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Abstract. Based on the generalized nonlocal strain gradient theory (NSGT), dynamic modeling and analy-
sis of nanoporous inhomogeneous nanoplates is presented. Therefore, it is possible to capture both stiffness-
softening and stiffness-hardening effects for a more accurate dynamic analysis of nanoplates. The nanoplate
is in hygro-thermal environments and is subjected to an in-plane harmonic load. Porosities are incorpo-
rated to the model based on a modified rule of mixture. Modeling of the porous nanoplate is conducted
according to a refined four-variable plate theory with fewer field variables than in the first-order plate
theory. The governing equations and related classical and nonclassical boundary conditions are derived
based on Hamilton’s principle. These equations are solved for hinged nanoplates via Galerkin’s method.
It is shown that porosities, moisture rise, temperature rise, nonlocal parameter, strain gradient parame-
ter, material gradation, elastic foundation and uniform dynamic load have a remarkable influence on the
dynamic behavior of nanoscale plates.

1 Introduction

Excessive stresses due to drastic moisture and temperature gradients make engineering structures susceptible to failure.
The influence of temperature is known as thermal effect and the influence of moisture absorption from the atmosphere
is known as hygro-scopic effect. Since functionally graded (FG) structures are usually exposed to environmental
conditions, analysis of the combined effect of moisture and temperature on their mechanical behavior is of great
importance in the research community [1–4]. It is reported that increase in moisture percentage and temperature
reduces the performance of FG structures and natural frequencies [5]. Also, exerting a sever temperature field may
lead to thermal buckling of FG structures [6–8].

Functionally graded nanoplates can be synthesized and constructed in different ways, as reported in several pa-
pers [9–12]. They are building blocks of nano-electro-mechanical systems (NEMs) used as nanosensors and nanoac-
tuators [13–15]. Investigation of the mechanical behavior of scale-free plates has been extensively conducted in the
literature based on classical theories. However, these theories are unable to describe the size effects on the nanostruc-
tures. This problem is resolved using the nonlocal elasticity theory of Eringen [16,17], in which small-size effects are
considered by introducing an additional scale parameter. According to the nonlocal stress field theory, the stress state
at a given point depends on the strain states at all points. The nonlocal elasticity theory has been broadly applied to
examine the static and dynamic behaviors of nanoscale structures [18–35].

However, analysis and modeling of FG nanoplates are performed by various researchers. The finite element vibra-
tion analysis of FG nanosize plates based on classical plate theory (CPT) was conducted by Natarajan et al. [36].
Based on the third-order plate theory, Daneshmehr and Rajabpoor [37] examined the buckling behavior of nonlocal
graded nanoplates under different boundary conditions. Analysis of resonance frequencies of FG micro and nanoplates
according to nonlocal elasticity and strain gradient theory was performed by Nami and Janghorban [38]. They used
nonlocal and strain gradient theories separately and concluded that these theories have different mechanisms in the
analysis of nanoplates. Application of the three-dimensional nonlocal elasticity theory in the static and vibration
analysis of an FG nanoplate was investigated by Ansari et al. [39] based on the classical plate model. Based on the
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generalized differential quadrature method (GDQM), Daneshmehr and Rajabpoor [40] analyzed the vibrational behav-
ior of higher-order FG nanoplates using the nonlocal stress field theory. Application of the four-variable plate theory in
the vibration analysis of FG nanoplates was examined by Belkorissat et al. [41]. They stated that the presented plate
model has fewer field variables compared to first-order and third-order plate theories. Based on the four-variable plate
theory, the shear deformation effect is captured, while the governing equations are very similar to the classical plate
theory. Barati [42] proposed a refined beam model for the forced vibration analysis of FG nanobeams with porosities.
Wave propagation, buckling and vibration analyses of smart FG nanoplates under various physical fields are carried
out by Ebrahimi and Barati [43–45] using different plate theories. A comprehensive investigation of bending, buckling
and vibrational behaviors of FG nanoplates on an elastic medium was conducted by Sobhy [46]. Also, Khorshidi and
Fallah [47] performed the buckling analysis of FG nanoplates via a general nonlocal exponential shear deformation
plate model. Sobhy and Radwan [48] presented a new quasi 3D nonlocal plate theory for vibration and buckling of
FGM nanoplates.

