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Abstract. In this paper, the main focus is to discuss the non-Newtonian third-grade fluid flow between two
parallel plates. The mathematical model is consequent to the continuity and momentum equations. Three
cases have been discussed such as the plane Couette flow, the plane Poiseuille flow and the last one is a
plane Couette-Poiseuille flow. The modeled differential equations are converted into dimensionless form
by suitable non-dimensional parameters, then they are solved by the variational iteration method (VIM).
It is noticed that the variational iteration method is convenient to apply and is very helpful for finding
solutions of a wide class of nonlinear problems.

1 Introduction

The study of fluid flow has become one important research area for engineers and scientists because of its wide
applications in many engineering fields and industrial processes like multiphase mixtures, natural products, biological
fluids, food products, agricultural and dairy wastes. Sir Isaac Newton is famous for establishing several scientific
postulates. Newton recognized the uniform viscosity of the fluids and also reported the reaction of fluids. The flow
behavior or viscosity of fluids alters only by changing the pressure or temperature. For example, water changes into
solid at 0 ◦C when it freezes and rolls into gas at 100 ◦C. Liquid takes the shape of a vessel or container into which
it is poured. Such type of liquids called Newtonian fluids (normal liquids). However those fluids that do not follow
this formula are called non-Newtonian fluids (strong liquids) [1]. A fluid where there is no constant relation between
shear stress and deformation rate is called non-Newtonian fluid. For such types of fluids consistency of Newtonian’s
law does not hold. Examples of non-Newtonian fluids are ketchup, custard, toothpaste, starch suspension paint, blood
shampoo and biological fluids.

In later days, non-Newtonian fluids are more important than Newtonian fluids because of their several applica-
tions in industry and technology. When modeling non-Newtonian incompressible fluid flow, the differential equations
that appear are highly nonlinear and tricky. As a result the nonlinear equation can be solved either analytically or
numerically. Different methods were introduced to obtain solutions of nonlinear problems, the homotopy perturbation
method (HPM) [2,3], the homotopy analysis method (HAM) [4,5], the Adomian decomposition method (ADM) [6–8],
the differential transform method (DTM) [9–13] and the variation of parameter method (VPM) [14]. The variational
iteration method (VIM) [15–17] is used to solve the higher orders of initial and boundary value problems.

Ji Huan He first introduced the VIM [18,19] in 1998. This method is valid and applicable for contracting the
calculation size. The VIM [20,21] makes the procedure of solution simple without disturbing the accuracy of higher
level. This method has been justified by many authors and is more useful and effective than current techniques like
perturbation and Adomian techniques, etc. The method of VIM [22–30] is used to study the wave equations, partial
differential equations, fractional differential equations etc.

At present the prominent and valuable progress is made in the field of physical sciences. The great achievement
is the development of various techniques to hunt for exact solitary wave solutions of nonlinear differential equations.
In nonlinear physical sciences, an essential contribution is that of exact solutions as we can therefore study physical
behaviours and discuss more features of the problem which give direction to more applications. Consequently, a lot

a e-mail: qazimahmood@outlook.com



Page 2 of 11 Eur. Phys. J. Plus (2017) 132: 552

of work has been done in the formulation of several convincing and significant techniques. These techniques are
applied by different researchers on mathematical and physical models. Such as, the solution of nonlinear coupled
Higgs field equation by the (G′/G)-expansion method [31], the modified alternative (G′/G)-expansion method [32],
the exact solutions to the (2 + 1)-dimensional Boussinesq equation by the exp(−φ(η))-expansion method [33], the
solution of the unsteady Kortweg de-Vries equation [34], Exact traveling wave solutions of the KP-BBM equation by
the (G′/G)-expansion method [35], some new exact traveling wave solutions to the simplified MCH and the (11 + 1)-
dimensional combined KdV-mKdV equations [36], exact traveling wave solutions to the (2+1)-dimensional Boussinesq
and Kadomtsev-Petviashvilli equation [37], exact solutions to the Benney-Luke equation and the phi-4 equations
by using the modified simple equation method, the improved F-expansion method combined with Riccati equation
applied to nonlinear evolution equations [37], exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and
the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method [38].

