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Abstract. The aim of this paper is to introduce a generalized form of the Lorenz system with time delay.
Instead of considering each state variable of the Lorenz system belonging to R, the paper considers two of
them belonging to R

n. Hence the Lorenz system has (2n + 1) dimension. This system appears in several
applied sciences such as engineering, physics and networks. The stability of the trivial and nontrivial
fixed points and the existence of Hopf bifurcations are studied analytically. Using the normal form theory
and center manifold argument, the direction and the stability of the bifurcating periodic solutions are
determined. Finally, numerical simulations are calculated to confirm our theoretical results. The paper
concludes that the dynamics of this system are rich. Additionally, the values of the delay parameter at
which chaotic and hyperchaotic solutions exist for different values of n using Lyapunov exponents and
Kolmogorov-Sinai entropy are calculated numerically.

1 Introduction

In 1963, Lorenz introduced a particular simplified hydrodynamic flow problem [1]. This system is an approximation
to the Navier-Stokes equations for the hydrodynamics problem given by Bénard. The following equations are derived
from a model of fluid convection:

ẋ(t) = σ (y(t) − x(t)) ,

ẏ(t) = (ρ − z(t))x(t) − y(t),
ż(t) = x(t)y(t) − βz(t), (1)

where the variable x ∈ R measures the rate of convection overturning, the variable y ∈ R measures the horizontal
temperature variation and the variable z ∈ R measures the vertical temperature variation. The parameter σ is called
the Prandtl number, ρ represents the Rayleigh number and β represents some physical proportions of the region under
consideration. This system has chaotic attractors for wide ranges of values of the parameters, e.g. when σ = 10,
β = 8

3 and ρ = 28. Chaos has been studied extensively and developed with much interest by researchers. It has many
applications in the biological systems, electrical engineering, networks, cryptography and image encryption. Thereafter,
many chaotic systems have been appeared such as Chen, Rössler, Lü, and Chua systems [2–5].

As a generalization of the Lorenz system (1), Fowler et al. [6] introduced what is called a complex Lorenz system
as

ẋ(t) = σ (y(t) − x(t)) ,

ẏ(t) = (ρ − z(t))x(t) − ay(t),

ż(t) =
1
2

(x(t)ȳ(t) + x̄(t)y(t)) − βz(t), (2)
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where x, y ∈ C represent the electric field amplitude and the atomic polarization amplitude, respectively, and z ∈ R

represents the population inversion in a ring laser system of two-level atoms. The complex parameters ρ and a are
defined as ρ = ρ1 + iρ2, a = 1 − ie, σ and β are real parameters, i =

√
−1 and an overbar denotes complex conjugate

variable. Two decades later, Mahmoud et al. [7] investigated the basic properties and chaotic synchronization of the
complex Lorenz model (2) by setting ρ = ρ1, a = 1 as follows:

ẋ(t) = σ (y(t) − x(t)) ,

ẏ(t) = (ρ1 − z(t))x(t) − y(t),

ż(t) =
1
2

(x(t)ȳ(t) + x̄(t)y(t)) − βz(t), (3)

where x, y ∈ C, z ∈ R, σ, ρ and β ∈ R
+. In fact, many systems which include complex and real variables have played an

important role in many real applications, such as rotor dynamics [8], problems of laser physics [9], optical systems [10],
and disk dynamos [11].

The time delay system is a system which the rate of variation of its states depends on past states. This system can
be found in engineering [12], biology [13], as well as population dynamics [14]. Moreover, delays are strongly engaged in
challenging areas of information and communication technologies, e.g. in stabilization of networked controlled systems
and high-speed communication networks. It is well known that the existence of a delay in these systems inspires infinite
dimensional. In particular, various complex phenomena have been arisen as a result of the existence of a time delay in
a nonlinear system, such as bifurcation, multistability, chaos, hyperchaos, etc. On the other hand, since Mackay and
Glass [15] studied chaos in time delay system, there are increasing interest in chaotic and hyperchaotic systems with
delays [16–23].

Based on systems (1) and (3), this paper introduces and investigates a generalized form of (2n + 1) time delay
Lorenz system as

Ẋ(t) = σ (Y (t − τ) − X(t)) ,

Ẏ (t) = ρX(t) − Y (t) − Z(t)X(t),

Ż(t) = XT (t)Y (t) − βZ(t), (4)

where X = (X1,X2, . . . , Xn)T ∈ R
n, Y = (Y1, Y2, . . . , Yn)T ∈ R

n, Z ∈ R, σ, ρ and β are constant parameters, and
τ ≥ 0 is a constant time delay. As a result of the presence of τ , system (4) has rich dynamics that do not exist in the
corresponding system without delay.

Remark 1. For the case n = 1 and τ = 0 we get Lorenz system (1).

Remark 2. If n = 2 and τ = 0 system (4) becomes complex Lorenz system (3).

The importance of this system is that it can be used in many applications, including secure communications,
and networks. Thus, the paper scrutinizes the local stability of system (4). Based on the distribution of eigenvalues
of transcendental characteristic equation, some general stability criteria involving the system parameters are derived.
Using the method stated by Hassard et al. [24], the validity of all conditions driving to a Hopf bifurcation for system (4)
is demonstrated. Finally, chaos is confirmed by computing Lyapunov exponents and Kolmogorov-Sinai entropy of
system (4) with different values of n.

The paper is organized as follows. In sect. 2, the fixed points and their stability of system (4) are calculated. The
existence of Hopf bifurcation is studied analytically. In sect. 3, the approach introduced by Hassard et al. [24] is applied
to compute the coefficients that determine the nature of the bifurcation and its stability. In sect. 4, some numerical
simulations are performed, in order to justify the theoretical analysis of sects. 2 and 3. In sect. 5, the Lyapunov
exponents and Kolmogorov-Sinai (KS) entropy are calculated for system (4) with different values of n. The values of
the parameter τ at which, chaotic and hyperchaotic attractors of different orders exist are calculated numerically for
n = 2, 3, 10. In sect. 6, the results are concluded and future works are indicated.

