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Abstract. In this work, the lump solution and the kink solitary wave solution from the (2+1)-dimensional
third-order evolution equation, using the Hirota bilinear method are obtained through symbolic compu-
tation with Maple. We have assumed that the lump solution is centered at the origin, when t = 0. By
considering a mixing positive quadratic function with exponential function, as well as a mixing positive
quadratic function with hyperbolic cosine function, interaction solutions like lump-exponential and lump-
hyperbolic cosine are presented. A completely non-elastic interaction between a lump and kink soliton is
observed, showing that a lump solution can be swallowed by a kink soliton.

1 Introduction

As we all know, in nonlinear science fields, solitary wave solutions of nonlinear evolution partial differential equations
play an important role in many natural sciences, such as mathematics, biology, chemistry, and particulary in almost all
branches of physics like fluid mechanics [1], plasma physics [2,3], optical fibers [4–6], oceanography [7] and so on. Soli-
tary wave solutions can provide some useful information on the relevant nonlinear phenomena and experimental results.

However, for finding solitary wave solutions of nonlinear evolution partial differential equations, many effective
methods have been developed, such as the Darboux transformation method [8–10], the inverse scattering transforma-
tion [11], the Lie group method [12,13], the variable separation method [14], the Bäcklund transformation [15,16],
the Hirota bilinear method [11,15,17], the homogeneous balance method [18,19], the Painlevé analysis method [20–
22], the Lucas Ricatti expansion method [23], the F-expansion method [24], the exp-function method [25], the vari-
able method [26], the extended homoclinic test function [27], the multiple exp-function method [28], the three-wave
method [29], the Jacobi elliptic function method [30], the Adomian decomposition method [31] and so on.

The study on lump solutions has attracted much attention ever since lump solutions were discovered [32,33].
Particular examples of lump solutions are found for many integrable equations, such as the Kadomtsev-Petviashvili
I (KPI) equation [33–35], the three-dimensional three-wave resonant interaction [36], the B-KP equation, which is a
subclass of the KP hierarchy of B type [37], the Davey-Stewartson-II equation [35] and the Ishimori-I equation [38].

Recently, interaction solutions have attracted much more attention and have already got good results [32,39–45].
Ma [40,41] obtained explicit interaction solutions through the Wronkskian technique. Cheng and Zhang [46] have
solved the (4 + 1)-dimensional nonlinear Fokas equation and have obtained two classes of lump-type solutions based
on the Hirota bilinear method. Zhang and Ma [47] have presented a class of lump solutions, namely, the bright lump
wave and the bright-dark lump wave solutions of the (2 + 1)-dimensional bilinear Sawada-Kotera (SK) equation using
the Hirota bilinear method. Futhermore, for the (2+1)-dimensional bilinear p-SK equation, where p is a prime number
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that has been introduced by Ma to generalize bilinear operators [48], Zhang and Ma [47] have shown that, for the case
of p = 3, all three families of rational solutions exhibit the bright-dark lump wave structure. By using the generalized
N -fold Darboux transformations, Zhang, Liu and Wen [49] have investigated the (2 + 1)-dimensional NLS equation,
with a rich variety of evolution behaviors such as the bright-line solitons and breathers. Moreover, several patterns
for first-, second-, and higher-order rogue wave solutions fixed at space, on the one hand, and first-, second-, and
third-order rogue waves fixed at time, on the other hand, have been revealed. Wen and Zhang [50] have implemented
the N -fold iteration of Darboux transformation to construct linear rogue wave and parabolic rogue wave solutions
for the (2 + 1)-dimensional derivative NLS equation. With the help of the higher-order NLS equation with variable
coefficients, Zhang and Chen [51] have derived a family of the first-, second-, third-, and fourth-order rogue wave
solutions. The interaction about lump solitons has become the hotspot of the research. Another advantage of lump
solutions is that, the lump solutions give two types of interaction like elastic interaction [32,39,42,43] and non-elastic
interaction [44,52], when certain conditions are satisfied.