This article is divided into different segments. In the next section the problem is formulated mathematically. In
Section 3 analysis of method is given and used to attain analytical solutions. Section 4 is devoted to the application of
the variational iteration method. Results and discussion are given in sect. 5. In the last section, conclusion has been
drawn.

2 Mathematical formulation

Continuity equation and momentum equation for incompressible fluid are given by

⇀

∇ · v = 0, (1)

ρ
Dv

Dt̃
= ρb + div Ṫ , (2)

where
D

Dt̃
=

∂

∂t̃
+ v ·

⇀

∇, (3)

where Ṫ is the Cauchy stress tensor, given as
Ṫ = −pI +̀S. (4)

The constitutive equation for a third-grade fluid is

S = μB1 + λ1B2 + λ2B
2
1 + Υ1B3 + Υ2(B1B2 + B2B1)Υ3(tr B2)B1, (5)

where

B1 =
⇀

∇ũ + (
⇀

∇ũ)t

Bn+1 =
d
dt̃

Bn + Bn

⇀

∇ũ +
(

⇀

∇ũ

)t

Bn n = 1, 2. (6)

2.1 Plane Couette flow

Let us consider the steady flow of a third-grade fluid between two equidistant plates [21]. For the given flow field the
velocity is zero, when the external pressure gradient is constant. For maintaining the velocity field it is essential to
adjust one of the plates in motion. In this case, it is assumed that the top plate is moving with velocity Ǔ and the
bottom plate is at rest. The velocity and temperature fields are deduced in the form of

ũ = [ũ, 0, 0], ũ = ũ(y). (7)

Using (7), eq. (2) in the absence of body forces results in

0 = −dp̀

dx̂
+

d
dŷ

[
μ

dũ

dŷ
+ 2(Υ2 + Υ3)

(
dũ

dŷ

)3
]

,

d
dŷ

[
μ

dũ

dŷ
+ 2(Υ2 + Υ3)

(
dũ

dŷ

)3
]

=
dp̀

dx̂
. (8)
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As the pressure gradient is zero, eq. (8) reduces to

μ
d2ũ

dŷ2
+ 6(Υ2 + Υ3)

(
dũ

dŷ

)2 d2ũ

dŷ2
= 0. (9)

The associated boundary conditions are

ũ = 0, y = 0,

ũ = Ǔ , y = d. (10)

The resulting equation (9) and boundary conditions (10) are written in the form of dimensionless parameters. For
this, the non-dimensional parameters are

ŷ∗ =
ŷ

h
, ũ∗ =

ũ

w̃
. (11)

Now in non-dimensional form, eq. (9) becomes

dũ

dŷ
=

w̃

h

dũ∗

dŷ∗ ,

d2ũ

dŷ2
=

w̃

h2

d2ũ∗

dŷ∗2 ,

μ
w̃

h2

d2ũ∗

dŷ∗2 + 6(Υ2 + Υ3)
(

w̃

h

dũ∗

dŷ∗

)2 (
w̃

h2

d2ũ∗

dŷ∗2

)
= 0,

d2ũ∗

dŷ∗2 +
6(Υ2 + Υ3)

μ

w̃2

h2

(
dũ∗

dŷ∗

)2 d2ũ∗

dŷ∗2 = 0,

d2ũ∗

dŷ∗2 + 6ν

(
dũ∗

dŷ∗

)2 d2ũ∗

dŷ∗2 = 0, (12)

where

ν =
(Υ2 + Υ3)

μ

w̃2

h2
. (13)

The boundary conditions are in eq. (10) becomes

ũ = 0, y = −1,

ũ = 1, y = 1. (14)

2.2 Plane Poiseuille flow

In this case, a pressure gradient exists, so both top and bottom plates are fixed. For the velocity and temperature
fields, other suppositions and modes remain constant. In this case the governing equation becomes

μ
d2ũ

dŷ2
+ 6(Υ2 + Υ3)

(
dũ

dŷ

)2 d2ũ

dŷ2
=

dṕ
dx̂

, (15)

dṕ
dŷ

=
dṕ
dẑ

= 0, (16)

where modified pressure ṕ is defined as

ṕ = p̀ − (2λ1 + λ2)
(

dũ

dŷ

)2

. (17)

