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Abstract. In this work we perform the Hamilton-Jacobi constraint analysis of the four-dimensional Back-
ground Field (BF ) model with cosmological term. We obtain the complete set of involutive Hamiltonians
that guarantee the integrability of the system and identify the reduced phase-space. From the funda-
mental differential we recover the equations of motion and obtain the generators of the gauge and shift
transformations.

1 Introduction

The importance of the Background Field (BF ) theories lies on the fact that they have a close relationship with
gravity [1]. Those theories are topological theories and they do not depend on the space-time metric along with its
correlation functions and, in principle, its quantization would be easier than the one of the Einsten-Hilbert action, for
example. There is plenty of literature related to the application of techniques, such as spin foam quantization to BF
theories as a method to have some insights about the quantum behavior of gravity [2,3].

Lower-dimensional BF models are also good laboratories to analyze lower-dimensional quantum gravity. Those
models have a common feature: all of them propagates zero degrees of freedom. This fact is in accordance with its
gravitational interpretation since gravity in lower dimensions has no degrees of freedom.

In four dimensions, there are two important BF models of gravity: The Plebanski theory [4] and the Freidel-
Starodubtsev model [5]; in both cases they begin with a four-dimensional BF model plus a cosmological term. In the
Plebanski theory an additional field imposing simplicity constraints is introduced. The Freidel-Starodubtsev model is
equivalent to the MacDowell-Mansouri gravity [6]; this is shown by introducing an interaction term which breaks the
original symmetry of the BF model. Recently, it has been shown that a similar construction of the Freidel-Starodubsetv
can be applied for two and three-dimensional gravity [7] with a polynomial BF action. For a recent review on BF
gravity, see [8].

In order to identify the true degrees of freedom and dynamical variables of the BF models, it is important to
analyze the constraint structure. Usually, this procedure is made with the Hamiltonian Dirac formalism [9–11] (also
see [12–14]). The Hamiltonian analysis of Plebanski theory has been made in [15], the Freidel-Starodubtsev in [16], the
two-dimensions polynomial BF in [17] and the BF with cosmological term in [18]. However, there are other methods
of constraint analysis, as the Hamilton-Jacobi formalism.

The Hamilton-Jacobi formalism presented here follows the approach of Güler [19], which is an extension of
Caratheodory’s equivalent Lagrangian method in the calculus of variations [20]. This formalism is characterized by
a set of Hamilton-Jacobi differential equations called Hamiltonians. The dynamical evolution of the system is given
in terms of a fundamental differential which depends on the time and other linear independent arbitrary parameters
related to the involutive Hamiltonians [21,22], obtained from the Frobenius’ integrability condition. The canonical
transformations are obtained immediately from this fundamental differential when just the dynamics described by
those arbitrary parameters are considered. Furthermore, the gauge transformations are the subgroup of those trans-
formations that leave the lagrangian invariant. On the other hand, although the Dirac’s approach is a very powerful
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tool to the constraint analysis, it deals with gauge symmetries by the conjecture that they are all generated by the
first class constraints of the theory. Unfortunately, there are some examples that contradict it [23]. Therefore, we claim
again that the Hamilton-Jacobi formalism is a way to illuminate the canonical origin of the gauge structure of the
four-dimensional BF theory. This approach was used to study several examples of gauge systems, such as topologically
massive theories [24], gravity models [25,26], and the two-dimensional and three-dimensional BF theories [27,28]. This
formalism was also extended to higher-order Lagrangians and Berezinian systems [29–31].

In this work, we will deal with the constraint analysis of the four-dimensional BF theory with a cosmological term.
This model is a natural extension of the lower-dimensional ones in 1 + 1 [27] and in 2 + 1 [28] dimensions, studied
under the Hamilton-Jacobi formalism. A careful analysis of its constraint structure and symmetry properties is an
excellent laboratory to a future investigation of the gravitational BF models, since it can give us insights about the
implications of adding a symmetry breaking term in its highly symmetric structure. We argue that a Hamilton-Jacobi
analysis can be enriching because it deals with gauge symmetries in a very natural way.