2 Dynamics of system (4)

In this section, the basic properties of system (4) are investigated. The fixed points can be obtained by setting Ẋ = 0,
Ẏ = 0, Ż = 0 and Y (t − τ) = Y (t), so system (4) has three fixed points:

F0 = (0, 0, . . . , 0) ∈ R
2n+1,

F±
n =

⎛
⎝±

√√√√β(ρ − 1) −
n∑

l=2

X∗2
l ,X∗

2 , . . . , X∗
n,±

√√√√β(ρ − 1) −
n∑

l=2

X∗2
l ,X∗

2 , . . . , X∗
n, ρ − 1

⎞
⎠ . (5)
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If n = 1, system (4) has three different fixed points [1]:

F0 = (0, 0, 0), F±
1 =

(
±
√

β(ρ − 1),±
√

β(ρ − 1), ρ − 1
)

.

When n = 2, it has an isolated fixed point F0 = (0, 0, 0, 0, 0) and a whole circle of equilibria which can be written as
(±
√

β(ρ − 1) − X∗2
2 ,X∗

2 ,±
√

β(ρ − 1) − X∗2
2 ,X∗

2 , ρ − 1) [7].

2.1 The stability of F0

Now, the stability of the trivial fixed point F0 are studied and investigated. The linearization of system (4) at F0 is

Ẋ(t) = σ (Y (t − τ) − X(t)) ,

Ẏ (t) = ρX(t) − Y (t),

Ż(t) = −βZ(t). (6)

The associated characteristic equation of system (6) is

det

⎛
⎜⎝

(−σ − λ)In σe−λτIn 0

ρIn (−1 − λ)In 0

0T 0T −β − λ

⎞
⎟⎠ = 0,

where In is the (n×n) identity matrix and 0 = (0, 0, . . . , 0)T ∈ R
n. The characteristic equation of system (6) at F0 is

(λ + β)
(
λ2 + (σ + 1)λ + σ − ρσe−λτ

)n
= 0. (7)

Clearly, eq. (7) has a negative root λ = −β for all τ ≥ 0. Thus, the second-degree transcendental polynomial equation
is examined,

λ2 + (σ + 1)λ + σ − ρσe−λτ = 0, (8)

which can be written in general form as
λ2 + aλ + b + ce−λτ = 0, (9)

where
a = σ + 1, b = σ, c = −ρσ. (10)

For τ = 0, eq. (9) becomes
λ2 + aλ + b + c = 0. (11)

Equation (11) has negative real roots iff
a > 0 and b + c > 0. (12)

For τ �= 0, and if λ = iω (ω > 0) is a root of eq. (9), we obtain

−ω2 + iaω + b + c (cos ωτ − i sin ωτ) = 0.

By separating the real and imaginary parts, we get
{
−ω2 + b = −c cos ωτ,

aω = c sin ωτ.
(13)

Adding up the squares of both equations of (13), we have

ω4 + (a2 − 2b)ω2 + b2 − c2 = 0. (14)

The roots of eq. (14) can be written as

ω2
± =

−(a2 − 2b) ±
√

(a2 − 2b)2 − 4(b2 − c2)
2

. (15)
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From eq. (10), it could be concluded that a2 − 2b > 0. Consequently, eq. (14) does not have positive roots if one of
the following conditions is satisfied:

b2 − c2 > 0 and Δ∗ = (a2 − 2b)2 − 4(b2 − c2) < 0. (16)

That is, the characteristic equation (9) does not have purely imaginary roots, since, condition (12) ensures that all
roots of eq. (11) have negative real parts.

Equation (15) shows that there is a unique positive solution ω2
+ if

b2 − c2 < 0. (17)

Then at

τj =
1

ω+

(
arctan

(
aω+

ω2
+ − b

)
+ 2πj

)
, j = 0, 1, . . . . (18)

Moreover, eq. (9) has a simple pair of purely imaginary roots ±ω+

ω+ =

√
−(a2 − 2b) ±

√
(a2 − 2b)2 − 4(b2 − c2)

2
. (19)

Now, we investigate the sign of

G = sign
{

d
dτ

Re (λ(τ))
}

τ=τj

,

where λ(τ) = v(τ) ± iω(τ) are the roots of (9) near τ = τj (j = 0, 1, . . .) satisfying v(τj) = 0, ω(τj) = ω+. Here, we
have the following transversality condition.

Lemma 1. The following transversality condition

d
dτ

Re (λ(τ))τ=τj
> 0, (20)

is satisfied.

Proof. Differentiating eq. (9) with respect to τ , we get

dλ

dτ

(
2λ + a − cτe−λτ

)
= cλe−λτ .

This gives
(

dλ

dτ

)−1

=
(2λ + a)eλτ

cλ
− τ

λ

=
−(2λ + a)

λ (λ2 + aλ + b)
− τ

λ
.

Therefore

sign
{

d
dτ

Re (λ(τ))
}

λ=iω+

= sign

{
Re

(
dλ(τ)

dτ

)−1
}

λ=iω+

= sign

{
Re

(
−(2λ + a)

λ(λ2 + aλ + b)

)

λ=iω+

}

= sign

{
Re

(
−(2iω+ + a)

iω+(−ω2
+ + aiω+ + b)

)

λ=iω+

}

= sign
{

a2 − 2b + 2ω2
+

a2ω2
+ + (b − ω2

+)2

}
.

Since a2 − 2b > 0, therefore
d
dτ

Re (λ(τ))λ=iω+
> 0.
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From the above lemma, it could be concluded that if (17) holds, then (9) has at least one eigenvalue with strictly
positive real part for τ > τ0.

Theorem 1. Let τj be defined by eq. (18), β > 0 and condition (12) holds:

1) The fixed point F0 of system (4) is asymptotically stable for τ ≥ 0 if (16) satisfied. While, if (17) holds then F0 is
asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0.

2) Hopf bifurcation occurs when τ = τ0. That is, a family of periodic solutions bifurcates from F0 as τ passes through
the critical value τ0.

2.2 The stability of F±
n

To study the stability of system (4) at the nontrivial fixed point F±
n , the paper considers that the general form of the

nontrivial fixed point is
F = (x∗

1, x
∗
2, . . . , x

∗
n, y∗

1 , y∗
2 , . . . , y∗

n, z∗).

