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Abstract. We propose an audio signal encryption scheme based on the chaotic Hénon map. The scheme
mainly comprises two phases: one is the preprocessing stage where the audio signal is transformed into
data by the lifting wavelet scheme and the other in which the transformed data is encrypted by chaotic
data set and hyperbolic functions. Furthermore, we use dynamic keys and consider the key space size to
be large enough to resist any kind of cryptographic attacks. A statistical investigation is also made to test
the security and the efficiency of the proposed scheme.

1 Introduction

Encryption of optical audio or video files and digital images received renewed interest in the processes of information
hiding and information security in social networks, communications, Internet, such as in the segregation of the design
decisions in computer programs that are like to change, thereby protecting other parts of the program from extensive
modification if the design decision is changed, privacy protection, mobile or digital phones, tactical military systems
to prevent transmitters being located, and many more. Both the information hiding techniques and cryptography
have received much attention in recent times owing to the rapid developments of digital media and digital right
management systems [1–9]. There are many different schemes for the encryption of multimedia data, like audio signal,
of which adding noise is one. However, the encryption of an audio signal requires different transformation of maps
from that of images and a strong level of security, so they are the subject of detailed cryptanalysis. Furthermore,
in the advancement of security level, chaotic maps or dynamical systems play a vital role in the encryption process
because of its ergodicity, randomness and sensitiveness to initial conditions [5,6]. The behavior of a dynamical system
is predictable if the initial conditions are known, otherwise the system exhibits randomness. The latter can be used
to induce confusion and diffusion in the plain text and thereby enabling the data transmission safely through insecure
channels [1,2,5,6]. Thus, designing of a new encryption algorithm is very much required to secure audio files from any
kind of attack for safe storing and transmission [7].

In this work, we propose a scheme that is used to encrypt an optical audio signal. Our starting point is to transform
the audio signal into a data signal using the lifting wavelet scheme [10] instead of the fast Fourier transform. The latter
is not well accepted in the context of cryptography. However, the lifting scheme has many advantages in constructing
wavelets compared to the conventional wavelet transform techniques. A few techniques are demonstrated in sect. 2.2.
On the other hand, optical or digital audio signals are usually a sequence of integers, and applying simply the wavelet
transforms to them results in floating point numbers. In this way an efficient algorithm is required which converts inte-
gers into integers. The lifting scheme of wavelet transforms can fulfill the purpose for digital speech compression. Fur-
thermore, we use the Hénon map [11] in our encryption scheme. Such a map has been extensively studied due to its low
dimension (two-dimensional) and chaotic dynamics [1]. The properties of the map are also briefly discussed in sect. 2.1.

In the literature, several encryption schemes have been proposed. For example, Kordov and Bonchev [7] proposed
an audio encryption algorithm based on a circle map. However, their scheme does not give any satisfactory decryption
as it is not clear how one properly decrypts the encrypted audio by XOR operation. Belazi et al. [1] constructed
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Fig. 1. An illustration of the forward (panel (a)) and the inverse (panel (b)) lifting schemes.

a chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms. However, a
chaos-based audio signal encryption scheme using the lifting wavelet scheme has not been reported before.

The manuscript is organized as follows: Some preliminary concepts of the Hénon map and the lifting scheme are
briefly discussed in sect. 2. Section 3 presents the proposed scheme comprising the lifting scheme for audio signals, the
generation of chaotic data for encryption and decryption and the key representation for encryption and decryption.
Furthermore, a security analysis is carried out in sect. 4. Finally, the results are concluded in sect. 5.

2 Some preliminaries

The proposed encryption and decryption scheme of audio signals is based on the Hénon map and the lifting wavelet
scheme. These are briefly discussed in the following two subsects. 2.1 and 2.2.