The following section will be devoted to explain the main features of the Hamilton-Jacobi formalism. In sect. 3
we present some general characteristics of the four-dimensional BF model. In sect. 4 we give its constraint analysis
and build the generalized brackets. In sect. 5 we compute its characteristic equations generated by the fundamental
differential and analyze the equivalence with the Lagrangian formalism, as well as obtain the canonical and gauge
transformations, and from them we find generators of those transformations. Finally, in sect. 6 we discuss the results.

2 The Hamilton-Jacobi formalism

In this section we develop the Hamilton-Jacobi formalism for constrained systems, which are defined as the ones whose
Lagrangian do not satisfy the Hessian condition.

Let us consider a physical system S =
∫

dtL, whose Lagrangian has the form L = L(xi, ẋi, t), where the Latin
indices run from 1 to n, which is the dimension of the configuration space. The system is called constrained or singular
if it does not satisfy the Hessian condition detWij �= 0 with the matrix Wij given by Wij = ∂2L

∂ẋi∂ẋj . If the Hessian
condition is satisfied, the transformation that leads the configuration space to the phase-space is invertible. If it is
not, some of the conjugated momenta pi = ∂L

∂ẋi are not invertible on velocities and we are led to equations of the form
Φ(q, p) = 0, which constrains the phase-space. Now, if we consider k non-invertible momenta and m = n− k invertible
momenta, we have

pz −
∂L

∂ẋz
= 0, (1)

where z = 1, . . . , k. Then, the above equation defines the primary constraints of the theory. By using the definition
Hz ≡ − ∂L

∂ẋz we can rewrite the above equation as

H ′
z ≡ pz + Hz = 0. (2)

These constraints are called Hamiltonians. If we define p0 ≡ ∂S
∂t , the Hamilton-Jacobi equation can be written as

H ′
0 ≡ p0 + H0 = 0. (3)

The canonical Hamiltonian function H0 = paẋa + pzẋ
z −L with a = 1, . . . , m, is independent of the non-invertible

velocities ẋz if the constraints are implemented. The unified notation is given by

H ′
α ≡ pα + Hα, (4)

where α = 0, . . . , k. The Cauchy’s method [20] is employed to find the characteristic equations related to the above
first-order equations,

dxa =
∂H ′

α

∂pa
dtα, dpa = −∂H ′

α

∂xa
dtα, dS = (padxa − Hαdtα). (5)

The differentials written above depend on tα = (t0, tz ≡ xz) independent variables or parameters. The name Hamilto-
nians used for the constraints is now justified, once that Hz generates flows parameterized by tz in analogy with the
temporal evolution generated by H0. From the characteristic equations, one can use the Poisson brackets defined on
the extended phase-space (xa, tα, pa, pα) to express in a concise form the evolution of any function f = f(xa, tα, pa, pα):

df = {f,H ′
α}dtα. (6)

This is the fundamental differential, from where we identify the Hamiltonians as the generators of the dynamical
evolution of the phase-space functions.
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Let us define the operator

Xα[f ] =
∑

I

{γI ,H ′
α}

δf

δγI
; γI = (xa, tα, pa, pα), (7)

where Xα[∗] can be interpreted as k vectors, whose 2(n + 1) components are {γI ,H ′
α}. The fundamental differential

can be expressed in terms of this operator as

df = Xα[f ]dtα. (8)

The Frobenius’ integrability condition (IC) ensures that the system of eq. (8) is integrable. The IC can be expressed
as

[
Xα,Xβ

]
(xa, pa) ≡ Xα[xa]Xβ [pa] − Xβ [xa]Xα[pa] = −{H ′

α,H ′
β} = 0. (9)

The above condition can be generalized to

{H ′
α,H ′

β} = Cγ
αβH ′

γ , (10)

where Cγ
αβ are structure coefficients (see [32,33]). Therefore, the IC ensures that the Hamiltonians close an involutive

algebra. In terms of the fundamental differential (6), the IC (10) can be written as

dH ′
α = {H ′

α,H ′
β}dtβ = Cγ

αβH ′
γdtβ = 0. (11)

The Hamiltonians that satisfy the IC are called involutives. However, not all Hamiltonians from a physical systems
satisfy this condition identically. Therefore, we must define new Hamiltonians.