Using the linear transform:

X(t) = x(t) − x∗,

Y(t) = y(t) − y∗,

Z(t) = z(t) − z∗, (21)

system (4) becomes

ẋ(t) = σ (y(t − τ) − x(t)) ,

ẏ(t) = ρx(t) − y(t) − z∗x(t) − x∗z,

ż(t) = (x∗)T y(t) + xT (t)y∗ − βz(t). (22)

The associated characteristic equation of system (22) is

H(λ) =
(
λ2 + (σ + 1)λ + σ − σe−λτ

)n−1

×
(
λ3 + (1 + σ + β)λ2 + (βρ + σ + βσ)λ + σρβ − σ(λ − β(ρ − 2))e−λτ

)
= 0. (23)

Denoting the two factors of H(λ) by H1(λ) and H2(λ), respectively, we get

H1(λ) :=
(
λ2 + (σ + 1)λ + σ − σe−λτ

)n−1
,

H2(λ) := λ3 + (1 + σ + β)λ2 + (βρ + σ + βσ)λ + σρβ − σ(λ − β(ρ − 2))e−λτ . (24)

The following characteristic equation is considered:

H1(λ) :=
(
λ2 + (σ + 1)λ + σ − σe−λτ

)n−1
, (25)

which is similar to eq. (9) but with different coefficients, where

a = σ + 1, b = σ, c = −σ.

Now, we investigate the sign of real parts of the roots of (25). Clearly, for τ = 0, H1(λ) does not have positive real
parts. Also, for τ �= 0, if we set λ = iω, ω2

± in eq. (15) does not have any positive roots. Therefore, the characteristic
equation (25) does not have purely imaginary parts. So, it could be concluded that the equilibrium points F±

n of
system (4) stable for all τ ≥ 0. Therefore, the other factor H2(λ) of the characteristic equation (23) is studied, which
can be written in general form as

λ3 + ε1λ
2 + ε2λ + ε3 + (κ1λ + κ2)e−λτ = 0, (26)

where ε1 = 1 + σ + β, ε2 = βρ + σ + βσ, ε3 = σρβ, κ1 = −σ and κ2 = σβ(ρ − 2). The equilibrium F±
n is stable if all

roots of eq. (26) have negative real parts. In [25], the authors studied the distribution of the zeros of the third-degree
transcendental equation (26). For completeness and convenience, the results of [25] are summarized as follows.

Clearly, λ = iω(ω > 0) is a root of eq. (26) iff ω satisfies

−ω3i − ε1ω
2 + ε2ωi + ε3 + (κ1ωi + κ2) (cos ωτ − i sin ωτ) = 0.
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Separating the real and imaginary parts, we obtain
{

ε1ω
2 − ε3 = κ2 cos ωτ + κ1ω sinωτ,

ω3 − ε2ω = κ1ω cos ωτ − κ2 sinωτ.
(27)

To eliminate the trigonometric functions in the above equations, we square both sides of each equation above and add
the resulting equations. Thus, we have the following equation for ω:

ω6 + ε1ω
4 + ε2ω

2 + ε3 = 0, (28)

where ε1 = ε21 − 2ε2, ε2 = ε22 − 2ε1ε3 − κ2
1, and ε3 = ε23 − κ2

2. Let μ = ω2, then eq. (28) becomes

h(μ) = μ3 + ε1μ
2 + ε2μ + ε3 = 0. (29)

Clearly, the function h(μ) is monotone increasing in μ ≥ 0 if Δ1 = ε2
1 − 3ε2 ≤ 0. So, h(μ) has no positive real roots

when ε3 > 0 and Δ1 ≤ 0. Furthermore, when ε3 ≥ 0 and Δ1 > 0, dh
dμ = 0 has two real roots:

μ∗
1 =

−ε1 +
√

Δ1

3
, μ∗

2 =
−ε1 −

√
Δ1

3
.

Therefore, applying the results of refs. [20,25], the following lemma is obtained.

Lemma 2. For the polynomial equation (29), we have the following results:

1) Equation (29) has at least one positive root, if ε3 < 0, while it does not have positive roots when ε3 ≥ 0 and
Δ1 = ε2

1 − 3ε2 ≤ 0.
2) Equation (29) has two positive roots, μ1 and μ2, if ε3 ≥ 0,Δ1 = ε2

1 − 3ε2 > 0, μ∗
1 = 1

3 (−ε1 +
√

Δ1) > 0 and
h(μ∗

1) ≤ 0.

Without loss of generality, it is supposed that eq. (29) has three positive roots μk (k = 1, 2, 3). From (27), we
obtain

τ
(j)
k =

1
ωk

[
arctan

(
(ε1κ1 − κ2) ω3

k + (ε2κ2 − ε3κ1) ωk

ω2
k (ε1κ2 + κ1ω2

k − ε2κ1) − ε3κ2

)
+ 2πj

]
, k = 1, 2, 3; j = 0, 1, . . . . (30)

Then ±iωk is a pair of purely imaginary roots of eq. (26) with τ = τ
(j)
k (k = 1, 2, 3; j = 0, 1, . . .).

Define
τ0 = τ

(0)
0 = min

1≤k≤3

{
τ

(0)
k

}
, ω0 = ωk0 . (31)

Furthermore, when τ = 0, eq. (26) becomes

λ3 + ε1λ
2 + (ε2 + κ1)λ + ε3 + κ2 = 0. (32)

Applying the Routh-Hurwitz criterion, all roots of this equation have negative real parts, iff

ε1 > 0, ε3 + κ2 > 0 and ε1(ε2 + κ1) − (ε3 + κ2) > 0. (33)

Lemma 3. [25]. Suppose that (33) holds, for the third-degree transcendental equation (26). Thus,

1) all roots of eq. (26) have negative real parts for all τ ≥ 0 if ε3 ≥ 0 and Δ1 = ε2
1 − 3ε2 ≤ 0;

2) all roots of eq. (26) have negative real parts for τ ∈ [0, τ0) if one of the following holds: i) ε3 < 0; ii) ε3 ≥ 0,
μ1 = 1

3 (−ε1 +
√

Δ1) > 0 and h(μ1) ≤ 0.

Additionally, we investigate the sign of

G = sign
{

d
dτ

Re (λ(τ))
}

τ=τ
(j)
k

.

Lemma 4. Suppose that μk = ω2
k and h′(μk) �= 0, where h(μk) is defined by (29). Then

Re

{
dλ

dτ

}

τ=τ
(j)
k

�= 0,

and Re{dλ
dτ }τ=τ

(j)
k

and h′(μk) have the same sign.
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Proof. Differentiating the transcendental equation (26) with respect to τ , we get

(
3λ2 + 2ε1λ + ε2 + e−λτ (κ1 − τ (κ1λ + κ2))

) dλ

dτ
= λ (κ1λ + κ2) e−λτ .