In this paper, we focus our attention on the (2 + 1)-dimensional third-order evolution equation and present lump
solutions and some interaction solutions using symbolic computation with the aid of Maple. The (2 + 1)-dimensional
third-order evolution equation has a Hirota bilinear form, and so, we will do a search for two positive quadratic
function solutions and two positive quadratics interaction function solutions containing a set of free parameters. Then,
following an appropriate choice of those free parameters, we seek interaction solutions from the (2 + 1)-dimensional
third-order equation. The remainder of the paper is organized as follows: In sect. 2, lump solutions of the (2 + 1)-
dimensional third-order equation are studied. In sect. 3, a kink solitary wave solutions of (2+1)-dimensional third-order
equation is discussed. In sect. 4, a non-elastic interaction solutions lump-exponential and lump-hyperbolic cosine of
the (2+1)-dimensional third-order equation are presented and the process of interaction is shown. Section 5 concludes
the paper.

2 Lump solutions of the (2 + 1)-dimensional new third-order equation

The (2 + 1)-dimensional third-order equation,

ηt + ηx +
α

2
(3ηxη + aηy) + ε

(
1
6
(1 − 3τ)ηxxx − 1

4
(1 + 2τ)ηxyy

)
= 0, (1)

was derived, by Fokou et al. [53], as a model for the unidirectional propagation of long waves over shallow water, via
asymptotic expantion around simple wave motion of the Euler equations up to first order in the small-wave amplitude.
In this equation, η is the surface elevation, α represents the measure of the ratio of wave amplitude to undisturbed
fluid depth, ε represent the square of the ratio of fluid deph to wave length, x and y are the horizontal coordinates, t
is the time variable, τ is the Bond number, a is the velocity components in the horizontal y-direction and subscripts
denote partial derivatives with respect to the space x, y and the time t variables. The pulse solitary wave solution of
this equation has been found [53] using the Hirota’s bilinear method. In this paper, we propose a new test method for
solving this equation. The general form of solution of eq. (1) is given by

η(x, y, t) = R(ln(f(x, y, t)))x, (2)

where R = 1
18

ε(6τ(k3
1+k1k2

2)+3k1k2
2−2k3

1)−6αak2−12(k3−k1)

αk2
1

is constant and f = f(x, y, t) is a real function to be determined.
Substituting eq. (2) into eq. (1), by the aid of the Hirota bilinear operator D, we obtain the following bilinear form:

(
DtDx +

a

2
aDyDx +

ε

6
(1 − 3t)D4

x − 1
4
(1 + 2t)D2

xD2
y

)
× (f · f) = fxtf − fxft + fxxf − f2

x +
a

2
afxyf − fxfy + ε

×
(

1
6
(1 − 3t)(fxxxxf − 4fxxxfx + 3f2

xx) − 1
4
(1 + 2t)(fxxyyf − 2fxyyfx − 2fxxyfy + 2f2

xy + fxxfyy)
)

= 0. (3)

It is clear that if f solves the bilinear equation (3), then η = η(x, y, t) is a solution to eq. (1) through the transformation
given by eq. (2). With regard to eq. (3), we first choose the test function in the following form:

f = g2 + h2 + a9, (4)

with

g(x, y, t) = a1x + a2y + a3t + a4, (5)
h(x, y, t) = a5x + a6y + a7t + a8, (6)
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Fig. 1. A lump solution η of eq. (1) with the parameters (9), α = 0.2, ε = 0.1, t = 6, τ = 0.0.

where ai (1 ≤ i ≤ 9) are all real parameters to be determined later. By substituting eq. (4) into eq. (3), we obtain
polynomials, which are functions of the variables x, y and t. Equating the coefficients of all power of x, y, and t, we
get the algebraic equation which, after solving, gives the following relations between the parameters ai:

a3 = −a1 −
1
2
αaa2, (7)

a7 = −a5 −
1
2
αaa6. (8)

Substituting eqs. (7) and (8) into eq. (4), we obtain

f = (a1x + a2y − (a1 + 1/2α aa2) t + a4)
2 + (a5x + a6y − (1/2α aa6 + a5) t + a8)

2 + a9. (9)

Introducing eq. (9) into eq. (2), we obtain

η(x, y, t) = 2
R(ga1 + ha5)

f
, (10)

where

g = (a1x + a2y − (a1 + 1/2α aa2) t + a4) , (11)
h = (a5x + a6y − (1/2α aa6 + a5) t + a8) . (12)