Let us suppose we have a set of non-involutive Hamiltonians H ′
ā. Then,

dH ′
ā = {H ′

ā,H ′
0}dt + {H ′

ā,H ′
b̄}dxb̄. (12)

Once we impose dH ′
ā = 0, we can define a matrix with components Māb̄ ≡ {H ′

ā,H ′
b̄
}. If this matrix is invertible, we

can write dxb̄ = −M−1
āb̄

{H ′
ā,H ′

0}dt, i.e., there is a dependence between the parameters related to the non-involutive
Hamiltonians. Replacing in the fundamental differential, we have

dF =
[
{F,H ′

0} − {F,H ′
ā}M−1

āb̄
{H ′

b̄,H
′
0}

]
dt. (13)

Therefore, we can define generalized brackets (GB) as

{A,B}∗ ≡ {A,B} − {A,H ′
ā}(M−1)āb̄{H ′

ā, B}, (14)

which redefine the dynamic of the constrained system reducing its phase-space, once dF = {F,H ′
0}∗dt. This procedure

is the result of the integrability condition and, as shown in [21], it allows the possibility that the matrix Mab is
non-invertible, or that the system has involutive and non-involutive Hamiltonians as well.

The dynamical evolution described by the resulting arbitrary parameters can be understood as canonical transfor-
mations, with the involutive Hamiltonians as generators. To understand this, we need to check that the variation δγI =
δtαXα[γI ] is generated by g = 1+δtαXα, and also preserves the symplectic structure dxa∧dpa+dtα∧dpα+dHα∧dtα,
with fixed dt0. In order to relate canonical transformations with the gauge ones, we need to restrict the study to fixed
times dt0 = 0. Then, the transformation on any variable γI is

δγI =
{
γI ,H ′

z

}∗
δtz. (15)

The Hamiltonians must be involutives, then {H ′
x,H ′

y}∗ = Cz
xyH ′

z. However, the IC ensures that {H ′
x,H ′

y}∗ = C0
xyH ′

0 +
Cz

xyH ′
z. To conciliate these equations we must consider whether C0

xy = 0 or H ′
0 = 0. The condition C0

xy = 0 is almost
never satisfied. On the other hand, the condition H ′

0 = 0 constrains the phase-space. Under this assumption, we define
the generator of gauge transformations as

Gcan ≡ H ′
zδt

z, (16)

since δγI = {γI , Gcan}∗. More details on the role of involutive Hamiltonians in the HJ formalism can be found in [22].
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3 The four-dimensional BF model with cosmological term

Let us consider the gauge group SO(1, 3) acting on a background field 2-form B and a connection 1-form A of a
four-dimensional manifold M. The generators of the gauge group MIJ = −MJI obey the following algebra:

[MIJ ,MKL] = ηILMJK − ηIKMJL + ηJKMIL − ηJLMIK , (17)

where I, J = 0, 1, 2, 3 and ηIJ = diag(+,−,−,−). We can also define the 2-form strength field as F = dA + A ∧ A.
The action for the BF model is characterized by tr(B ∧ F ), which is gauge-invariant, due to the properties of

the trace and wedge product. In four dimensions we can also add the expression tr(B ∧ B), called cosmological term,
which also maintains the invariance properties of the BF model. The action of the BF model with cosmological term
is given by

S =
∫

M
tr

(

B ∧ F − β

2
B ∧ B

)

, (18)

where β is a constant parameter.
Once, the B field and connection A acts on the SO(1, 3), we can write

A = AIJ
μ MIJdxμ, B =

1
2
BIJ

μνMIJdxμ ∧ dxν . (19)

Furthermore, from the definition of field strength, we obtain

F IJ
μν = ∂μAIJ

ν − ∂νAIJ
μ + AI

μKAKJ
ν − AI

νKAKJ
μ . (20)

Instead of using differential forms, we use the components of the B and F fields, and we obtain

S =
1
2

∫
d4x εμναβ

(

BIJμνF IJ
αβ − β

2
BIJ

μνBαβIJ

)

, (21)

where εμναβ is the Levi-Civita symbol in M. The Levi-Civita symbol is a totally antisymmetric quantity and, as a
convention, we have ε0123 = 1 and, in Minkowski space ε0123 = −1.