It is noticeable that all of the aforementioned studies on FG nanoplates have reported a stiffness-softening mecha-
nism due to the nonlocality. Although Eringen’s nonlocal elasticity theory (NET) is a suitable theory for the modeling
of nanostructures, it has some shortcomings due to neglecting the stiffness-hardening mechanism reported in experi-
mental works and strain gradient elasticity [49]. By using the nonlocal strain gradient theory (NSGT), Lim et al. [50]
matched the dispersion curves of nanobeams with those of the experimental data. They concluded that NSGT is more
accurate for modeling and analysis of nanostructures by considering both stiffness reduction and enhancement effects.
Application of NSGT in the wave dispersion analysis of FG nanobeams was examined by Li et al. [51]. Also, some
investigations were performed using NSGT on vibration and buckling of nanorods, nanotubes and nanobeams [52–56].
Also, Farajpour et al. [57] presented the buckling analysis of nanoplates via a nonlocal strain gradient plate model
employing exact and differential quadrature methods. In another work, Farajpour et al. [58] presented the nonlocal
strain gradient modeling of nano-mechanical vibrating piezoelectric mass sensors. Also, Ebrahimi et al. [59] applied
NSGT for wave propagation analysis of FG nanoplates under thermal loading. Therefore, it is of great importance
to analyze the vibration behavior of FG nanoplates via NSGT for the first time. Nanoplates are usually subjected to
hygro-thermal environments during their construction or operational life [60,61]. Despite their importance, there is no
study on the dynamic stability of FG nanoplates under hygro-thermal effects considering porosities.

This paper makes the first attempt to model a compositionally graded nanoporous nanoplate according to NSGT.
The proposed modeling of nanoplates incorporates a nonlocal stress field parameter as well as a length scale parameter
related to the strain gradient. Thus, stiffness enhancement or reduction observed in nanostructures are considered.
The porosity-dependent material properties of the nanoplate are described via a new power-law function. Nonclassical
boundary conditions related to NSG theory as well as governing equations are obtained using Hamilton’s principle.
By solving the governing equations, using Galerkin’s method, natural frequencies of the nanoplate are obtained. The
results show that the vibrational behavior of the nanoplate is significantly influenced by nonlocality, strain gradient
parameter, hygro-thermal loading, material composition, elastic medium and geometrical parameters. The obtained
frequencies can be used as benchmark results in the analysis of nanoplates modeled by nonlocal and microstructure-
dependent strain gradient theories.

2 Nonlocal strain gradient nanoplate model

The proposed nonlocal strain gradient theory [50] takes into account both nonlocal stress field and the strain gradient
effects by introducing two scale parameters. This theory defines the stress field as

σij = σ
(0)
ij −∇σ

(1)
ij , (1)

in which the stresses σ
(0)
ij and σ

(1)
ij correspond to strain εij and strain gradient ∇εij , respectively, as

σ
(0)
ij =
∫

V

Cijklα0(x, x′, e0a)ε′kl(x
′)dx′, (2a)

σ
(1)
ij = l2

∫
V

Cijklα1(x, x′, e1a)∇ε′kl(x
′)dx′, (2b)

in which Cijkl are the elastic coefficients and e0a and e1a capture the nonlocal effects and l captures the strain gradient
effects. When the nonlocal functions α0(x, x′, e0a) and α1(x, x′, e1a) satisfy the developed conditions by Eringen, the
constitutive relation of the nonlocal strain gradient theory has the following form:

[
1 − (e1a)2∇2

] [
1 − (e0a)2∇2

]
σij = Cijkl

[
1 − (e1a)2∇2

]
εkl − Cijkll

2
[
1 − (e0a)2∇2

]
∇2εkl, (3)
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Fig. 1. Configuration of the nanoporous inhomogeneous nanoplate on the elastic substrate.

in which ∇2 denotes the Laplacian operator. Considering e1 = e0 = e, the general constitutive relation in eq. (3)
becomes [

1 − (ea)2∇2
]
σij = Cijkl

[
1 − l2∇2

]
εkl. (4)

To consider hygro-thermal effects, eq. (4) can be written as [55]
[
1 − (ea)2∇2

]
σij = Cijkl

[
1 − l2∇2

]
(εkl − γijT − βijC), (5)

where γij and βij are thermal and moisture expansion coefficients, respectively.