2.1 Hénon’s map

The Hénon map is described as [11]

xn+1 = 1 − αx2
n + yn,

yn+1 = βyn, (1)

where α (> 0) and β (> 0) are bifurcation parameters. The Hénon map (1) has quadratic nonlinearity and strange
attractors as its chaotic solutions. The model was proposed by Michel Hénon as a simplified model of the Poincaré
map which appears from a solution of the Lorenz equations. Furthermore, the parameter β is a measure of the rate of
area contraction which is independent of xn and yn. Note that, for β = 0, eq. (1) reduces to the map which exhibits
period doubling route to chaos.

In our scheme the solution of eq. (1) will be taken as computational tools instead of an illustration of the physical
dynamics. The chaotic data set, obtained from eq. (1) for some particular values of α and β, are used to generate key
vectors with sine and cosine hyperbolic functions for encryption.

2.2 Lifting wavelet scheme

The lifting scheme, as introduced by Sweldens [10], is a simple construction of second-generation wavelets, as well as
wavelets that are not necessarily translates or dilates of one fixed function in the spatial domain and has the capability
of time-frequency localization. It is faster, efficient and requires low-power applications, less memory space and, in
contrast to the traditional wavelet transforms, it does not require any complex mathematical calculation and does not
have any quantization error.

The lifting scheme is composed of three phases: Split/Merge, Prediction and Update. The details are illustrated in
fig. 1:

– Split: The input data signal is split up into odd and even sample values.
– Predict: The even samples are used to predict the odd samples.
– Update: The even samples are obtained by a linear combination of the set to be obtained from the predict step.
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3 The proposed scheme

In this section we systematically demonstrate the lifting wavelet scheme applied to an audio signal, to obtain the
chaotic data set from the Hénon map (1) and its application for the generation of key vectors in the encryption and
decryption processes.

3.1 Lifting scheme for audio signals

We itemize the lifting scheme as follows. The details for the encryption and decryption are illustrated in fig. 1.

Step 1: Read the audio file and store as data in the form [y, fs] = audioread(sample.mp3), where fs (in hertz) is
the frequency and y is the size of the signal.
Step 2: Take the z-transform of the signal data vector y as

f(z) =
∑

i

yiz
−i, (2)

where i denotes the length of the vector. This representation is called the poly-phase representation of the signal
data.
Step 3: The audio signal data vector is split up into disjoint components. A common way to do this is to extract
the even and odd poly-phase components. The z-transform of the even poly-phase component is

fe(z) =
∑

i

y2iz
−i. (3)

The z-transform of the odd poly-phase component is

fo(z) =
∑

i

y2i+1z
−i. (4)

Next, we write the z-transform of the input signal as the sum of dilated versions of the z-transforms of the
poly-phase components:

f(z) = fe(z2) + z−1fo(z2). (5)

This is known as the lazy wavelet or splitting stage.
Step 4: This step is the predict phase in which the odd poly-phase components are predicted from a linear combina-
tion of the set of the even poly-phase components. This predict phase ensures polynomial cancellation in high pass.
The set of odd poly-phase components is then replaced by the difference between the odd poly-phase components
and the predicted values. The predict operation is also referred to as the dual lifting step.

Let αi ←− y2i and βi ←− y2i−1 . . . (split)

βi ←− βi −
1
2
(αi + αi+1) . . . (predict).

Step 5: This step is the update phase in which the even poly-phase components are obtained by a linear combination
of the set to be obtained from the predict step. This step is also referred to as the primal lifting step and it ensures
preservation of moments in low pass.

αi ←− αi +
1
4
(βi−1 + βi) . . . (update).

In practice, a normalization is done for both the primal and the dual lifting processes.

This is how we transform the audio signal into a data vector by lifting the scheme of wavelet transforms. The next
stage will be the encryption and decryption scheme to be discussed later. However, after the decryption process, the
transformed data set is to be recovered in the form of audio signal with the help of inverse lifting scheme stated below:

– Inverse primal lifting: αi ←− αi − 1
4 (βi−1 + βi).

– Inverse dual lifting: βi ←− βi + 1
2 (αi + αi+1).