The equations of motion (EOM) are

0 = εμναβ
(
F IJ

αβ − βBIJ
αβ

)
, (22)

0 = εμναβDνBIJ
αβ , (23)

where Dμ is the component of the covariant derivative Dθ = dθ + [A, θ]. For a 2-form θ, the explicit expression for
the covariant derivative is

DμθIJ
αβ = ∂μθIJ

αβ + AI
μKθKJ

αβ − AJ
μKθKI

αβ . (24)

The EOM have a direct interpretation: Equation (22) states that the field strength and the background fields are
parallel, while eq. (23) states that the covariant derivative on the B field.

In [34], the relation between the BF model and the Yang-Mills was studied, while in [35], the BF model with
a cosmological term gives exactly the YM theory for the SU(N) group, showing that the BF model can also be
understood as a first-order action for the YM field.

4 The Hamilton-Jacobi analysis

In order to perform a Hamilton-Jacobi analysis, we foliate the space-time M = R×M3, being M3 the space at constant
time. The Lagrangian density from (21) becomes

L = εijkBjkIJ∂0A
IJ
i + εijkAIJ

0 DiBjkIJ + εijkB0iIJ

(
F IJ

jk − βBIJ
jk

)
, (25)

where the lowercase Latin indices go from 1, 2, 3 and denote the space coordinates, while the capital Latin indices
represent the internal indices from the SO(1, 3) group. Furthermore, εijk ≡ ε0ijk is the three-dimensional Levi-Civita
symbol.

The canonical momenta πIJ
μ , ΠIJ

μν conjugated to AIJ
μ and BIJ

μν , respectively, are defined by

πμ
IJ ≡ ∂L

∂(∂0AIJ
μ )

, Πμν
IJ ≡ ∂L

∂(∂0BIJ
μν )

. (26)
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From the explicit expression of the Lagrangian, we notice that (25) does not depend on any velocities ∂0A
IJ
μ , ∂0B

IJ
μν .

Therefore they are canonical constraints of the theory. For the other velocities, we have linear expressions that also
represent constraints. Furthermore, the canonical Hamiltonian is given by

H0 = −εijkAIJ
0 DiBjkIJ − εijkB0iIJ (F IJ

jk − βBIJ
jk ), (27)

and the canonical variables satisfy the following Poisson brackets:
{
AIJ

μ (x), πν
KL(y)

}
= δν

μΔIJ
KLδ3(x − y), (28)

{
BIJ

μν (x),Παβ
KL(y)

}
= δμν

αβΔIJ
KLδ3(x − y), (29)

where δμν
αβ = 1

2 (δμ
αδν

β − δμ
βδν

α) and ΔIJ
KL ≡ 1

2 (δI
KδJ

L − δI
LδJ

K). The presence of these anti-symmetrised Kronecker deltas
is the result of the antisymmetry of the indices of the gauge group.

According to the HJ formalism, we can define π ≡ ∂0S where S is the action. This definition allows us to write all
the HJ PDE, or Hamiltonian, as

H′ ≡ π + H = 0, (30)

A0
IJ ≡ π0

IJ = 0, (31)

Ai
IJ ≡ πi

IJ − εijkBjkIJ = 0, (32)
Bμν

IJ ≡ Πμν
IJ = 0. (33)

The first Hamiltonian H′ is associated with the time parameter t ≡ x0. The Hamiltonians Aμ
IJ are related to the

momenta conjugated to the variable AIJ
μ with corresponding parameters λIJ

μ . Finally, the Hamiltonians Bμ
IJ , related

to the momenta conjugated to the variable BIJ
μν , have corresponding parameters ωIJ

μν . These parameters play an
important role in the definition of the fundamental differential

df =
∫

d3y
(
{f(x),H′(y)}dt + {f(x),Aμ

IJ (y)}dλIJ
μ (y) + {f(x),Bμν

IJ (y)}dωIJ
μν (y)