Thus (
dλ

dτ

)−1

=
3λ2 + 2ε1λ + ε2

λ(κ1λ + κ2)
eλτ +

κ1

λ(κ1λ + κ2)
− τ

λ
, (34)

but
eλτ = − κ1λ + κ2

λ3 + ε1λ2 + ε2λ + ε3
,

so eq. (34) can be written as

(
dλ

dτ

)−1

=
3λ2 + 2ε1λ + ε2

−λ(λ3 + ε1λ2 + ε2λ + ε3)
+

κ1

λ(κ1λ + κ2)
− τ

λ
.

Therefore,

sign
{

d
dτ

Re (λ(τ))
}

λ=iωk

= sign

{
Re

(
dλ(τ)

dτ

)−1
}

λ=iωk

= sign
{

Re

(
3λ2 + 2ε1λ + ε2

−λ(λ3 + ε1λ2 + ε2λ + ε3)

)
+ Re

(
κ1

λ(κ1λ + κ2)

)}

λ=iωk

= sign
{

3ω4
k + 2(ε21 − 2ε2)ω2

k + ε22 − 2ε1ε3
ω6

k + (2ε21 − ε2)ω4
k + (ε22 − 2ε1ε3)ω2

k + ε23
− κ2

1

κ2
1ω

2
k + κ2

2

}
. (35)

By using (28), we obtain
ω6

k +
(
2ε21 − ε2

)
ω4

k +
(
ε22 − 2ε1ε3

)
ω2

k + ε23 = κ2
1ω

2
k + κ2

2.

Therefore,

sign
{

d
dτ

Re (λ(τ))
}

λ=iωk

= sign
{

1
κ2

1ω
2
k + κ2

2

(
3ω4

k + 2
(
2ε21 − ε2

)
ω2

k + ε22 − 2ε1ε3 − κ2
1

)}

= sign
{

1
κ2

1ω
2
k + κ2

2

(
3μ2

k + 2ε1μk + ε2

)}

= sign
{

1
Λ

h′ (μk)
}

�= 0,

where Λ = κ2
1ω

2
k + κ2

2 > 0. So we conclude that Re{dλ
dτ }λ=iωk

and h′(μk) have the same sign.

As a result, the following theorem is concluded.

Theorem 2. Let τ
(j)
k , τ0 and ω0 are defined by eqs. (30) and (31), respectively. Suppose that the condition (33) holds,

the following results hold:

1) The fixed point F±
n of system (4) is asymptotically stable for all τ ≥ 0 if ε3 ≥ 0 and Δ1 = ε2

1 − 3ε2 ≤ 0, while it is
asymptotically stable for τ ∈ [0, τ0) if either ε3 < 0 or ε3 ≥ 0, μ1 = 1

3 (−ε1 +
√

Δ1) > 0 and h(μ1) ≤ 0.
2) System (4) undergoes a Hopf bifurcation at the equilibrium F±

n when τ = τ
(j)
k if one of the conditions of lemma 3

are satisfied, and h′(μk) �= 0.

3 Hopf bifurcation of system (4)

In the previous section, we established that system (4) undergoes the Hopf bifurcation at the fixed points F0 and F±
n

when the constant delay τ passes through some certain critical values. In this section, the stability of the bifurcating
periodic solutions of system (4) is discussed. To solve this problem, the center manifold theorem and the normal form
method approached by Hassard et al. [24] are utilized. Thus, we assume that system (4) undergoes Hopf bifurcations
at general steady state F = (x∗

1, . . . , x
∗
n, y∗

1 , . . . , y∗
n, z∗) for τ = τ0. Then ±iω0 is the corresponding purely imaginary

root of the characteristic equation at equilibrium F = (x∗
1, . . . , x

∗
n, y∗

1 , . . . , y∗
n, z∗).
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Let ul = Xl − x∗
l , ul+n = Yl − y∗

l , u2n+1 = Z − z∗, (l = 1, 2, . . . , n), and τ = τ0 + η, where η ∈ R. Rescaling the
time delay t �−→ ( t

τ ), then system (4) can be written as a functional differential equation in C = C([−τ0, 0], R2n+1) as

u̇(t) = Bη (u(t)) + f (η,u(t)) , (36)

where u(t) = (u1(t), u2(t), . . . , un(t), un+1(t), . . . , u2n(t), u2n+1(t))T ∈ R
2n+1, and Bη : C → R,f : R × C → R are

given, respectively, by

Bη(φ) = (τ0 + η)

⎛
⎜⎝

−σIn 0In 0

(ρ − z∗)In −In −x∗

y∗T x∗T −β

⎞
⎟⎠

⎛
⎜⎝

φn(0)

φ2n(0)

φ2n+1(0)

⎞
⎟⎠

+ (τ0 + η)

⎛
⎜⎝

0In σIn 0

0In 0In 0

0T 0T 0

⎞
⎟⎠

⎛
⎜⎝

φn(−τ0)

φ2n(−τ0)

φ2n+1(−τ0)

⎞
⎟⎠ (37)

and

f(η,φ) = (τ0 + η)

⎛
⎜⎝

0

−φ2n+1(0)φn(0)

(φn(0))T
φ2n(0)

⎞
⎟⎠ , (38)

where φ = (φn,φ2n, φ2n+1)T ∈ C1([−τ0, 0], R2n+1),φn = (φ1, φ2, . . . , φn)T ,φ2n = (φn+1, φn+2, . . . , φ2n)T .
Using the Riesz representation theorem, (2n + 1) × (2n + 1) exists, such that

Bηφ =
∫ 0

−τ0

dξ(θ, η)φ(θ) for φ ∈ C1
(
[−τ0, 0], R2n+1

)
. (39)

According to the algorithm of [24], ξ(θ, η) can be expressed as

ξ(θ, η) = (τ0 + η)

⎛
⎜⎝

−σIn 0In 0

(ρ − z∗)In −In −x∗

y∗T x∗T −β

⎞
⎟⎠ δ(θ) − (τ0 + η)

⎛
⎜⎝

0In σIn 0

0In 0In 0

0T 0T 0

⎞
⎟⎠ δ(θ + τ0), (40)

where δ(θ) is the Dirac delta function. For φ ∈ C1([−τ0, 0], R2n+1), E(η)φ and Q(η)φ are expressed as [24]

E(η)φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ

dθ
, θ ∈ [−τ0, 0),

∫ 0

−τ0

dξ(θ, s)φ(s) = Bηφ, θ = 0,

(41)

and

Q(η)φ =

{
0, θ ∈ [−τ0, 0),

f (η,φ) , θ = 0.
(42)

Since dut/dt = dut/dθ, system (36) can be rewritten as

u̇t = E(η)ut + Q(η)ut, (43)

where ut(θ) = u(t + θ).
For ψ ∈ C1([0, τ0], R2n+1), the adjoint operator E∗ of E is defined as

E∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, τ0],

∫ 0

−τ0

dξT (t, 0)ψ(−t), s = 0.