So, dṕ
dx̂ = const.
Thus, the following differential equation is solved to simplify the problem:

μ
d2ũ

dŷ2
+ 6(Υ2 + Υ3)

(
dũ

dŷ

)2 d2ũ

dŷ2
=

dṕ
dx̂

. (18)
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On boundaries, the conditions are
ũ′(0) = 0, ũ(d) = 0. (19)

Equation (18) in dimensionless form is

d2ũ∗

dŷ∗2 + 6ν

(
dũ∗

dŷ

)2 d2ũ∗

dŷ∗2 =
dṕ
dx̂

. (20)

The boundary conditions (19) become
ũ(−1) = 0, ũ(1) = 0. (21)

2.3 Plane Couette-Poiseuille flow

In this case, a pressure gradient also exists and the velocity distribution is dependent on both the motion of the top
plate and the pressure gradient. The top plate is moving with velocity Ǔ . On the temperature and velocity field, all
other conditions and suppositions remain unchanged. In this case the leading equation becomes in the absence of body
forces

μ
d2ũ

dŷ2
+ 6(Υ2 + Υ3)

(
dũ

dŷ

)2 d2ũ

dŷ2
=

dṕ
dx̂

,

dṕ
dx̂

= const., (22)

with the given conditions
ũ(−d) = 0, ũ(d) = Ǔ . (23)

The resulting boundary value problem in non-dimensional form becomes

d2ũ∗

dŷ∗2 + 6ν

(
dũ∗

dŷ

)2 d2ũ∗

dŷ∗2 =
dṕ
dx̂

(24)

and the associated boundary conditions are

ũ(0) = 0, ũ(d) = Ǔ .

3 Analysis of variational iteration method

Consider the nonlinear differential equation

Lv(ξ) + Nv(ξ) = f(ξ), (25)

where L is the linear operator. N is the nonlinear operator and f(ξ) is the forcing term.
The VIM presents a correctional functional for eq. (25),

Vn+1(ξ) = Vn(ξ) +
∫ ξ

0

λ(k)[LVn(k) + NṼn(k) − f(k)]dk, (26)

where λ(k) is the Lagrange multiplier, and can be obtained by using the following expression:

λ(k) = (−1)m (k − t)m−1

(m − 1)!
.

So we can get the exact solution by using
v(ξ) = lim

n→∞
vn(ξ). (27)
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4 Solution procedure

Case I: Plane Couette flow

d2ũ

dŷ2
+ 6ν

(
dũ

dŷ

)2 d2ũ

dŷ2
= 0, (28)

with boundary conditions
ũ(−1) = 0, ũ(1) = 1.

Then the correctional functional for eq. (28) is

ũn+1(y) = ũn(y) +
∫ y

0

λ(k)

[
d2

dk2
ũn(k) + 6ν

(
d
dk

ũnk

)2 d2

dk2
ũn(k)

]
dk. (29)

By using optimality conditions, we get
λ(k) = k − y. (30)

Putting this value of Lagrange multiplier λ(k) = k − y into eq. (29)

ũn+1(y) = ũn(y) +
∫ y

0

(k − y)

[
d2

dk2
ũn(k) + 6ν

(
d
dk

ũnk

)2 d2

dk2
ũn(k)

]
dk. (31)

We select u0(y) = A + By, then using into eq. (31) we have the following approximants:

ũ1(y) = (A + By) +
∫ y

0

(k − y)

[
d2

dk2
(A + Bk) + 6ν

(
d
dk

(A + Bk)
)2 d2

dk2
(A + Bk)

]
dk,

ũ1(y) = A + By,

ũ(y) = ũ0(y) + ũ1(y) + ũ2(y) + . . . , (32)

ũ(y) = A + By + A + By + . . . . (33)

Now using boundary conditions

B =
1
4
, A =

1
4

.

Now eq. (32) becomes

ũ(y) =
1
2

+
1
2
y + . . . .

Case II: Plane Poiseuille flow

d2ũ

dŷ2
+ 6ν

(
dũ

dŷ

)2 d2ũ

dŷ2
=

dp̀

dx
, (34)

with boundary conditions
ũ(−1) = 0, ũ(1) = 0.