)
(34)

and, consequently, in the canonical structure of the theory.
The Hamiltonians that have vanishing Poisson brackets with themselves and all the remaining ones are called

involutives. Otherwise, we have non-involutive Hamiltonians. From the set of HJ PDE above, we identify that Ai
IJ

and Bij
IJ are non-involutive, since

{
Ai

IJ (x),Bjk
KL(y)

}
= −εijkηIRηJSΔRS

KLδ(x − y). (35)

With these Hamiltonians we can define generalized bracket. First, let us build the matrix between these constraints,

M ijk
IJKL(x, y) =

(
0 −εijk

εijk 0

)

ηIRηJSΔRS
KLδ(x − y). (36)

This matrix has inverse form, given as

(M−1)IJKL
ijk (x, y) =

1
2

(
0 −εijk

εijk 0

)

ηIRηJSΔKL
RS δ(x − y). (37)

Once this inverse exists, we can define the GB. Following eq. (14), we obtain the non-vanishing fundamental GB:

{
AiIJ (x), BKL

kl (y)
}∗

= −1
2
εiklΔ

KL
IJ δ3(x − y), (38)

{
AIJ

μ (x), πν
KL(y)

}∗
= δν

μΔIJ
KLδ3(x − y), (39)

{
BIJ

0i (x),Π0j
KL(y)

}∗
=

1
2
δi
jΔ

IJ
KLδ3(x − y). (40)

Note that the PB (28) remains unaltered. Furthermore, from (38), we notice that BIJ
ij is now proportional to the

canonical momenta of the variables AIJ
i , in agreement with Hamiltonian (32).
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The GB redefine the dynamics of the system and the fundamental differential (34) now takes the form:

df(x) =
∫

d3y
(
{f(x),H′(y)}∗dt + {f(x),A0

IJ (y)}∗dλIJ
0 (y) + {f(x),B0k

IJ (y)}∗dωIJ
0k (y)

)
. (41)

At this point we impose the IC for the remaining Hamiltonians: A0
IJ(y) and B0k

IJ(y). The conditions dA0
IJ(y) = 0 and

dB0k
IJ (y) = 0 introduce new Hamiltonians:

CIJ ≡ εijkDiBjkIJ , (42)

DiIJ ≡ εijk
(
F IJ

jk − βBIJ
jk

)
; (43)

note that these constraints can be identified as EOM (22) and (23). Furthermore, the canonical Hamiltonian (27) can
now be written as the linear combination of the Hamiltonians:

H0 = −AIJ
0 CIJ − BIJ

0k Dk
IJ . (44)

The IC are satisfied for the full set of Hamiltonians A0
IJ , B0i

IJ , CIJ , DiIJ . Moreover, they satisfy the following algebra:
{
CIJ(x), CKL(y)

}∗
= ηILCJK − ηIKCJL + ηJKCIL − ηJLCIK , (45)

{
CIJ(x),DKL

k (y)
}∗

= ηILDJK
k − ηIKDJL

k + ηJKDIL
k − ηJLDIK

k , (46)

and all other brackets between the Hamiltonians strictly zero. We conclude that the Hamiltonians are involutive.
It is important to notice that, due to the Bianchi Identity, we have

DiDiIJ = −βCIJ . (47)

Consequently, even if we have a set of involutive constraints, some of them are not completely independent. It is said
that the set is involutive and reducible. This does not spoil integrability, afterall.

5 Characteristic equations

The fundamental differential allows us to define the evolution of any function of the phase-space as a function of time
and local parameters and it is built with the complete set of involutive Hamiltonians. Let us rename them as

HIJ ≡ A0
IJ → λIJ = λIJ

0 ,

Hk
IJ ≡ B0k

IJ → ωIJ
k = ωIJ

0k ,

GIJ ≡ CIJ → ζIJ ,

Gk
IJ ≡ Dk

IJ → χIJ
k .