(44)
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Note that the domains of E(0) and E∗ are C1([−τ0, 0], R2n+1) and C1([0, τ0], R2n+1), respectively. For φ ∈
C1([−τ0, 0], R2n+1) and ψ ∈ C1([0, τ0], R2n+1), the bilinear form is defined as follows:

〈ψ(s),φ(θ)〉 = ψ̄(0)φ (0) −
∫ 0

θ=−τ0

∫ θ

ζ=0

ψ̄ (ζ − θ) dξ(θ)φ(ζ)dζ, (45)

where ξ(θ) = ξ(θ, 0). Then E(0) and E∗ are adjoint operators. From the results of sect. 3, we got that ±iω0τ0 are
eigenvalues of E(0), and they are also eigenvalues of E∗.

For θ ∈ [−τ0, 0], it is assumed that the eigenvector of E(0), which corresponds to the eigenvalue iω0τ0, is ν(θ) =
(1, α1, α2, . . . , αn, γ1, γ2, . . . , γn)T eiω0τ0θ, then E(0)ν(θ) = iω0τ0ν(θ). According to the definition of E(0) and ξ(θ, η),

τ0

⎛
⎜⎝

(iω0 + σ)In −σe−iω0τ0In 0

(z∗ − ρ)In (iω0 + 1)In x∗

−y∗T −x∗T iω0 + β

⎞
⎟⎠ν(0) =

⎛
⎝

0
0
0

⎞
⎠ . (46)

Thus, it is easy to obtain the following:

αk =
σΩ0

Ω1eiw0τ0 + Ω2
x∗

k+1, k = 1, 2, . . . , n − 1,

αn =
Ω3 + Ω4

−(Ω1 + Ω2)
,

γk =
(iω0 + σ)Ω0

Ω1 + Ω2e−iw0τ0
x∗

k+1, k = 1, 2, . . . , n − 1,

γn =
Ω0(eiw0τ0(1 + iω0)(iω0 + σ) + σ(z∗ − ρ))

Ω1eiw0τ0 − Ω2
,

Ω0 = y∗
1 (1 + iω0) + x∗

1(ρ − z∗),

Ω1 = (1 + iω0) (iω0 + σ)

(
n∑

l=1

(x∗
l )

2 − ω0 + β + iω0(1 + β)

)
,

Ω2 = σ

(
(−1 − iω0)

n∑
l=2

x∗
l y

∗
l + (z∗ − ρ)

(
ω0 − (x∗

1)
2 − β − iω0(1 + β)

))
,

Ω3 = (ω0 − iσ)eiw0τ0

(
(ω0 − i) x∗

1y
∗
1 + (z∗ − ρ)

(
ω0(1 + β + iω0) − i

(
β +

n∑
l=2

(x∗
l )

2

)))
,

Ω4 = −σ(z∗ − ρ)

(
n∑

l=1

x∗
l y

∗
l + (β + iω0)(z∗ − ρ)

)
. (47)

Similarly, let ν∗(θ) = D(1, α∗
1, α

∗
2, . . . , α

∗
n, γ∗

1 , γ∗
2 , . . . , γ∗

n)eiω0τ0s (s ∈ [−1, 0]) be the eigenvector of E∗ corresponding
to the eigenvalue −iω0τ0, and similarly we get

α∗
k =

σx∗
1e

iw0τ0((iω0 − 1)y∗
k+1 + (z∗ − ρ)x∗

k+1)
−(Ω̄1 + Ω̄2eiw0τ0)

, k = 1, 2, . . . , n − 1,

α∗
n =

σiw0τ0(Ω5 + Ω6)
Ω̄1 + Ω̄2eiw0τ0

,

γ∗
k =

σx∗
1e

iw0τ0(x∗
k+1(σ − iω0) + σy∗

k+1e
iw0τ0)

Ω̄1 + Ω̄2eiw0τ0
, k = 1, 2, . . . , n − 1,

γ∗
n =

σx∗
1e

iw0τ0(ω0 + σ((ρ − z∗)eiw0τ0 − 1) + iω0(1 + σ))
−(Ω̄1 + Ω̄2eiw0τ0)

,

Ω5 = (ω0 + iσ)

(
ω0(1 + β − iω0) + i

(
β +

n∑
l=2

(x∗
l )

2

))
,

Ω6 = −σeiw0τ0

(
n∑

l=2

x∗
l y

∗
l + (β − iω0)(z∗ − ρ)

)
. (48)
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Using (45), we obtain:

〈ν∗(s),ν(θ)〉 = ν̄∗(0)ν(0) −
∫ 0

−1

∫ θ

ζ=0

ν̄∗ (ζ − θ) dξ(θ)ν(ζ)dζ

= D̄ (1, ᾱ∗
1, . . . , ᾱ

∗
n, γ̄∗

1 , . . . , γ̄∗
n) (1, α1, . . . , αn, γ1, . . . , γn)T

−
∫ 0

−1

∫ θ

ζ=0

D̄ (1, ᾱ∗
1, . . . , γ̄

∗
n) e−iω0τ0(ζ−θ)dξ(θ) (1, α1, . . . , γn)T

eiω0τ0ζdζ

= D̄

(
1 +

n∑
l=1

(ᾱ∗
l αl + γ̄∗

l γl) −
∫ 0

−1

(1, ᾱ∗
1, . . . , γ̄

∗
n) θeiω0τ0θdξ(θ) (1, α1, . . . , γn)T

)

= D̄

(
1 +

n∑
l=1

(ᾱ∗
l αl + γ̄∗

l γl) + στ0e
−iw0τ0

(
αn +

n−1∑
l=1

ᾱ∗
l γl

))
.

