.

It is also noticed from these figures that the value of normal and shear stresses is higher for Happel’s model when
particle volume fraction γ ≤ 0.48 but when particle volume fraction γ ≥ 0.48, then the value of normal and shear
stresses is higher for Mehta-Morse’s model.

5.3 Effect of viscosity ratio parameter λ

The dependence of dimensionless hydrodynamic permeability L11 of a membrane on the viscosity ratio λ, when
β = 0.5, γ = 0.5, and ko = 0.3 for all models is shown in fig. 11. From this figure, it is noticed that the dimensionless
hydrodynamic permeability L11 of a membrane decreases with increase of viscosity ratio λ and variation in L11 becomes
almost constant when λ > 0.7.

The effect of the viscosity ratio λ on the velocity profile outside the non-homogeneous porous region when β = 0.5,
γ = 0.5, ko = 0.3, θ = π/4 and r = 0.5 for all models is discussed in fig. 12.

From this figure, it is observed that the velocity profile decreases with increase of viscosity ratio λ ≤ 0.9 but
it increases with increase of viscosity ratio λ ≥ 0.9. The variation of normal and shear stresses outside the non-
homogeneous porous region with viscosity ratio λ when, β = 0.5, γ = 0.5, ko = 0.3, θ = π/4 and r = 0.5 for all models
are shown in figs. 13 and 14, respectively.
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Fig. 12. Variation of velocity profile outside the non-homogeneous porous region with viscosity ratio λ for all models.

Fig. 13. Variation of normal stress outside the non-homogeneous porous region with viscosity ratio λ for all models.

Fig. 14. Variation of shear stress outside the non-homogeneous porous region with viscosity ratio λ for all models.

These figures show that the variation in normal and shear stresses for all models is the same. Table 2 also shows the
effect of viscosity ratio λ on the normal and shear stress outside and inside the non-homogeneous porous medium. From
table 2, the author noticed that normal and shear stresses outside the non-homogeneous porous medium increase with
increase of viscosity ratio λ for all models but normal and shear stresses inside the non-homogeneous porous medium
increase with increase of viscosity ratio λ when the viscosity of the outer region is less than or equal to the viscosity
of the non-homogeneous porous region and decreases with increase of viscosity ratio λ when the viscosity of the outer
region is greater than the viscosity of the non-homogeneous porous region.
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Table 2. Variation of normal and shearing stresses with viscosity ratio parameter.

λ = 0.1 λ = 0.5 λ = 1.0 λ = 5 λ = 10

Happel’s model :
τo

rr 0.1234 2.9875 8.4539 71.3074 283.172

λ = 0.3, γ = 0.5, β = 5,
τ i

rr 0.0282 0.7338 2.2484 1.589 1.4704

r = 0.5, θ = π/4
τo

rθ 0.0633 1.5560 5.2569 92.6823 370.16

τ i
rθ −0.00007 −0.0419 −0.4135 −1.009 −1.0110

Kuwabara’s model :
τo

rr −0.0169 3.3391 8.3262 70.7982 1871.36

λ = 0.3, γ = 0.5, β = 5,
τ i

rr 0.0561 1.0799 2.8057 1.5943 1.2802

r = 0.5, θ = π/4
τo

rθ −0.2064 1.0995 4.0578 92.1505 1402.49

τ i
rθ −0.0001 −0.0617 −0.5160 −1.0121 −0.8802

Kvashnin’s model :
τo

rr 0.1334 3.1958 8.3732 70.9607 282.082

λ = 0.3, γ = 0.5, β = 5,
τ i

rr 0.0366 0.9389 2.6005 1.5926 1.4730

r = 0.5, θ = π/4
τo

rθ 0.0522 1.2855 4.4994 92.3203 369.024

τ i
rθ −0.0001 −0.0536 −0.4782 −0.1011 −1.0128

Mehta-Morse’s model :
τo

rr 0.1803 4.1129 8.1476 70.3489 280.161

λ = 0.3, γ = 0.5, β = 5,
τ i

rr 0.0758 1.8418 3.5849 1.5990 1.4776

r = 0.5, θ = π/4
τo

rθ −0.00001 0.0997 2.3811 91.6813 367.023

τ i
rθ −0.0002 −0.1052 −0.6592 −0.1051 −1.0159

Fig. 15. Variation of the dimensionless hydrodynamic permeability of a membrane with discontinuity coefficient β for all
models.

5.4 Effect of discontinuity coefficient β

The effect of discontinuity coefficient β on the dimensionless hydrodynamic permeability L11 of a membrane, when
λ = 0.3, γ = 0.5, and ko = 0.3 for all models is shown in fig. 15 and it is found that the dimensionless hydrodynamic
permeability L11 of a membrane increases with increase of discontinuity coefficient β for all models.