The correctional functional is

ũn+1(y) = ũn(y) +
∫ y

0

λ(k)

[
d2

dk2
ũn(k) + 6ν

(
d
dk

ũnk

)2 d2

dk2
ũn(k) − dp̀

dx

]
dk. (35)

By using optimality conditions, we get
λ(k) = k − y. (36)

Putting this value of Lagrange multiplier λ(k) = k − y into eq. (35)

ũn+1(y) = ũn(y) +
∫ y

0

(k − y)

[
d2

dk2
ũn(k) + 6ν

(
d
dk

ũnk

)2 d2

dk2
ũn(k) − dp̀

dx

]
dk. (37)
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We select u0(y) = A + By, then using into eq. (37) we have the following approximants:

ũ1(y) = (A + By) +
∫ y

0

(k − y)

[
d2

dk2
(A + Bk) + 6ν

(
d
dk

(A + Bk)
)2 d2

dk2
(A + Bk) − dp̀

dx

]
dk,

ũ1(y) = A + By +
y2

2
dp̀

dx
,

ũ(y) = ũ0(y) + ũ1(y) + ũ2(y) + . . . , (38)

ũ(y) = A + By + A + By +
y2

2
dp̀

dx
. . . . (39)

Now using boundary conditions we get

B = 0, A = −1
4

dp̀

dx
,

eq. (38) becomes

ũ(y) = −1
2

dp̀

dx
(1 − y2) + . . . .

Case III: Plane Couette-Poiseuille flow

d2ũ

dŷ2
+ 6ν

(
dũ

dŷ

)2 d2ũ

dŷ2
=

dp̀

dx
, (40)

with boundary conditions
ũ(0) = 0, ũ(d) = Ǔ .

The correctional functional is

ũn+1(y) = ũn(y) +
∫ y

0

λ(k)

[
d2

dk2
ũn(k) + 6ν

(
d
dk

ũnk

)2 d2

dk2
ũn(k) − dp̀

dx

]
dk. (41)

By using optimality conditions, we get
λ(k) = k − y. (42)

Putting this value of Lagrange multiplier λ(k) = k − y into eq. (41)

ũn+1(y) = ũn(y) +
∫ y

0

(k − y)

[
d2

dk2
ũn(k) + 6ν

(
d
dk

ũnk

)2 d2

dk2
ũn(k) − dp̀

dx

]
dk. (43)

We select u0(y) = A + By, then using into eq. (43) we have the following approximants:

ũ1(y) = (A + By) +
∫ y

0

(k − y)

[
d2

dk2
(A + Bk) + 6ν

(
d
dk

(A + Bk)
)2 d2

dk2
(A + Bk) − dp̀

dx

]
dk,

ũ1(y) = A + By +
y2

2
dp̀

dx
,

ũ(y) = ũ0(y) + ũ1(y) + ũ2(y) + . . . , (44)

ũ(y) = A + By + A + By +
y2

2
dp̀

dx
. . . . (45)

Now using boundary conditions, we have

A = 0, B =
Ǔ

2d
− d

4
dp̀

dx
.
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Fig. 1. (a) Exact solution for u(y) when v = 0.1 and dp/dx = −1. (b) Results obtained by VIM for u(y) when v = 0.1 and
dp/dx = −1. (c) Comparison between VIM and exact solution for fully developed plane Couette-Poiseuille flow.

Equation (44) becomes

ũ(y) =
(

Ǔ

2d
− d

4
dp̀

dx

)
y +

(
Ǔ

2d
− d

4
dp̀

dx

)
y +

y2

2
dp̀

dx
+ . . . .

The exact solution of the flow problem is calculated by symbolic computation using Maple 18 software. The attained
analytical solution is compared with the exact solution and is described by graphical results.