3 FG plate model based on neutral surface position

Consider a rectangular (a × b) porous nanoplate of uniform thickness h made of FGM, as shown in fig. 1. A FG
material can be specified by the variation in the volume fractions. Due to this variation, the neutral axis of the FG
nanoplate may not coincide with its mid-surface, which leads to bending-extension coupling. By using the neutral axis,
this coupling is eliminated. Based on the modified power-law model, Young’ modulus E, density ρ, thermal expansion
coefficient γ and moisture expansion coefficient β are described as

E(z) = (Ec − Em)
(

z

h
+

1
2

)p

+ Em − ξ

2
(Ec + Em), (6a)

ρ(z) = (ρc − ρm)
(

z

h
+

1
2

)p

+ ρm − ξ

2
(ρc + ρm), (6b)

γ(z) = (γc − γm)
(

z

h
+

1
2

)p

+ γm − ξ

2
(γc + γm), (6c)

β(z) = (βc − βm)
(

z

h
+

1
2

)p

+ βm − ξ

2
(βc + βm), (6d)

in which c and m denote the material properties of ceramic and metal phases, respectively, and p is the inhomogeneity
or power-law index. Also, ξ is the porosity volume fraction. The displacement field according to the four-variable plate
model considering exact position of neutral surface can be expressed by

u1(x, y, z, t) = u(x, y, t) − (z − z∗)
∂wb

∂x
− [f(z) − z∗∗]

∂ws

∂x
, (7a)

u2(x, y, z, t) = v(x, y, t) − (z − z∗)
∂wb

∂y
− [f(z) − z∗∗]

∂ws

∂y
, (7b)

u3(x, y, z, t) = w(x, y, t) = wb(x, y, t) + ws(x, y, t), (7c)
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where

z∗ =

∫ h/2

−h/2

E(z) zdz

∫ h/2

−h/2

E(z) dz

,

z∗∗ =

∫ h/2

−h/2

E(z) f(z)dz

∫ h/2

−h/2

E(z) dz

. (8)

Also, u and v are in-plane displacements and wb and ws denote the bending and shear transverse displacement,
respectively. The shape function of transverse shear deformation is considered as

f(z) = −z

4
+

5z3

3h2
. (9)

According to the present plate theory with four unknowns, the nonzero strains are obtained as

εx =
∂u

∂x
− (z − z∗)

∂2wb

∂x2
− [f(z) − z∗∗]

∂2ws

∂x2
,

εy =
∂v

∂y
− (z − z∗)

∂2wb

∂y2
− [f(z) − z∗∗]

∂2ws

∂y2
,

γxy =
∂u

∂y
+

∂v

∂x
− 2(z − z∗)

∂2wb

∂x∂y
− 2[f(z) − z∗∗]

∂2ws

∂x∂y
,

γyz = g(z)
∂ws

∂y
, γxz = g(z)

∂ws

∂x
. (10)

Also, the extended Hamilton’s principle expresses that

∫ t

0

δ(U − T + V ) dt = 0. (11)

Here, U is strain energy, T is kinetic energy and V is work done by external forces. The first variation of the strain
energy can be calculated as

δ U =
∫

V

(
σxxδεxx + σ(1)

xx δ∇εxx + σyyδεyy + σ(1)
yy δ∇εyy + σxyδγxy + σ(1)

xy δ∇γxy

+σyzδγyz + σ(1)
yz δ∇γyz + σxzδγxz + σ(1)

xz δ∇γxz

)
dV, (12)

in which σij are the components of the stress tensor and εij are the components of the strain tensor.
Substituting eqs. (8) and (10) into eq. (12) yields

δU =
∫ a

0

∫ b

0

[
Nxx

[
∂δu

∂x
+

∂w

∂x

∂δw

∂x

]
− M b

xx

∂2δwb

∂x2
− Ms

xx

∂2δws

∂x2
+ Nyy

[
∂δv

∂y
+

∂w

∂y

∂δw

∂y

]

− M b
yy

∂2δwb

∂y2
− Ms

yy

∂2δws

∂y2
+ Nxy

(
∂δu

∂y
+

∂δv

∂x
+

∂w

∂x

∂δw

∂y
+

∂w

∂y

∂δw

∂x

)
− 2M b

xy

∂2δwb

∂x∂y

− 2Ms
xy

∂2δws

∂x∂y
+ Qyz

∂δws

∂y
+ Qxz

∂δws

∂x

]
dy dx, (13)
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in which

Nxx =
∫ h/2

−h/2

(
σ0

xx −∇σ(1)
xx

)
dz = N (0)

xx −∇N (1)
xx ,

Nxy =
∫ h/2

−h/2

(
σ0

xy −∇σ(1)
xy

)
dz = N (0)

xy −∇N (1)
xy ,

Nyy =
∫ h/2

−h/2

(
σ0

yy −∇σ(1)
yy

)
dz = N (0)