It has been observed with this figure that the rate of increase in the dimensionless hydrodynamic permeability L11

of a membrane is faster for lower values of the discontinuity coefficient (β < 3) and for higher values, the variation in
L11 becomes slow. The dependence of velocity profile outside the non-homogeneous porous on discontinuity coefficient
β when λ = 0.3, γ = 0.5, ko = 0.3, θ = π/4 and r = 0.5 for all models is shown in fig. 16. From this figure, the author
concluded that the velocity firstly decreases with increase of discontinuity coefficient when the values of β is low, a
lower value of β is different for a different model (fig. 16) and then increases with increase of discontinuity coefficient
β. The effects of discontinuity coefficient β on the normal and shear stresses outside the non-homogeneous porous
region when λ = 5, γ = 0.5, ko = 0.3, θ = π/4 and r = 0.5 for all models are shown in figs. 17 and 18, respectively.



Page 20 of 26 Eur. Phys. J. Plus (2018) 133: 1

Fig. 16. Variation of velocity profile outside the non-homogeneous porous region with discontinuity coefficient β for all models.

Fig. 17. Variation of normal stress outside the non-homogeneous porous region with discontinuity coefficient β for all models.

Fig. 18. Variation of shear stress outside the non-homogeneous porous region with discontinuity coefficient β for all models.

These figures show that the normal and shear stresses decrease rapidly with increase of discontinuity coefficient β for
all models and become almost constant for higher values of discontinuity coefficient β.
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Fig. 19. Happel’s model when λ = 0.8; β = 0.3; k = 0.2; γ = 0.35.

Fig. 20. Kuwabara’s model when λ = 0.8; β = 0.3; k = 0.2; γ = 0.35.

Fig. 21. Kvashnin’s model when λ = 0.8; β = 0.3; k = 0.2; γ = 0.35.
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Fig. 22. (a) Mehta-Morse’s model λ = 0.7; β = 0.3; k = 0.1; γ = 0.5. (b) Mehta-Morse’s model when λ = 0.7; β = 0.3; k = 0.5;
γ = 0.5. (c) Mehta-Morse’s model when λ = 0.7; β = 0.3; k = 0.9; γ = 0.5.

5.5 Streamlines flow patterns

The streamlines flow patterns are shown in figs. 19–22. The effect of permeability parameter k0 on the stream line
flow pattern for Mehta-Morse’s model is shown in fig. 22. On analyzing the effect of permeability parameter k0 on the
streamlines flow pattern, the author observed that the flow through the non-homogeneous porous region becomes easy
with increase in permeability parameter k0 and rotational tendency shifted towards the origin.
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Fig. 23. Co-ordinate system when the membrane composed by cylindrical shell.

6 Comparative study of dimensionless hydrodynamic permeability of membrane composed by
non-homogeneous porous cylindrical particles and cylindrical shell

Let us consider a membrane that is built up by a non-homogeneous porous cylindrical shell. The coordinate system of
one particle of the membrane is shown in fig. 23. The flow outside the non-homogeneous porous cylindrical shell and
inside the cavity with radius c̃ will be governed by the Stokes equation (3) together with the continuity condition (4)
and the flow inside the non-homogeneous porous cylindrical shell will be governed by Darcy’s equation (1) together
with the continuity equation (2). Let ψ(1), ψ(2) and ψ(3) be the stream function formulation of the concerned equations
outside the non-homogeneous porous cylindrical shell, inside the non-homogeneous porous cylindrical shell and inside
the cavity respectively.

The stream function formulation of the concerned regions may be written as

ψ(1)(r, θ) =
[
B1r + B2r

3 + B3/r + B4r ln r
]
sin θ, (77)

ψ(2) = k0λ
2
[(

1 −
√

2
)

r1+
√

2A1 +
(
1 +

√
2
)

r1−
√

2A2

]
sin θ, (78)

ψ(3)(r, θ) =
[
C1r + C2r

3
]
sin θ, (79)

where B1, B2, B3, B4, A1, A2, C1 and C2 are arbitrary constants which may be obtained by using suitable boundary
conditions. The suitable boundary conditions for the considered case may be written as follows.

The suitable boundary conditions at the surface of cavity, i.e. at r = �, are

v(2)
r = v(3)

r , p(2) = −p(3) + 2
∂

∂r

(
v(3)

r

)
, v

(3)
θ − v

(2)
θ = β

√
k(r)

∂v
(3)
θ

∂r
. (80)

The suitable boundary conditions at the surface of the non-homogeneous porous cylindrical shell, i.e. at r = 1, are

v(1)
r = v(2)

r , p(2) = −p(1) + 2
∂v

(1)
r

∂r
, v

(1)
θ − v

(2)
θ = β

√
k(r)

∂v
(1)
θ

∂r
. (81)

The suitable boundary conditions at the surface of the hypothetical cell, i.e. at r = 1
γ1

, are

i) The condition of uniform velocity at the hypothetical cell surface, i.e.,

v(1)
r = cos θ. (82)

ii) According to Happel’s model :
τ

(1)
rθ (m, θ) = 0. (83a)
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Table 3. Comparison of dimensionless hydrodynamic permeability of a membrane built up by cylindrical particles and cylindrical
shell enclosing a cavity.