In a class of lump solutions, parameters a1, a2, a4, a5, a6, a8 and a9 are involved in the solution η. In this work, we
choose the parameters a4 = a8 = 0, which implies the lump is centered at origin, when t = 0. By choosing appropriate
values of the remainder parameters, we set

a1 = 1, a2 = 2, a5 = 3, a6 = −1, a9 = 1. (13)

Their plots, when t = 6, are depicted in fig. 1. Figure 1(a) shows that the amplitude of the lump is 10. Figure 1(b)
shows contour plot of the lump solutions at t = 6.

3 Kink solitary wave solution of the (2 + 1)-dimensional third-order equation

Here, we seek the solitary wave solutions of eq. (1). We choose the test function f in the following form:

f = 1 + exp(k1x + k2y + k3t). (14)

Substituting eq. (14) into eq. (3) with the help of Maple, and equating the coefficient of exp(k1x + k2y + k3t), we
obtain, after solving, the following dispersion relation:

k3 =
1
2
εk1

(
−1

3
k2
1 + τk2

1 − 1 + τk2
2 +

1
2
k2
2

)
− 1

2
αak2. (15)
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Fig. 2. A solitary wave solution η of eq. (1) with k1 = 1/8, k2 = 1, α = 0.2, ε = 0.1, t = 6, τ = 0.0.

By introducing eq. (15) and eq. (14) into eq. (2), we obtain the following solution of eq. (1):

η(x, y, t) =
Rk1ek1x+k2y+k3t

1 + ek1x+k2y+k3t
. (16)

This solution shows that the asymptotic behavior of η can be obtained. When t → −∞ and k3 < 0, the solution
η → k1R, and when t → +∞ and k3 < 0, the solution η → 0. This behavior shows that the solution (16) is the kink
solitary wave solution (see fig. 2).

4 Interaction between lump solution and kink solitary wave

In this section, we study the interaction between a lump solution and the kink solitary wave solution of a (2 + 1)-
dimensional third-order equation. We choose two different cases of stripe soliton.

4.1 First case

In the first case, we choose the f(x, y, t) function as a positive quadratic function with exponential function, that is

f = g2 + h2 + k exp(l) + a9, (17)

where g and h are defined by eqs. (7) and (8), and l(x, y, t) = k1x + k2y + k3t, ki are the constant parameters to be
determined later. Putting eq. (17) into eq. (3), with the help of Maple, we obtain the following set of constraining
equations for the parameters:

a1 = −a5a6

a2
, (18)

a3 = −a1 −
1
2
αaa2, (19)

a7 = −a5 −
1
2
αaa6, (20)

k3 =
1
2
εk1

(
−1

3
k2
1 + τk2

1 − 1 + τk2
2 +

1
2
k2
2

)
− 1

2
αak2. (21)

Substituting eqs. (18)–(21) into eq. (2), we obtain the exact interaction solution of η, which is

η(x, y, t) =
R(2 (g)a1 + 2 (h)a5 + k1e(l))

1 + g2 + h2 + e(l) + a9
, (22)

where the functions g, h and l are now known. To illustrate the interaction phenomena between lump solution and
kink soliton, we select the following parameters:

a2 = 2, a5 = 3, a6 = −1, a4 = a8 = 0, a9 = 1, k1 =
1
2

, k2 = 1. (23)

Figures 3 and 4 show that the interaction between lump solution and kink soliton is completely non-elastic. This
is confirmed by the deformation of the waves after their interaction during its propagation in space time. We also
observe, in these figures, that when the value of the parameter k increases, the amplitude of the lump wave decreases
and, when k decreases, the amplitude of the lump wave increases.



Eur. Phys. J. Plus (2017) 132: 465 Page 5 of 8

Fig. 3. Profiles of interaction between a lump and kink solution η of eq. (1) with the parameters of eq. (23) and other parameters:
α = 0.2, ε = 0.1, τ = 0.0, k = 2.0, a = 1 at (a) t = −10; (b) t = 0; (c) t = 10; (d) t = 20.