– Merge: αi −→ y2i and βi −→ y2i−1.

This transformation gives more fruitful values than the fast Fourier transformation and it estimates the high pick
audio signal for the recover section from the original data set transmitted by the sender.
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3.2 Generation of chaotic data for encryption and decryption

We generate chaotic data set from eq. (1) for a particular set of values of the parameters α and β, e.g., α = 1.4 and
β = 0.3, together with the initial condition x0 = 0.01, y0 = 0.003. The chaotic data set so obtained are then arranged
as vectors according to the size of the audio data set in the following process:

– l ←− length(audioread(sample.mp3)).
– When l is even, then

Yk1 ←− uint8
(
[cos(φ/i)y(k1) + sin(φ/i)y(k1 + 1)] × 109

)
,

for k1 = 1, 2, . . . ,
l

2
; i = 1, 2, . . . , l and 0 ≤ φ ≤ π/2;

Yk2 ←− uint8
(
[sin(φ/i)y(k2) − cos(φ/i)y(k2 + 1)] × 109

)
,

for k2 =
l

2
,

l

2
+ 1,

l

2
+ 2, . . . , l − 1; i = 1, 2, . . . , l and 0 ≤ φ ≤ π/2.

– When l is odd, then

Yk1 ←− uint8
(
[cos(φ/i)y(k1) + sin(φ/i)y(k1 + 1)] × 109

)
,

for k1 = 1, 2, . . . ,

[
l

2

]
; i = 1, 2, . . . , l and 0 ≤ φ ≤ π/2;

Yk2 ←− uint8
(
[sin(φ/i)y(k2) − cos(φ/i)y(k2 + 1)] × 109

)
,

for k2 =
[

l

2

]
+ 1,

[
l

2

]
+ 2, . . . , l − 1; i = 1, 2, . . . , l and 0 ≤ φ ≤ π/2.

Here, [x] denotes the greatest integer ≤ x.
– The vector [Yk1 , Yk2 ] is the well organized chaotic vector which helps key vectors hide in itself and thereby ensuring

the encryption process more secured.
We note that in the calculation of Yk1 and Yk2 for each k1 and k2, both i and φ vary in the ranges i = 1, 2, . . . , l and
0 ≤ φ ≤ π/2, respectively. The sin and cos functions in the square brackets are considered to arrange the chaotic
data in a bounded region. Also, those functions are multiplied by 109 so as to generate the chaotic data set (with
suitable initial conditions) upto nine decimal places. Thus, it may be hard to predict the key values even if one tries
with different initial conditions to generate the chaotic data set. Furthermore, the function uint8 is used to generate
values multiples of 0–255. Thus, any change in the decimal places results into a huge change in the key values.

3.3 Key representation for encryption and decryption

The initial conditions, used to generate chaos, play a vital role in the formation of key points which are sent confi-
dentially to the receiver section. Since the size of the initial condition is small, we form the key matrix in such a way
that it is hidden in the chaotic medium. Thus, for the encryption process, we propose two algorithms: one is the key
matrix representation and the other is to hide the matrix in the chaotic medium. For decryption we, however, reverse
the process to recover the key matrix.

Algorithm for key matrix representation: Let xi
0, i = 1, 2, . . . , r denote the initial condition which exhibits chaos in

eq. (1). The following process may be followed to generate the key matrix.

– Define si = (xi
0 + l)/(216 + l) and mi = uint8(mod(si × 1016, 1)) for i = 1, 2, . . . , r.

– Then the symmetric key matrix, which will be hidden in the chaotic medium, is represented as

M =

⎡

⎢⎢⎢⎣

m1 m2 m3 . . . mr

m2 m3 m4 . . . m1

. . . . . . . . . . . . . . .

mr m1 m2 . . . mr−1

⎤

⎥⎥⎥⎦ . (6)

In the expression of si, the factor 216 is considered to make it much smaller than the unity, and is such that no
recurrence decimal representation of si occurs. Also, in the definition of mi, si is multiplied by 1016 in order to retain
the corresponding values up to 16 significant digits (for security reason). Here, mod(x, 1) denotes the binary value 0
or 1.