We have also introduced the parameters (λIJ , ωIJ
k , ζIJ , χIJ

k ) related to each Hamiltonian. Therefore, the fundamental
differential is given by the linear combination

df(x) =
∫

d3y
(
{f(x),H′(y)}∗dt + {f(x),HIJ (y)}∗dλIJ + {f(x),Hk

IJ (y)}∗dωIJ
k

+ {f(x),Gk
IJ}∗dχIJ

k + {f(x),GIJ}∗dζIJ
)
. (48)

The characteristic equations are the ones that govern the evolution of the canonical variables of the phase-space.
In our case, for the variables AIJ

μ we have

dAIJ
i =

(
DiA

IJ
0 + βBIJ

0i

)
dt − DidζIJ − βdχIJ

i , (49)

dAIJ
0 = dλIJ , (50)

and, for the BIJ
μν field, we have

dBIJ
ij =

1
2
εkijε

kmn
(
AI

0KBKJ
mn − AJ

0KBKI
mn − 2Dx

mBIJ
0n

)
dt

+ −
(
BI

ijKdζKJ − BJ
ijKdζKI

)
−

(
DidχIJ

j − DjdχIJ
i

)
, (51)

dBIJ
0i =

1
2
dωIJ

i . (52)
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Notice that the variables AIJ
0 and BIJ

0i only depend on parameters λIJ and ωIJ
i , respectively, confirming that they

only act as Lagrange multipliers. This can also be inferred from the form of the canonical Hamiltonian written in
terms of the constraints.

The final form of the fundamental differential is given in terms of independent parameters; we can analyze the
temporal evolution of the canonical variables independently. For the spatial components, we have

∂0A
IJ
i = DiA

IJ
0 + βBIJ

0μ , (53)

∂0B
IJ
ij =

1
2
εkijε

kmn
(
AI

0KBKJ
mn − AJ

0KBKI
mn − 2Dx

mBIJ
0n

)
. (54)

Equation (53) is in agreement with (22), while (54) becomes εkij(D0B
IJ
ij − 2DiB

IJ
0j ) = 0, which is equivalent to the

component μ = k of (23).

5.1 Generators of canonical and gauge transformations

The canonical transformations of the theory are obtained by setting dt = 0 in the characteristic equations. Therefore,
we have

δAIJ
i = −Diδζ

IJ − βδχIJ
i , (55)

δAIJ
0 = δλIJ , (56)

δBIJ
ij = −

(
BI

ijKδζKJ − BJ
ijKδζKI

)
−

(
Diδχ

IJ
j − Djδχ

IJ
i

)
, (57)

δBIJ
0i =

1
2
δωIJ

i . (58)

Then, the generator of canonical transformations is the linear combination of the involutive Hamiltonians:

Gcan =
∫

d3y
(
HIJδλIJ + Hk

IJδωIJ
k + Gk

IJδχIJ
k + GIJδζIJ

)
, (59)

once
δAIJ

μ =
{
AIJ

μ , Gcan
}∗

, δBIJ
μν =

{
BIJ

μν , Gcan
}∗

. (60)

In order to obtain the gauge transformations, i.e., the set of canonical transformations that leaves the Lagrangian
(quasi-)invariant, we need to compute its variation δL induced by the field’s canonical transformations and then impose
δL = 0. This procedure generates constraints between the local parameters.

From (21), we have the variation of Lagrangian

δL = εijk
[(

F IJ
jk − βBIJ

jk

)
δB0iIJ +

(
F IJ

0k − βBIJ
0k

)
δBijIJ

]

+ εijk
[
2B0iIJDjδA

IJ
k + BijIJ

(
D0δA

IJ
k − DkδAIJ

0

)]
. (61)

By replacing the expressions for δBIJ
μν and δAIJ

μ , we will have equations that will relate the four parameters
(λIJ , ωIJ , ζIJ , χIJ ). A good approach to solve δL = 0 is to consider special cases where some parameters are set
to zero. From (55) and (57) we see that educated guesses are choosing δχIJ

i = 0 and δζIJ = 0 independently.
First, let us set δζIJ = 0. In this case, the equation for the variation δL = 0 becomes

0 = εijk

[

F IJ
ij

(
1
2
δωkIJ + D0δχkIJ

)