Then we choose

D =

(
1 +

n∑
l=1

(α∗
l ᾱl + γ∗

l γ̄l) + στ0e
iw0τ0

(
ᾱn +

n−1∑
l=1

α∗
l γ̄l

))−1

, (49)

to satisfy 〈ν∗(s),ν(θ)〉 = 1 and 〈ν∗(s), ν̄(θ)〉 = 0.
Following a computation process similar to that of [25], the following quantities can be obtained:

g20 = 2τ0D̄

(
γ̄∗

n

(
αn +

n−1∑
l=1

αlγl

)
− γn

(
ᾱ∗

n +
n−1∑
l=1

αlγ̄
∗
l

))
,

g11 = τ0D̄

(
γ̄∗

n

(
2Re{αn} +

n−1∑
l=1

(ᾱlγl + αlγ̄l)

)
− γn

(
ᾱ∗

n +
n−1∑
l=1

ᾱlγ̄
∗
l

)
− γ̄n

(
ᾱ∗

n +
n−1∑
l=1

αlγ̄
∗
l

))
,

g02 = 2τ0D̄

(
γ̄∗

n

(
ᾱn +

n−1∑
l=1

ᾱlγ̄l

)
− γn

(
ᾱ∗

n +
n−1∑
l=1

ᾱlγ̄
∗
l

))
,

g21 = τ0D̄

(
− ᾱ∗

n

(
2Γ

(2n+1)
11 (0) + 2γnΓ

(1)
11 (0) + Γ

(2n+1)
20 (0) + γ̄nΓ

(1)
20 (0)

)

−
n−1∑
l=1

γ̄∗
l

(
2αlΓ

(2n+1)
11 (0) + 2γnΓ

(l+1)
11 (0) + ᾱlΓ

(2n+1)
20 (0) + γ̄nΓ

(l+1)
20 (0)

)

+ γ̄∗
n

(
Γ

(n+1)
11 (0) + 2αnΓ

(1)
11 (0) + 2

n−1∑
l=1

(
αlΓ

(n+l+1)
11 (0) + γlΓ

(l+1)
11 (0)

)

+ Γ
(n+1)
20 (0) + ᾱnΓ

(1)
20 (0) +

n−1∑
l=1

(
ᾱlΓ

(n+l+1)
20 (0) + γ̄lΓ

(l+1)
20 (0)

)))
, (50)

where

Γ20(θ) =
ig20

w0τ0
ν(0)eiw0τ0θ +

iḡ02

3w0τ0
ν̄(0)e−iw0τ0θ + Δe2iw0τ0θ,

Γ11(θ) = − ig11

w0τ0
ν(0)eiw0τ0θ +

iḡ11

w0τ0
ν̄(0)e−iw0τ0θ + Λ, (51)

where Γ20 = (Γ (1)
20 , Γ

(2)
20 , . . . , Γ

(2n+1)
20 )T , Γ11 = (Γ (1)

11 , Γ
(2)
11 , . . . , Γ

(2n+1)
11 )T .
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Also, Δ = (Δ(1),Δ(2), . . . ,Δ(2n+1))T ∈ C
2n+1 and Λ = (Λ(1), Λ(2), . . . , Λ(2n+1))T ∈ C

2n+1 are constant vectors,
which can be computed through the relations

⎛
⎜⎝

(2iw0 + σ) In −σe2iw0τ0In 0

−(ρ − z∗)In (2iw0 + 1) In x∗

−y∗T −x∗T 2iw0 + β

⎞
⎟⎠ · Δ =

⎛
⎜⎜⎜⎜⎝

0

−γ5α

αn +
n−1∑
l=1

αlγl

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎝

σIn −σIn 0

−(ρ − z∗)In In x∗

−y∗T −x∗T β

⎞
⎟⎠ · Λ =

⎛
⎜⎜⎜⎜⎝

0

− (γ5ᾱ + γ̄5α)

2Re{αn} +
n−1∑
l=1

(ᾱlγl + αlγ̄l)

⎞
⎟⎟⎟⎟⎠

, (52)

where α = (1, α1, α2, . . . , αn)T .
Using eq. (50) we can compute the following values [25]:

c1(0) =
i

2ω0

(
g11g20 − 2 |g11|2 −

|g02|2

3

)
+

g21

2
,

η2 = −Re{c1(0)}
Re{λ́(0)}

,

β2 = 2Re{c1(0)},

T2 = −Im{c1(0)} + η2Im{λ́(0)}
ω0

, (53)

where η2 determines the directions of the Hopf bifurcation, by means the Hopf bifurcation is supercritical if η2 > 0
and if η2 < 0 then the Hopf bifurcation is subcritical and the bifurcating periodic solutions exists for τ = τ0. β2 defines
the stability of the bifurcating periodic solutions: the bifurcating periodic solutions are stable (unstable) if β2 < 0
(β2 > 0); and T2 determines the period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0
(T2 < 0).

4 Numerical simulation

This section checks numerically the validity of the analytical results of sects. 2 and 3. The stability of the trivial fixed
point F0 is investigated. Let σ = 15, β = 8/3, n = 5 and vary ρ. If 0 < ρ < 1, the conditions (12) and (16) are satisfied.
So from theorem 1, then the trivial fixed point F0 is asymptotically stable for τ ≥ 0, as shown in fig. 1, for the case
ρ = 0.5, τ = 3. Additionally, if we choose ρ < −1, the conditions (12) and (17) hold, i.e., system (4) is asymptotically
stable for τ ∈ [0, τ0). Figure 2 shows the stability critical curve using (18) with (10) and (19) in ρ− τ parameter space,
where, τ0 is represented by the red line. It is concluded that the stable island lies between the τ = 0 curve and the τ0

curve. The shaded region in fig. 2 represents the stable zone, and the τ0 curve represents the Hopf bifurcation curve.
If ρ = −2, for example, and from (18) and (10) we obtain ω+ = 1.717 and τ0 = 1.1556. By choosing τ = 1.1 < τ0, F0

is asymptotically stable as shown in fig. 3. By theorem 1, a Hopf bifurcation occurs when τ0 = 1.1556, the origin loses
its stability and a periodic solution bifurcates from the origin exists for τ = 1.19 > τ0, as displayed in figs. 4 and 5.
From eqs. (53) in sect. 3, it follows that:

c1(0) = −0.0477954 + 0.0155392i,

Re{λ́(0)} = 0.320481,

Im{λ́(0)} = −1.06822,

η2 = 0.149137 > 0,

β2 = −0.0955909 < 0,

T2 = 0.0837316 > 0. (54)
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Fig. 1. Solution curve of the system (4) for σ = 15, β = 8/3, n = 5, ρ = 0.5, and τ = 3. By means, the conditions (12) and (16)
satisfied, the trivial fixed point F0 is asymptotically stable for any τ ≥ 0. (a) A state space in the (t, xl) plane, l = 1, 2, . . . , 5.
(b) A state space in the (t, yl)-plane. (c) A state space in the (t, z)-plane.
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Fig. 2. Stability zone in the ρ-τ parameter space with parameters σ = 15, β = 8/3, n = 5. Shaded region indicates the zone of
stable trivial fixed point F0.
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Fig. 3. Solution curve of the system (4) for σ = 15, β = 8/3, n = 5, ρ = −2, and τ = 1.1 < τ0. The origin of this system is
asymptotically stable. (a) A state space in the (t, xl)-plane, l = 1, 2, . . . , 5. (b) A state space in the (t, yl)-plane. (c) A state
space in the (t, z)-plane.
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Fig. 4. Bifurcating periodic solution for the system (4) for σ = 15, β = 10, n = 5, ρ = −2, and τ = 1.19 > τ0. (a)
(y1(t), y1(t − τ))-plane. (b) (x1(t), y4(t))-plane. (c) (x4(t), y2(t))-plane.
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Fig. 5. Bifurcation diagrams of time delay system (4) for the parameters values σ = 15, β = 8/3, n = 5, ρ = −2. (a) x1(t)
versus τ . (b) y2(t) versus τ . (c) z(t) versus τ .

Since η2 > 0 and β2 < 0, the Hopf bifurcation is supercritical and the direction of the bifurcation is τ > τ0. These
bifurcating periodic solutions from F0 at τ0 are stable, as shown in figs. 4 and 5. Finally, since T2 > 0 the period of
the limit cycle increases with increasing τ . We can summarize these observations through the bifurcation diagram in
fig. 5. Figure 5 shows the bifurcation diagram of x1, y2, z versus τ with ρ = −2. Clearly, when τ < τ0 = 1.1556 the
solution is asymptotically stable, when τ = τ0 the Hopf bifurcation occurs. Finally when τ > τ0 the periodic solution
appears.

Concerning the stability of the nontrivial fixed point F+
n , we choose σ = 6, β = 1, ρ = 8, n = 5, and we get that

eq. (28) has two positive roots ω1 = 1.78089 and ω2 = 2.97127. Therefore, we obtain

τ
(j)
1 = 1.08315 + 3.52811j, τ

(j)
2 = 0.172541 + 2.11465j, j = 0, 1, . . . .

From formula (53), it follows that c1(0) = 0.0120439 − 0.199998i, η2 = −0.01831 < 0, β2 = 0.0240878 > 0, T2 =
0.0553719 > 0. Thus, the equilibria F+

n is stable for τ < τ
(0)
2 as illustrated by the numerical simulation, see fig. 6.

When τ passes through the critical value τ
(0)
2 , F+

n loses its stability and a Hopf bifurcation occurs as shown in fig. 7.
Since η2 < 0, β2 > 0, the Hopf bifurcation is subcritical and the direction of the Hopf bifurcation is τ > τ

(0)
2 .

These bifurcating periodic solutions from F+
n are unstable as depicted in fig. 7, where chaos appears. Moreover, it is

interesting to simulate the bifurcation diagram in fig. 8 for system (4). Figure 8 illustrates that when τ increases the
nontrivial equilibrium F+

n becomes stable for [0, τ
(0)
2 ) and a Hopf bifurcation occurs when τ crosses a critical value

τ
(0)
2 . After that chaotic solution appears which confirms our results of figs. 6 and 7.
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Fig. 6. Solution curve of the system (4) for σ = 6, β = 1, n = 5, ρ = 8 and τ = 0.16 < τ
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2 . The nontrivial fixed point F+
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is stable. (a) A state space in the (t, xl)-plane, l = 1, 2, . . . , 5. (b) A state space in the (t, yl)-plane. (c) A state space in the
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Fig. 7. Chaos solution when τ = 0.18 > τ
(0)
2 , σ = 6, β = 1, n = 5, ρ = 8. The nontrivial fixed point F+

n is unstable. (a) A state
space in the (t, x1)-plane. (b) (x2(t), y5(t))-plane. (c) (x3(t), z(t))-plane. (c) (y3(t), z(t))-plane.
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Fig. 8. Bifurcation diagrams of time delay system (4) for the parameters values σ = 6, β = 1, n = 5, ρ = 8. (a) x1(t) versus τ .
(b) y4(t) versus τ . (c) z(t) versus τ .

5 Lyapunov exponents and Kolmogorov-Sinai entropy of (4)

In this section, the Lyapunov exponents and Kolmogorov-Sinai (KS) entropy of system (4) utilized for the choice
σ = 15, β = 8

3 , ρ = 28 and different values of τ and n are computed. The values of τ at which chaotic, hyperchaotic
solutions as well as solutions that approach fixed points are calculated. Other choices of the system parameters and
n can be similarly studied. Using the methods provided by Breda and Van Vleck [26], the Lyapunov exponents are
calculated.

Another sign that measures the complexity and the dynamics of system (4) is the KS entropy, that equals to the
sum of all the positive Lyapunov exponents [27,28],

hKS =
k∑

r=1

λr,

λr > 0 (r = 1, 2, . . . , k) , λk+1 ≤ 0, (55)

where the Lyapunov exponents are ordered as λr ≥ λr+1 and hKS is positive for chaotic and hyperchaotic solutions
and zero for periodic attractors or solutions that approach fixed points. Different values of n are considered below.



Eur. Phys. J. Plus (2017) 132: 461 Page 17 of 20

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

0.2

τ

 

 

0 1 2 3 4 5 6 7 8

−0.15

−0.1

−0.05

0

0.05

τ

 

 

λ1 λ2 λ3

λ4 λ5

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

τ

h K
S

(a)

(b)

(c)

Fig. 9. Lyapunov exponents of (4) versus τ and the correspondence KS entropy, when σ = 15, β = 8
3
, ρ = 28, n = 2. (a) λ1,

λ2, λ3 versus τ . (b) λ4, λ5 versus τ . (c) KS entropy.