Algorithm for key hiding in chaotic medium: We construct a chaotic set of vectors which are used to hide the key
points in it and help encrypt the audio signal.
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Fig. 2. Flow charts for the arrangement of chaotic data (upper part) and key hiding in chaotic medium (lower part).

– Form a set of l/r2 number of square matrices of size r from the vectors [Yk1 , Yk2 ] obtained in sect. 3.2 as

[Yk1, Yk2] −→ Br×r× l
r2

.

– Do bit-level operation between each matrix of order r × r and the matrix M :

B′
r×r×i ←− Br×r×i ⊕ Mr×r, for i = 1, 2, . . . ,

l

r2
; [F1, F2] ←− B′

r×r× l
r2

,

where F1 and F2 contain l
2 number of elements.

– Repeat the previous step until l/r2 number of matrices is formed. This step is the mixing part where the key
matrix M is being hidden in the chaos sequence.

– Next, we split up the matrix into vectors as [Yk1 , Yk2 ] and the new vectors are set as [F1, F2].

In our proposed algorithm of encryption and decryption we use hyperbolic functions with [F1, F2] and function is
chosen in such a way that decryption be the reverse process of encryption. The purpose of taking hyperbolic function
is that these functions are not periodic (fig. 2).

3.4 Audio encryption process

The algorithm for encryption is as follows:

– Read the audio data, e.g., in the format (.mp3 or .wav, etc.) as X ←− audioread(sample.mp3).
– Apply the lifting scheme on X to get the two samples corresponding to odd (cA) and even (cD) values, i.e.,

[cA, cD] ←− LWT(X).
– Redefine cA and cD by means of hyperbolic functions for a particular value of θ in 0 < θ

l ≤ π
4 as

cA′(i) = cA(i)
(
cosh

(
θ
l

)
− sinh

(
θ
l

))
+ F1(i)

(
cosh

(
θ
l

)
+ sinh

(
θ
l

))
,

cD′(i) = cD(i)
(
cosh

(
θ
l

)
− sinh

(
θ
l

))
+ F2(i)

(
cosh

(
θ
l

)
+ sinh

(
θ
l

))
,

where i = 1, 2, 3, . . . , l
2 . In order to make the arguments of the hyperbolic functions random for a particular value

of θ, we have considered θ/l instead of simply θ, as different audio file has different lengths l. Such a choice of
these aperiodic hyperbolic functions gives much better encryption and decryption in the interval 0 < θ

l ≤ π
4 for a

particular value of θ. We will later see that for θ/l � 1, the corresponding noise level so increases that it is almost
impossible for hackers to recover the original signal data.

– Apply the inverse wavelet transform to get the encrypted audio as encrypted audio (X ′) ←− ILWT([cA′ cD′]);

The encrypted signal is sent to the receiver section for decryption and to recover the original audio signal.
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Fig. 3. Flow charts for encryption (upper part) and decryption (lower part) of an audio signal as separated by the dashed line.

3.5 Audio decryption process

The decryption process is the reverse of the encryption process:

– Read the encrypted data i.e., Y ←− audioread(X ′).

– [cA′, cD′] ←− LWT(Y );

– cA(i) = cA′(i)
(
cosh

(
θ
l

)
+ sinh

(
θ
l

))
− F1(i)

(
cosh

(
θ
l

)
+ sinh

(
θ
l

))2

cD(i) = cD′(i)
(
cosh

(
θ
l

)
+ sinh

(
θ
l

))
− F2(i)

(
cosh

(
θ
l

)
+ sinh

(
θ
l

))2
,

for i = 1, 2, 3, . . . , l
2 and for a particular value of θ in 0 < θ

l ≤ π
4 . Note that the expressions for cA(i) and cD(i) are

obtained by multiplying the expressions of cA′(i) and cD′(i) as in the third item in sect. 3.4 by cosh( θ
l ) + sinh( θ

l )
and noting that cosh2( θ

l ) − sinh2( θ
l ) = 1.