yy −∇N (1)
yy ,

M b
xx =
∫ h/2

−h/2

z
(
σ0

xx −∇σ(1)
xx

)
dz = M b(0)

xx −∇M b(1)
xx ,

Ms
xx =
∫ h/2

−h/2

f
(
σ0

xx −∇σ(1)
xx

)
dz = Ms(0)

xx −∇Ms(1)
xx ,

M b
yy =
∫ h/2

−h/2

z
(
σ0

yy −∇σ(1)
yy

)
dz = M b(0)

yy −∇M b(1)
yy ,

Ms
yy =
∫ h/2

−h/2

f
(
σ0

yy −∇σ(1)
yy

)
dz = Ms(0)

yy −∇Ms(1)
yy ,

M b
xy =
∫ h/2

−h/2

z
(
σ0

xy −∇σ(1)
xy

)
dz = M b(0)

xy −∇M b(1)
xy ,

Ms
xy =
∫ h/2

−h/2

f
(
σ0

xy −∇σ(1)
xy

)
dz = Ms(0)

xy −∇Ms(1)
xy ,

Qxz =
∫ h/2

−h/2

g
(
σ0

xz −∇σ(1)
xz

)
dz = Q(0)

xz −∇Q(1)
xz ,

Qyz =
∫ h/2

−h/2

g
(
σ0

yz −∇σ(1)
yz

)
dz = Q(0)

yz −∇Q(1)
yz , (14a)

where

N
(0)
ij =
∫ h/2

−h/2

(
σ

(0)
ij

)
dz, N

(1)
ij =
∫ h/2

−h/2

(
σ

(1)
ij

)
dz,

M
b(0)
ij =
∫ h/2

−h/2

z
(
σ

b(0)
ij

)
dz, M

b(1)
ij =
∫ h/2

−h/2

z
(
σ

b(1)
ij

)
dz,

M
s(0)
ij =

∫ h/2

−h/2

f
(
σ

s(0)
ij

)
dz, M

s(1)
ij =

∫ h/2

−h/2

f
(
σ

s(1)
ij

)
dz,

Q(0)
xz =
∫ h/2

−h/2

g
(
σi(0)

xz

)
dz, Q(1)

xz =
∫ h/2

−h/2

g
(
σi(1)

xz

)
dz,

Q(0)
yz =
∫ h/2

−h/2

g
(
σi(0)

yz

)
dz, Q(1)

yz =
∫ h/2

−h/2

g
(
σi(1)

yz

)
dz, (14b)

in which (ij = xx, xy, yy). The first variation of the work done by applied forces can be written as:

δV =
∫ a

0

∫ b

0

(
N0

x

∂(wb + ws)
∂x

∂δ(wb + ws)
∂x

+ N0
y

∂(wb + ws)
∂y

∂δ(wb + ws)
∂y

+ 2δN0
xy

∂(wb + ws)
∂x

∂(wb + ws)
∂y

− kw(wb + ws)δ(wb + ws)

+ kp

(
∂(wb + ws)

∂x

∂δ(wb + ws)
∂x

+
∂(wb + ws)

∂y

∂δ(wb + ws)
∂y

))
dy dx, (15)
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where N0
x , N0

y , N0
xy are in-plane applied loads, kw and kp are Winkler and Pasternak constants. The first variation of

the kinetic energy can be written in the following form:

δK =
∫ a

0

∫ b

0

[
I0

(
∂u

∂t

∂δu

∂t
+

∂v

∂t

∂δv

∂t
+

∂(wb + ws)
∂t

∂δ(wb + ws)
∂t

)
−I1

(
∂u

∂t

∂δwb

∂x∂t
+

∂wb

∂x∂t

∂δu

∂t
+

∂v

∂t

∂δwb

∂y∂t
+

∂wb

∂y∂t

∂δv

∂t

)

− I3

(
∂u

∂t

∂δws

∂x∂t
+

∂ws

∂x∂t

∂δu

∂t
+

∂v

∂t

∂δws

∂y∂t
+

∂ws

∂y∂t

∂δv

∂t

)
+ I2

(
∂wb

∂x∂t

∂δwb

∂x∂t
+

∂wb

∂y∂t

∂δwb

∂y∂t

)