5.1 The case n = 2

For this case, the Lyapunov exponents λ1, . . . , λ5 versus τ are calculated as shown in fig. 9(a), (b). It is concluded that
system (4) has hyperchaotic attractors of order 5 for τ ∈ [5.03, 5.04], [5.07, 5.63] and [5.66, 8], while the hyperchaotic
attractors of order 4 exist for τ lies in the intervals [2.32, 2.33], [2.4, 2.45], [3.16, 3.2], [3.23, 3.25], [3.29, 3.32], [3.35, 5.02],
[5.05, 5.06] and [5.64, 5.65]. It also has a hyperchaotic attractor of order 3 for τ ∈ [1.33, 1.39], [1.44, 2.31], [2.34, 2.39],
[2.46, 3.15], [3.21, 3.22], [3.26, 3.28], [3.33, 3.34], hyperchaotic attractor of order 2 for τ ∈ [0.06, 0.8], [0.95, 1.32] and
[1.4, 1.43]. The chaotic attractors are found for τ ∈ [0.81, 0.82] ∪ [3.3, 3.5]. The attractors of system (4) that approach
trivial fixed points are exist for τ ∈ (0, 0.05] ∪ [0.83, 0.93]. The KS entropy is simulated in fig. 9(c). It is clear that
the dynamics of this system is complex and rich since it has chaotic and hyperchaotic attractors of different orders
for large and small intervals of τ . Additionally, hKS = 0 for τ ∈ (0, 0.05] ∪ [0.83, 0.93] and positive for chaotic and
hyperchaotic attractors.
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Fig. 10. Lyapunov exponents of (4) versus τ and the correspondence KS entropy, when σ = 15, β = 8
3
, ρ = 28, n = 3. (a) λ1,

λ2, λ3 versus τ . (b) λ4, λ5, λ6, λ7 versus τ . (c) KS entropy.

5.2 The case n = 3

As we did in subsect. 5.1, we calculated λk (k = 1, 2, . . . , 7) versus τ and they are plotted in fig. 10(a), (b). The
hyperchaotic attractors of order 7 exist for τ lies in the intervals [4.42, 4.52], [4.63, 4.64], [4.68, 4.73], [4.78, 4.84],
[4.89, 4.91], [4.99, 5.21] and [5.24, 6] while the hyperchaotic attractors of order 6 exist for τ ∈ [2.32, 2.33], [3.52, 3.56],
[3.59, 3.6], [3.63, 4.41], [4.53, 4.62], [4.65, 4.67], [4.74, 4.77] and [4.85, 4.88]. This system has hyperchaotic attractors of
order 5 for τ ∈ (0.12, 0.14], [1.28, 1.3], [1.33, 2.31], [2.34, 3.51], [3.57, 3.58] and [3.61, 3.62], hyperchaotic attractors of
order 4 for τ ∈ [1.2, 1.27], [1.31, 1.32], hyperchaotic of order 3 for τ ∈ [0.05, 0.12], (0.14, 0.79], (0.94, 1.2), hyperchaotic
attractors of order 2 for τ ∈ (0.79, 0.84), chaotic attractor for τ ∈ (0.87, 0.94]. It has solutions that approach trivial
fixed points for τ ∈ (0, 0.05) ∪ [0.84, 0.87]. The KS entropy is plotted in fig. 10(c). It is concluded that the dynamics
of this system are rich and complex.

5.3 The case n = 10

In this case system (4) with n = 10 has 21 Lyapunov exponents and hyperchaotic attractors of order 21 for τ ∈
[3.99, 4.01], [4.06.4.09]. It has, also, chaotic and hyperchaotic attractors of orders 20, 19, . . . , 2 for different values of τ .
In fig. 11, the KS entropy is depicted and observed for τ ∈ (0, 0.05] ∪ [0.83, 0.93] that hKS = 0. The dynamics of this
system in this case are similar to those cases for n = 2, 3.
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Fig. 11. The KS entropy for system (4) versus τ , when σ = 15, β = 8
3
, ρ = 28, n = 10.

6 Conclusions

This paper deals with nonlinear models, in which some variables have n dimension, since they are related to networks
applications and secure communications. In this paper, a generalized Lorenz system of (2n + 1) dimension with time
delay has been introduced and studied. Namely, by taking the state variables x and y ∈ R

n. As seen from remarks 1
and 2, the new system (4) is a generalization of Lorenz system (1) and complex Lorenz system (3) by setting n = 1
and n = 2, respectively. Moreover, this system may belong to Clifford algebra. The complex dynamical behaviors of
system (4) are studied in detail. It has one trivial and two nontrivial fixed points, which are generalizations of the
fixed points of Lorenz system [1] and complex Lorenz system [7]. By analyzing the distribution of the eigenvalues of
the transcendental characteristic equation of the corresponding linearized system, local stability criteria are achieved,
see theorems 1 and 2. By choosing time delay as a bifurcation parameter, the model is found to undergo a sequence of
Hopf bifurcation when this parameter passes through a critical value τ0 as in eqs. (18) and (30). Furthermore, by using
the center manifold theorem and the normal form theory, the direction and the stability of the bifurcating periodic
solutions are determined in sect. 3. That is, a class of periodic orbits bifurcates from the corresponding fixed points
and the bifurcation diagrams are shown in figs. 5 and 8. Furthermore, we simulated the bifurcation diagrams for both
cases of the stability of trivial and nontrivial fixed points to bring out the nature of the underlying dynamics, see
figs. 5 and 8. Finally, by varying the τ parameter, chaotic and hyperchaotic attractors of order (2n + 1) exist. The
values of τ are calculated numerically for n = 2, 3, 10. Moreover, we plotted the KS entropy of system (4) for n = 2, 3,
and 10 in figs. 9(c), 10(c) and 11, respectively.

Interestingly, there are some properties of the time delay Lorenz system (4). For instance, the existence of delay
in the system, infinite dimensionality of delayed systems offers a great opportunity to the researchers to investigate
hyperchaos (two or more than two positive Lyapunov exponents). The complex Lorenz system (3) has one positive
Lyapunov exponent [7], but this system with delay has 5 positive Lyapunov exponents, as shown in fig. 9(a), (b). To
conclude for the parameters σ = 15, β = 8

3 , ρ = 28, the time delay Lorenz system (4) with dimension (2n + 1) has
(2n + 1) positive Lyapunov exponents for some values of τ . Moreover, the time delay system (3) has infinite number
of eigenvalues, because of the exponential in the characteristic equations (7) and (23), while systems (1) and (3) have
only three and five eigenvalues, respectively. Therefore, the results of this work can be considered as a generalization
of those results in the literature. It is reckoned that this system will have broad applications in networks, engineering
systems and secure communications. Our system (4) leaves room for further investigations, e.g. the boundedness of
solutions which it is important in control theory and its applications, basin of attractions, and instead of constant
delay one can consider the time varying delay.

We would like to thank Prof. Dimitri Breda, assistant professor at University of Udine, for providing the scripts used to calculate
the Lyapunov exponents.
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