– Decrypt the audio signal as (X) ←− ILWT([cA, cD]).

See fig. 3.
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Fig. 4. Wave forms (amplitude vs. time) ((a) and (b)) and power spectrum (P/fs vs. frequency) ((c) and (d)) of the original
(upper panels) and encrypted (lower panels) audio signals.

4 Security analysis of encrypted audio signal

In this section, we perform some statistical analysis to ensure that the proposed encryption scheme is resistant to
different kinds of attacks. In fact, the encrypted signal remains secured under the process of data transmission because
the key space, which is based on the initial conditions of the chaotic Hénon map and the parameters θ and φ, has been
chosen to be large enough. The security analysis comprising, namely, the key space attack and sensitivity analysis,
the correlation analysis and the spectral entropy are given in subsects. 4.1 to 4.3. To this end, we consider a digital
audio file (.wav format) as in fig. 4. It is shown that even a small change in the key matrix M cannot help recover the
original audio file, i.e., the encryption is free from any brute-force attack.

4.1 Key space attack and sensitive analysis

To prevent an adversary from using a brute-force attack of finding the key to encrypt an audio signal, the key space
is designed to be large enough to make such a search infeasible. Here, the key space size is basically meant for the
total number of possible different keys in the encryption process. Another desirable attribute is that the key must be
selected truly randomly from all possible key permutations. The size of the key space can be obtained as follows:

– The generation of chaotic data set as in sect. 3.2 with a random choice of φ results into the key space to be of
order 109 for each Yki

, i = 1, 2. So, the key space size at this stage will be (109)2 = 1018.
– Since the key matrix M is considered to be of order 4 and in each element of the matrix mi, si is multiplied by

1016 in order to retain the corresponding values up to 16 significant digits, the size of the key space at this stage
will be (1016)4 = 1064.

– In the process of key hiding in the chaotic medium using the BitXor operation (8 bit operation), each layer of
matrix has order 4. So, the size of the key space in the process of key hiding is (28)4 = 232.

– In the process of encryption and decryption with a random choice of θ, the length of the chaotic data set l (i.e.,
the number of iterations) gives the key space size of order l2.

– Finally, the total key space size in our proposed algorithm is l2 × 1064 × 1018 × 232 ≈ 4.295 × l2 × 1091.

Thus, in our proposed algorithm, the key space is sufficient enough to resist all kinds of brute-force attacks.
It has already been mentioned that under suitable choice of the initial condition and the parameters α and β, the

Hénon map exhibits chaos. In the process of encryption, the chaotic data set, thus obtained, are then used to hide
the key matrix in the optical medium. Next, we send the initial condition and the parameters to the receiver section
for decryption. The chaotic Hénon map is so sensitive to the initial condition that a small change in it results in a
huge change in the key matrix. The steps for the generation of keys should also be followed in order. Otherwise, any
change between the steps results in an incorrect key, i.e., an incorrect representation of the audio signal. In this case,
the positions of each values of the audio data will be changed and the effectiveness of sound of the audio file will result
in a blur audio. Thus, it is impossible to recover the audio signal even if one guesses a value of the key, i.e., the audio
signal will be transmitted to the receiver section secretly (see fig. 5).
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Fig. 5. Decryption of an audio signal with right key and wrong key matrix representations. Subplots (a) and (b), respectively,
are the original audio signal and the encrypted audio signal, while subplots (c) and (d), respectively, are the decrypted audio
signals with right and wrong key representations.

Table 1. Correlation coefficients of a pair of adjacent sample values of an original and encrypted audio data signal.