+ I5

(
∂ws

∂x∂t

∂δws

∂x∂t
+

∂ws

∂y∂t

∂δws

∂y∂t

)
+ I4

(
∂wb

∂x∂t

∂δws

∂x∂t
+

∂ws

∂x∂t

∂δwb

∂x∂t
+

∂wb

∂y∂t

∂δws

∂y∂t
+

∂ws

∂y∂t

∂δwb

∂y∂t

)]
dy dx, (16)

in which

(I0, I1, I2, I3, I4, I5) =
∫ h/2

−h/2

(
1, z − z∗, (z − z∗)2, f − z∗∗, (z − z∗)(f − z∗∗), (f − z∗∗)2

)
ρ(z)dz. (17)

By inserting eqs. (13)–(16) into eq. (11) and setting the coefficients of δu, δv, δwb and δws to zero, the following
Euler-Lagrange equations can be obtained:

∂Nx

∂x
+

∂Nxy

∂y
= I0

∂2u

∂t2
− I1

∂3wb

∂x∂t2
− I3

∂3ws

∂x∂t2
, (18)

∂Nxy

∂x
+

∂Ny

∂y
= I0

∂2v

∂t2
− I1

∂3wb

∂y∂t2
− I3

∂3ws

∂y∂t2
, (19)

∂2M b
x

∂x2
+ 2

∂2M b
xy

∂x∂y
+

∂2M b
y

∂y2
− (NT + NH + N0)∇2(wb + ws) − kw(wb + ws) + kp∇2(wb + ws) =

+ I0
∂2(wb + ws)

∂t2
+ I1

(
∂3u

∂x∂t2
+

∂3v

∂y∂t2

)
− I2∇2

(
∂2wb

∂t2

)
− I4∇2

(
∂2ws

∂t2

)
, (20)

∂2Ms
x

∂x2
+ 2

∂2Ms
xy

∂x∂y
+

∂2Ms
y

∂y2
+

∂Qxz

∂x
+

∂Qyz

∂y
− (NT + NH + N0)∇2(wb + ws) − kw(wb + ws)

+ kp∇2(wb + ws) = +I0
∂2(wb + ws)

∂t2
+ I3

(
∂3u

∂x∂t2
+

∂3v

∂y∂t2

)
− I4∇2

(
∂2wb

∂t2

)
− I5∇2

(
∂2ws

∂t2

)
, (21)

where N0
x = N0

y = NT + NH + N0, N0
xy = 0 and the hygro-thermal resultant can be expressed by

NT =
∫ h/2

−h/2

E(z)
1 − v

γ(z)(T − T0)dz,

NH =
∫ h/2

−h/2

E(z)
1 − v

β(z)(C − C0)dz, (22)

in which C = ΔC + C0 and T = ΔT + T0 are uniform moisture and temperature changes; C0 and T0 are reference
moisture and temperature.

The classical and nonclassical boundary conditions can be obtained in the derivation process when using the
integrations by parts. The nonclassical boundary conditions are

Specify
∂2wb

∂x2
or M b(1)

xx = 0,

Specify
∂2wb

∂y2
or M b(1)

yy = 0,

Specify
∂2ws

∂x2
or Ms(1)

xx = 0,

Specify
∂2ws

∂y2
or Ms(1)

yy = 0. (23)
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Based on the NSGT, the constitutive relations of presented higher-order FG nanoplate can be stated as

(1 − μ∇2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σx

σy

σxy

σyz

σxz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
E(z)
1 − v2

(1 − λ∇2)

⎛
⎜⎜⎜⎜⎜⎝

1 v 0 0 0
v 1 0 0 0
0 0 (1 − v)/2 0 0
0 0 0 (1 − v)/2 0
0 0 0 0 (1 − v)/2

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx − γΔT − βΔC

εy − γΔT − βΔC

γxy

γyz

γxz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (24)

Integrating eq. (24) over the plate’s cross-section area, one can obtain the force strain and the moment strain of the
nonlocal refined FG plates as follows:

(1 − μ∇2)

⎧⎪⎨
⎪⎩

Nx

Ny

Nxy

⎫⎪⎬
⎪⎭ = A(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂u

∂y
+

∂v

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (25)

(1 − μ∇2)

⎧⎪⎨
⎪⎩

M b
x

M b
y

M b
xy

⎫⎪⎬
⎪⎭ = D(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2wb

∂x2

−∂2wb

∂y2

−2
∂2wb

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+ E(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2ws

∂x2

−∂2ws

∂y2

−2
∂2ws

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(26)

(1 − μ∇2)

⎧⎪⎨
⎪⎩

Ms
x

Ms
y

Ms
xy

⎫⎪⎬
⎪⎭ = E(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2wb

∂x2

−∂2wb

∂y2

−2
∂2wb

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+ F (1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2ws