ko = 0.01 ko = 0.03 ko = 0.06 ko = 0.09 ko = 0.1 ko = 0.3 ko = 0.6

Happel’s model :

λ = 0.3, γ = 0.5, L∗
11 3.2177 3.5067 3.7775 3.9776 4.0354 4.8085 5.4898

β = 0.5, � = 0.5 L∗∗
11 0.0077 0.0118 0.0168 0.0213 0.0227 0.0456 0.0566

Kuwabara’s model :

λ = 0.3, γ = 0.5, L∗
11 2.2716 2.4751 2.6637 2.8019 2.8416 3.3661 3.8209

β = 0.5, � = 0.5 L∗∗
11 0.0061 0.0095 0.0138 0.0177 0.0190 0.0384 0.0409

Kvashnin’s model :

λ = 0.3, γ = 0.5, L∗
11 2.5974 2.8286 3.0436 3.2015 3.2500 3.8497 4.3746

β = 0.5, � = 0.5 L∗∗
11 0.0067 0.0104 0.0150 0.0191 0.0204 0.0409 0.0460

Mehta-Morse’s model :

λ = 0.3, γ = 0.5, L∗
11 1.2246 1.3518 1.4685 1.5535 1.5778 1.8977 2.1755

β = 0.5, � = 0.5 L∗∗
11 0.0027 0.0053 0.0084 0.1220 0.0133 0.0312 0.0261

iii) According to Kuwabara’s model :
∇2ψ(1)(m, θ) = 0. (83b)

iv) According to Kvashnin’s model :
∂v

(1)
θ

∂r
= 0. (83c)

v) According to Mehta-Morse’s model :
v
(1)
θ = − sin θ, (83d)

where the symbols having their own meaning and superscript (1), (2) and (3) show the respective regions. Here, � = c̃
ã

and γ3
1 = (b̃−ã)3

b̃3
. By using these boundary conditions, one can find all the constants for all the models and hence, one

can evaluate the dimensionless hydrodynamic permeability of the membrane composed by a non-homogeneous porous
cylindrical shell by using eq. (55). Table 3 shows the comparative study of dimensionless hydrodynamic permeability
of a membrane built up by non-homogeneous porous cylindrical particles and a non-homogeneous porous cylindrical
shell enclosing a cavity.

L∗
11 → Dimensionless hydrodynamic permeability of a membrane composed by non-homogeneous porous cylindrical

particles.

L∗∗
11 → Dimensionless hydrodynamic permeability of a membrane composed by a non-homogeneous porous cylin-

drical shell.
From table 3, it is concluded that the nature of variation in the dimensionless hydrodynamic permeability of a
membrane composed by non-homogeneous porous cylindrical particles and a cylindrical shell enclosing a cavity is the
same and in both cases, the dimensionless hydrodynamic permeability of the membrane increases with increase of
permeability parameter k0. From this table, it is also noticed that the dimensionless hydrodynamic permeability of
the membrane is very small when the membrane is composed of a non-homogeneous porous cylindrical shell enclosing
a cavity. This table also gives the information of which model is more suitable for the physical problem.

7 Conclusions

In the present work the author has discussed the dependence of hydrodynamic permeability L11, the velocity profile
and stresses of a membrane built up by non-homogeneous porous cylindrical particles on viscosity ratio λ of a fluid and
non-homogeneous porous medium, permeability parameter k0 of the non-homogeneous porous region, discontinuity
coefficient β and particle volume fraction γ graphically. On analyzing the effect of permeability parameter k0, the
author found that the permeability parameter plays an important role in controlling the hydrodynamic drag force and
hydrodynamic permeability. During the analysis, it is also observed that the viscosity ratio is also another important
controlling parameter for the hydrodynamic drag force and hydrodynamic permeability. The outcomes of this research
may be useful in further applications where the movement of fluid is through a non-homogeneous region. The findings
may be used in the contaminant clean-up, filtration and water purification processes under the considered situations.
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Nomenclature

a Radius of non-homogeneous porous λ Viscosity ratio
cylindrical particle L̃11 Dimensional hydrodynamic permeability

b Radius of hypothetical cell L11 Non-dimensional hydrodynamic permeability
c Radius of cavity K̃(r) Permeability coefficient of the
(r, θ, z) Cylindrical polar co-ordinates non-homogeneous porous region
vr, vθ Velocity components of fluid μ Viscosity of the medium

at any point β Dimensionless discontinuity constant
p Fluid pressure at any point L∗

11 Dimensional hydrodynamic permeability
τrr Normal stress of the membrane composed of non-homogeneous
τrθ Tangential stress porous cylindrical particles
U Uniform velocity of fluid L∗∗

11 Dimensional hydrodynamic permeability
ko Permeability parameter of the membrane composed of non-homogeneous
F Hydrodynamic drag force porous cylindrical shell enclosed in a cavity
γ Particle volume fraction � = c̃

ã Dimensionless quantity
ψ Stream function
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