Correlation coefficient Original audio Encrypted audio

ρ 0.9939 −0.1578
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Fig. 6. Scatter plots of the correlation coefficients between the adjacent data points of the original (subplot (a)) and the
encrypted (subplot (b)) audio signals.

4.2 Correlation analysis

In an original audio signal, the adjacent data are highly correlated, i.e., their correlation coefficient is always high,
while in an encrypted audio data, the correlation coefficient of the adjacent data is expected to be nearly zero or
negative. Thus, a secure encryption scheme requires an original audio signal to be transformed into a random-like
encrypted signal with very low correlation coefficient to resist any statistical attack. We define the covariance between
a pair of data values x and y as Cov(x, y) = E[(x − E(x))(y − E(y))] and the corresponding correlation coefficient is
given by

ρ(xy) =
Cov(x, y)
σ(x)σ(y)

, σ(x), σ(y) �= 0, (7)

where E(x) and E(y) are the means, and σ(x) and σ(y) are the standard deviations of the distribution of the audio
signal data values. The correlation coefficients for the original and encrypted audio signals are given in table 1, while
the corresponding scatter plot is shown in fig. 6. It is seen that the original signal is highly correlated (ρ ∼ 1), however,
the encrypted one is too much randomized in its region. Thus, our proposed encryption scheme satisfies the correlation
performance and is secure against statistical attacks.
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Fig. 7. Spectral entropy values of the original (solid line) and the encrypted (dashed line) audio signals with mean spectral
values 0.6124 (i.e., between 0.5 and 0.65; regular beats) and 0.9451 (i.e., close to 1; irregular beats), respectively.

4.3 Spectral entropy

We also perform an another statistical measure of uncertainty for the audio signal. There are, in fact, several ways
to estimate changes in the amplitude of the original audio signal and the encrypted one. This method of spectral
entropy [12] uses the amplitude component of the power spectrum as “probability” in entropy calculation. This
entropy indicates a measurement of the amount of disorders in the amplitude of encrypted data samples. To calculate
the spectral entropy we follow this algorithm:

– Read the amplitudes of the data sample of both the original and the encrypted audio signals.
– Compute the power spectrum for both the audio signals.

– Normalize the power spectrum as PSDn by the establishment of a normalization constant Cn, so that the sum of
the normalized power spectrum of the audio samples is 1, i.e.,

∑
n

PSDn

Cn
= 1, where n is the number of sample

values. This represents a probability diagram.

– Calculate the entropy as Ei = −
∑

n PSDn(fi) log(PSDn(fi)) for i = 1, 2, 3, . . . , n and fi denotes the frequency
of the signal. Then, the entropy value is normalized to vary in between 0 (total regularity) and 1 (maximum
irregularity).

In fig. 7, we show the disorders of the amplitudes of the original sample and the encrypted one. From the measurements
of the spectral entropy of both the signals we can see that for the encrypted sample the mean entropy is near about
1, which concludes the maximum irregularity of the frequency distribution, while in case of the original one, it is in
between 0.5 to 0.65 which means that it maintains the regularity.

5 Conclusion

A new scheme for the encryption of an audio signal is proposed. The scheme is based on the lifting wavelet transforms
and the chaotic Hénon map together with Sine and Cosine hyperbolic functions. We have applied the lifting scheme
for the first time to encrypt an audio signal owing to its many advantages compared to the ordinary scheme of wavelet
transforms. The encryption scheme is designed mainly in two phases: one in which the audio signal is transformed into
a data signal by the lifting wavelet scheme, and the other where the transformed data is encrypted by the cahotic data
set from the Hénon map and sine and cosine hyperbolic functions. In the encryption scheme, we have also proposed
new algorithms both for the generation of keys and key hiding in the chaotic medium. The key space is considered
to be large enough to resist any kind of attack. We have also performed several statistical analysis for the security
of encrypted signals, namely the key space analysis, the correlation analysis and the spectral entropy analysis which
ensure that the proposed encryption algorithm is resistant to any cryptographic attacks.
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