∂x2

−∂2ws

∂y2

−2
∂2ws

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(27)

(1 − μ∇2)
{

Qx

Qy

}
= A44(1 − λ∇2)

(
1 0
0 1

)
⎧⎪⎪⎨
⎪⎪⎩

∂ws

∂x

∂ws

∂y

⎫⎪⎪⎬
⎪⎪⎭

, (28)

in which

A =
∫ h/2

−h/2

E(z)
1 − v2

dz,

D =
∫ h/2

−h/2

E(z)(z − z∗)2

1 − v2
dz,

E =
∫ h/2

−h/2

E(z)(z − z∗)(f − z∗∗)
1 − v2

dz,

F =
∫ h/2

−h/2

E(z)(f − z∗∗)2

1 − v2
dz,

A44 =
∫ h/2

−h/2

E(z)
2(1 + v)

g2dz. (29)
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The governing equations in terms of the displacements for a NSGT refined four-variable FG nanoplate can be derived
by substituting eqs. (25)–(28), into eqs. (18)–(21) as follows:

A(1 − λ∇2)
(

∂2u

∂x2
+

1 − v

2
∂2u

∂y2
+

1 + v

2
∂2v

∂x∂y

)
+ (1 − μ∇2)

(
−I0

∂2u

∂t2
+ I1

∂3wb

∂x∂t2
+ I3

∂3ws

∂x∂t2

)
= 0, (30)

A(1 − λ∇2)
(

∂2v

∂y2
+

1 − v

2
∂2v

∂x2
+

1 + v

2
∂2u

∂x∂y

)
+ (1 − μ∇2)

(
−I0

∂2v

∂t2
+ I1

∂3wb

∂y∂t2
+ I3

∂3ws

∂y∂t2

)
= 0, (31)

− D(1 − λ∇2)
(

∂4wb

∂x4
+ 2

∂4wb

∂x2∂y2
+

∂4wb

∂y4

)
− E(1 − λ∇2)

(
∂4ws

∂x4
+ 2

∂4ws

∂x2∂y2
+

∂4ws

∂y4

)

+ (1 − μ∇2)
(
− I0

∂2(wb + ws)
∂t2

− I1

(
∂3u

∂x∂t2
+

∂3v

∂y∂t2

)
+ I2∇2

(
∂2wb

∂t2

)

+ I4∇2

(
∂2ws

∂t2

)
− (NT + NH + N0)∇2(wb + ws) − kw(wb + ws) + kp∇2(wb + ws)

)
= 0, (32)

− E(1 − λ∇2)
(

∂4wb

∂x4
+ 2

∂4wb

∂x2∂y2
+

∂4wb

∂y4

)
− F (1 − λ∇2)

(
∂4ws

∂x4
+ 2

∂4ws

∂x2∂y2
+

∂4ws

∂y4

)

+ A44(1 − λ∇2)
(

∂2ws

∂x2
+

∂2ws

∂y2

)
+ (1 − μ∇2)

(
− I0

∂2(wb + ws)
∂t2

− I3

(
∂3u

∂x∂t2
+

∂3v

∂y∂t2

)

+ I4∇2

(
∂2wb

∂t2

)
+ I5∇2

(
∂2ws

∂t2

)
− (NT + NH + N0)∇2(wb + ws) − kw(wb + ws) + kp∇2(wb + ws)

)
= 0. (33)

4 Solution procedure

In this section, Galerkin’s method is implemented to solve the governing equations of nonlocal strain gradient based
FG nanoplates. Thus, the displacement field can be calculated as

u =
∞∑

m=1

∞∑
n=1

Umn
∂Xm(x)

∂x
Yn(y)eiωnt, (34)

v =
∞∑

m=1

∞∑
n=1

VmnXm(x)
∂Yn(y)

∂y
eiωnt, (35)

wb =
∞∑

m=1

∞∑
n=1

WbmnXm(x)Yn(y)eiωnt, (36)

ws =
∞∑

m=1

∞∑
n=1

WsmnXm(x)Yn(y)eiωnt, (37)

where (Umn, Vmn, Wbmn, Wsmn) are the unknown coefficients and the functions Xm and Yn satisfy the boundary
conditions. The classical and nonclassical boundary condition based on the present plate model are

wb = ws = 0,

∂2wb

∂x2
=

∂2ws

∂x2
=

∂2wb

∂y2
=

∂2ws

∂y2
= 0,

∂4wb

∂x4
=

∂4ws

∂x4
=

∂4wb

∂y4
=

∂4ws

∂y4
= 0. (38)

By substituting eqs. (34)–(37) into eqs. (30)–(33), the matrix form of the governing equations of harmonically loaded
nanoplate can be expressed by

[M ]{Λ̈} + [[K] + N0(t)[G]]{Λ} = 0, (39)

where [M], [K] and [G] denote the mass, stiffness and geometric stiffness matrices, respectively, and {Λ} is the
displacement vector ({Λ} = {Umn, Vmn,Wbmn,Wsmn}).