5 Results and discussion

The physical behaviour of the velocity profile is studied in this section. In figs. 1(a) and (b), the exact solution and
results obtained by VIM are shown respectively when the value of ν = 0.1 and dp

dx = −1. These figures illustrate that
the velocity u(y) increases with the increasing value of y. But figs. 2(a) and (b) show that the velocity function u′(y)
is decreasing with increase in the value of y for fully plane Couette-Poiseuille flow when ν = 0.1 and dp

dx = −1. The
exact solution and results obtained by VIM are seen from figs. 3(a) and (b) for the velocity profile when the value of
ν = 0.3 and dp

dx = −1. It is observed from the figures that the velocity u(y) is increasing with increase in the value of
y. But from the figs. 4(a) and (b) it is clear that the velocity function u′(y) is decreasing with increase in the value
of y for the plane Couette-Poiseuille flow. Figure 5(a) illustrates that the exact solution for the velocity profile when
the value of ν = 0.1 and dp

dx = −2 for fully plane Couette-Poiseuille flow. It is seen that velocity u(y) is increasing
with increase in the value of y. Figure 5(b) shows the results obtained by VIM for the velocity profile when the value
of ν = 0.1 and dp

dx = −2. It is clear from the figure that velocity u(y) is increasing with the increasing value of y.
In figs. 6(a) and (b), the exact solution and results obtained by VIM for the plane Couette-Poiseuille flow are shown
when the value of ν = 0.1 and dp

dx = −2. It is noted that the velocity function u′(y) is decreased with the increasing
value of y. Figures 7(a) and (b) show that the velocity u(y) is increasing with the increasing value of y when ν = 0.1
and dp

dx = −3 for the plane Couette-Poiseuille flow.
In order to justify the capability of the understudy method in comparison with the exact solution, the attained re-

sults are expressed in figs. 1(c) to 7(c) for the plane Couette-Poiseuille flow. Graphical representations in figs. 2(c), 4(c)
and 6(c) depict that the solution obtained by VIM clearly matches the exact solution. Figures 1(c), 3(c), 5(c) and 7(c)
show that the solution obtained by VIM matches the exact solution for a small domain. Overall it is observed that
the solutions attained by VIM are closer to the exact solution. It is concluded that VIM is an efficient and reliable
technique for solving nonlinear differential equations.
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Fig. 2. (a) Exact solution for u′(y) when v = 0.1 and dp/dx = −1. (b) Results obtained by VIM for u′(y) when v = 0.1 and
dp/dx = −1. (c) Comparison between VIM and exact solution for fully plane Couette-Poiseuille flow.

Fig. 3. (a) Exact solution for u(y) when v = 0.3 and dp/dx = −1. (b) Results obtained by VIM for u(y) when v = 0.3 and
dp/dx = −1. (c) Comparison between VIM and exact solution for fully plane Couette-Poiseuille flow.



Eur. Phys. J. Plus (2017) 132: 552 Page 9 of 11

Fig. 4. (a) Exact solution for u′(y) when v = 0.3 and dp/dx = −1. (b) Results obtained by VIM for u′(y) when v = 0.3 and
dp/dx = −1. (c) Comparison between VIM and exact solution for fully plane Couette-Poiseuille flow.

Fig. 5. (a) Exact solution for u(y) when v = 0.1 and dp/dx = −2. (b) Results obtained by VIM for u(y) when v = 0.1 and
dp/dx = −2. (c) Comparison between VIM and exact solution for fully plane Couette-Poiseuille flow.
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Fig. 6. (a) Exact solution for u′(y) when v = 0.1 and dp/dx = −2. (b) Results obtained by VIM for u′(y) when v = 0.1 and
dp/dx = −2. (c) Comparison between VIM and exact solution for plane Couette-Poiseuille flow.

Fig. 7. (a) Exact solution for u(y) when v = 0.1 and dp/dx = −3. (b) Results obtained by VIM for u(y) when v = 0.1 and
dp/dx = −3. (c) Comparison between VIM and exact solution for plane Couette-Poiseuille flow.
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6 Conclusion

In the present work, the variational iteration method (VIM) has been efficiently applied to find the analytical solution
of the resulting nonlinear differential equation. By using this technique analytical solutions are obtained for different
values of nondimensional parameters of the given problem. The attained results are shown graphically and then
these results are compared with the exact solution. The obtained results prove the efficiency and consistency of the
technique. It is noticed that the variational iteration method is a better technique and very effective, accurate and
close to the exact solution existing in literature. Hence, to sum up the above discussion we can say that VIM is a
powerful mathematical tool for solving nonlinear problems in engineering and science.
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