Fig. 4. Profiles of interaction between lump and kink solution η of eq. (1) with the parameters of eq. (23) and other parameters:
α = 0.2, ε = 0.1, τ = 0.0, k = 1/4, a = 1 at (a) t = −10; (b) t = 0; (c) t = 10; (d) t = 20.

4.2 Second case

Here, we choose the function f(x, y, t) as a positive quadratic function add with hyperbolic cosine function; therefore
the form is the following:

f = g2 + h2 + k cosh(l) + a9, (24)
where g, h and l have been defined in the previous section.

Again, substituting eq. (24) into eq. (3), with the help of Maple, we obtain the following relation between the
parameters:

a1 = −a5a6

a2
, (25)

a3 = −a1 −
1
2
αaa2, (26)

a7 = −a5 −
1
2
αaa6, (27)

k3 =
1
2
εk1

(
−1

3
k2
1 + τk2

1 − 1 + τk2
2 +

1
2
k2
2

)
− 1

2
αak2. (28)

Substitution in eqs. (25)–(28) of g, h and l gives

g(x, y, t) = a1x + a2y + (−a1 − 1/2α aa2) t + a4, (29)
h(x, y, t) = a5x + a6y + (−a5 − 1/2α aa6) t + a8, (30)

l(x, y, t) = k1x + k2y +
(

1
3
k1ε(−2k2

1 + 6τ(k2
1 + k2

2) + 3(k2
2 − 1)) − 1

2
αak2

)
t. (31)
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Fig. 5. Profiles of interaction between lump and hyperbolic solution η of eq. (1) with the parameters of eq. (23) and other
parameters: α = 0.2, ε = 0.1, τ = 0.0, k = 2.0, a = 1 at (a) t = −10; (b) t = 0; (c) t = 10; (d) t = 40.

Fig. 6. Profiles of interaction between lump and hyperbolic solution η of eq. (1) with the parameters of eq. (23) and other
parameters: α = 0.2, ε = 0.1, τ = 0.0, k = 1/4, a = 1 at (a) t = −10; (b) t = 0; (c) t = 10; (d) t = 40.

Putting eqs. (29)–(31) into eq. (24), we obtain the expression of f(x, y, t), which is

f(x, y, t) =
(

a1x + a2y − 1
2
(2a1 + αaa2)t + a4

)2

+
(

a5x + a6y − 1
2
(2a5 + αaa6)t + a8

)2

+ cosh
(
−k1x − k2y − 1

3
k1ε

(
−2k2

1 + 6τ(k2
1 + k2

2) + 3(k2
2 − 1) − 1

2
αak2

)
t

)
. (32)

Substituting eq. (32) into eq. (2), we can achieve a new exact interaction solution of the third-order equation

η(x, y, t) =
R(2 ga1 + 2ha5 + sinh(l)k1)

f
, (33)

where the expressions of g, h and f are given above. Figures 5 and 6 show the plot of solution (33) with the parameters
of eq. (23). These figures present the dynamic graphs of interaction between the lump solution and one stripe soliton.
In this interaction, a deformation of the wave appears. So, it is a non-elastic collision. As depicted in figs. 5 and 6, for
various values k = 1/4 and k = 2, the amplitude of wave changes. We observe an increase in the amplitude of the lump
wave when k decreases (see fig. 5). The opposite phenomenon is observed in fig. 6. At t = 0, the lump tangles with the
kink soliton (see figs. 5(b) and 6(b)), then the kink begins to swallow a lump step by step, as shown in fig. 5(c), (d)
and figs. 6(c) and (d), which shows that the energy of the lump is transfered into the kink soliton gradually.
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5 Conclusion

In this paper, the (2 + 1)-dimensional third-order nonlinear evolution equation has been studied by using the Hirota
bilinear method. The lump solutions, the kink solitary wave solutions, and the mixed lump-exponential solitary wave
solutions, mixed lump-hyperbolic cosine solutions of this equation were obtained. The spatio-temporal deformation
of kink solitary wave and a lump solution have been studied. The non-elastic interactions between a lump and kink
soliton are obtained. However, in figs. 5 and 6, the energy of lump is transfered into the kink soliton gradually during
their propagation. The method can also be extended to other types of nonlinear evolution equations of the nonlinear
dynamics.
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