Considering the periodic axial excitation compressive load N0(t) = −[α + β cos(�t)]Ncr, which consists of static
and dynamical components, the governing equation can be expressed by

[M ]{Λ̈} + [[K] − {α + β cos(�t)}Ncr[G]]{Λ} = 0, (40)
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where � and Ncr denote excitation frequency and buckling load, respectively, α and β denote the static and dynamic
load factors. To calculate dimensionless excitation frequency, the following relation is adopted:

Ω = �a

√
ρc

Ec
. (41)

The instability boundaries considering periodic coefficients of the Mathieu-Hill type can be formed by periodic T0 and
2T0, in which T0 = 2π/�. It is reported that the boundaries of instability regions with period T0 are less important
compared to those with period 2T0. The solution with respect to period 2T0 can be obtained by the following equation:

[[K] − Ncr{α ± 0.5β}[G] − 0.25�[M ]]{Λ} = 0. (42)

The nontrivial solution of eq. (20) gives

det

∣∣∣∣∣
[K̄] − (0.5β)Ncr[G] − (0.25�)[M ] 0

0 [K̄] + (0.5β)Ncr[G] − (0.25�)[M ]

∣∣∣∣∣ = 0, (43)

in which [K̄] = [K]−αNcr[G]. For a given value of α, the plots of eigenfrequency Ω with respect to β provide stability
regions of the nonlocal FGM nanoplates.

Also, the components of stiffness and mass matrices are expressed by

k1,1 = A

(∫ b

0

∫ a

0

(
∂3Xm

∂x3
Yn

∂Xm

∂x
Yn

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂5Xm

∂x5
Yn

∂Xm

∂x
Yn

)
dxdy

+
∫ b

0

∫ a

0

(
∂3Xm

∂x3

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy

))
+ A

1 − v

2

(∫ b

0

∫ a

0

(
∂Xm

∂x

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy

− λ

(∫ b

0

∫ a

0

(
∂3Xm

∂x3

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy +

∫ b

0

∫ a

0

(
∂Xm

∂x

∂4Yn

∂y4

∂Xm

∂x
Yn

)
dxdy

))
, (44)

k1,2 = A
1 + v

2

(∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy

+
∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

))
, (45)

k2,1 = A
1 + v

2

(∫ b

0

∫ a

0

(
∂Xm

∂x

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂3Xm

∂x3

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy

+
∫ b

0

∫ a

0

(
∂Xm

∂x

∂4Yn

∂y4

∂Xm

∂x
Yn

)
dxdy

))
, (46)

k2,2 = A

(∫ b

0

∫ a

0

(
Xm

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂5Yn

∂y5
Xm

∂Yn

∂y

)
dxdy

))
+ A

1 − v

2

(∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy

− λ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy +

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

))
, (47)
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k2,3 = k3,2 = −E

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn

)
dxdy + 2

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂2Yn

∂y2
XmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂6Xm

∂x6
YnXmYn

)
dxdy

+3
∫ b

0

∫ a

0

(
∂4Xm

∂x4

∂2Yn

∂y2
XmYn

)
dxdy+3

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂4Yn

∂y4
XmYn

)
dxdy+

∫ b

0

∫ a

0

(
Xm

∂6Yn

∂y6
XmYn

)
dxdy

))
, (48)

k3,3 = −D

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn

)
dxdy + 2

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂2Yn

∂y2
XmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂6Xm

∂x6
YnXmYn

)
dxdy

+ 3
∫ b

0

∫ a

0

(
∂4Xm

∂x4

∂2Yn

∂y2
XmYn

)
dxdy + 3

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂4Yn

∂y4
XmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂6Yn

∂y6
XmYn

)
dxdy

))
− Kw

(∫ b

0

∫ a

0

(XmYnXmYn)dxdy

− μ

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy +

∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy

))

− (NT + NH + N0 − Kp)