− βBIJ
ij

(
1
2
δωkIJ + D0δχkIJ +

1
β

DkδλIJ

)]

, (62)

which can be solved for 1
2δωkIJ = −D0δχkIJ − 1

β DkδλIJ . The term proportional to BIJ
ij becomes zero as well as the

term proportional to F IJ
ij (up to a boundary term). Let us rename δλIJ = −βδχ0IJ . Therefore, we have

δAIJ
μ = −βδχIJ

μ , (63)

δBIJ
μν = −

(
DμδχIJ

ν − DνδχIJ
μ

)
, (64)

which is a shift translation for the A field. Also notice that this translation only appears due to the cosmological term.
Moreover, since we are dropping boundary terms this transformations leaves the Lagrangian quasi-invariant.
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Now, as a second choice, let us consider δχIJ
i = 0. Replacing it in (61) we obtain

0 = εijk

[

(FijIJ − βBijIJ )
(

1
2
δωIJ

k + BI
0kKδζKJ − BJ

0kKδζKI

)

− BijIJDk

(
D0δζ

IJ + δλIJ
)
]

. (65)

This equation is zero for δλIJ = −D0δζ
IJ and δωIJ

k = −2(BI
0kKδζKJ − BJ

0kKδζKI). This corresponds to the gauge
transformation

δAIJ
μ = −DμδζIJ , (66)

δBIJ
μν = −

(
BI

μνKδζKJ − BJ
μνKδζKI

)
. (67)

This transformation does not depend on the parameter β, in contrast with (63). Both, shift and gauge transformations
obtained through the Hamilton-Jacobi formalism are in perfect agreement with the results presented in [36].

6 Final remarks

In this work we have used the Hamilton-Jacobi formalism to analyze the BF model with cosmological term. This
procedure consisted in finding the complete set of Hamiltonians that generates the dynamical evolution of the system.
The integrability condition ensures that these hamiltonians are involutives. However, as we see from eq. (35), there
are Hamiltonians which do not satisfy the IC. These non-involutive Hamiltonians can be eliminated if we define the
generalized brackets which redefines the dynamic of the system, as shown in (38), (39) and (40). Related to each
involutive Hamiltonians we have a independent parameter, one of them being the time.

An interesting feature of the Hamilton-Jacobi formalism is the fact that all the dynamics of the theory is given in
terms of the fundamental differential. Particularly, for the four-dimensional BF model the fundamental differential is
given by (48). Since the local parameters are linearly independent we can study the system’s temporal evolution, from
where we recover the equations of motion, as well as the canonical transformations (whenever we consider dt = 0).
Remember, however, that we have a set of involutive and reducible Hamiltonians. This does not spoil integrability but
it changes the number of degrees of freedom of the theory. After computing the PG, we have 84 canonical variables
(AIJ

μ , BIJ
μν , πIJ

0 ,ΠIJ
0i ) and 42 involutive Hamiltonians (DiIJ , πiIJ ,Π0iIJ ). For each involutive Hamiltonian the number

of degrees of freedom will be reduced to 2. Therefore, we have a system with 0 degrees of freedom.
In order to obtain the symmetry transformations we vary the Lagrangian with respect to the fields, substituting

its variations induced by the infinitesimal canonical transformations and set δL = 0. This procedure will generate
relations between the local arbitrary parameters. Therefore, the generator of gauge transformations is equal to the
generator of canonical transformation with dependent parameters. The Hamilton-Jacobi formalism provides a simple
method to find the symmetries from the fundamental differential. The gauge and shift generators are obtained directly
from the inner structure of the theory. This is an important motivation to use the Hamilton-Jacobi approach in the
study of BF theories.

Our plan is to extend this work to the Freidel-Starodubtsev BF model, by adding a symmetry breaking term.
As shown in [37] and [38], the study of the BF theory plus cosmological term give some of the properties of the BF
equivalents theories of gravity.

We would like to thank M.C. Bertin for reading the article and suggestions. GBG was supported by CNPq. BMP was partially
supported by CNPq. CEV was supported by CNPq process 150407/2016-5 and CAPES post-doctoral scholarship.
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