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy +

∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy

−μ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn

)
dxdy+2

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂2Yn

∂y2
XmYn

)
dxdy+

∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy

))
, (49)

k4,4 = −F

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn

)
dxdy + 2

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂2Yn

∂y2
XmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂6Xm

∂x6
YnXmYn

)
dxdy

+ 3
∫ b

0

∫ a

0

(
∂4Xm

∂x4

∂2Yn

∂y2
XmYn

)
dxdy + 3

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂4Yn

∂y4
XmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂6Yn

∂y6
XmYn

)
dxdy

))
+ A44

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn

)
dxdy

+ 2
∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂2Yn

∂y2
XmYn

)
dxdy +

∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy

))

− Kw

(∫ b

0

∫ a

0

(XmYnXmYn)dxdy − μ

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy

))
− (NT + NH + N0 − Kp)

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy − μ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn

)
dxdy

+ 2
∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂2Yn

∂y2
XmYn

)
dxdy +

∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy

))
, (50)
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m1,1 = +I0

(∫ b

0

∫ a

0

(
∂Xm

∂x
Yn

∂Xm

∂x
Yn

)
dxdy − μ

(∫ b

0

∫ a

0

(
∂3Xm

∂x3
Yn

∂Xm

∂x
Yn

)
dxdy

+
∫ b

0

∫ a

0

(
∂Xm

∂x

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy

))
, (51)

m1,2 = +I0

(∫ b

0

∫ a

0

(
Xm

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy − μ

(∫ b

0

∫ a

0

(
Xm

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

+
∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy

))
, (52)

m3,1 = −I1

(∫ b

0

∫ a

0

(
∂Xm

∂x
Yn

∂Xm

∂x
Yn

)
dxdy − μ

(∫ b

0

∫ a

0

(
∂3Xm

∂x3
Yn

∂Xm

∂x
Yn

)
dxdy

+
∫ b

0

∫ a

0

(
∂Xm

∂x

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy

))
, (53)

m4,1 = −I3

(∫ b

0

∫ a

0

(
∂Xm

∂x
Yn

∂Xm

∂x
Yn

)
dxdy − μ

(∫ b

0

∫ a

0

(
∂3Xm

∂x3
Yn

∂Xm

∂x
Yn

)
dxdy

+
∫ b

0

∫ a

0

(
∂Xm

∂x

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy

))
, (54)

m3,2 = −I1

(∫ b

0

∫ a

0

(
Xm

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy − μ

(∫ b

0

∫ a

0

(
Xm

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

+
∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy

))
, (55)

m4,2 = −I3

(∫ b

0

∫ a

0

(
Xm

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy − μ

(∫ b

0

∫ a

0

(
Xm

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

+
∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy

))
, (56)

m3,3 =+I0

(∫ b

0

∫ a

0

(XmYnXmYn)dxdy−μ

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy+

∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy

))

−I2

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy+

∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy−μ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn
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XmYn
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∫ b

0
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(
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)
dxdy
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, (57)

m3,4 =m4,3 =+I0
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0

∫ a

0
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(∫ b

0
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0

(
∂2Xm
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YnXmYn

)
dxdy+

∫ b

0
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0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy
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0
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0
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YnXmYn

)
dxdy+

∫ b

0

∫ a

0

(
Xm
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)
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(
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YnXmYn

)
dxdy
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(
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∂x2
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∂y2
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)
dxdy +

∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy

))
, (58)
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Table 1. Comparison of nondimensional fundamental natural frequency of FG nanoplates with simply-supported boundary
conditions (p = 5).

a/h μ

a/b = 1 a/b = 2

Natarajan et al. present Natarajan et al. present

(2012) (2012)

10 0 0.0441 0.043823 0.1055 0.104329

1 0.0403 0.04007 0.0863 0.085493

2 0.0374 0.037141 0.0748 0.074174

4 0.0330 0.032806 0.0612 0.060673

20 0 0.0113 0.011256 0.0279 0.027756

1 0.0103 0.010288 0.0229 0.022722

2 0.0096 0.009534 0.0198 0.019704

4 0.0085 0.008418 0.0162 0.016110

m4,4 =+I0

(∫ b

0

∫ a

0

(XmYnXmYn)dxdy−μ

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy+

∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy

))

−I5

(∫ b

0

∫ a

0

(
∂2Xm

∂x2
YnXmYn

)
dxdy+

∫ b

0

∫ a

0

(
Xm

∂2Yn

∂y2
XmYn

)
dxdy−μ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4
YnXmYn

)
dxdy

+ 2
∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂2Yn

∂y2
XmYn

)
dxdy +

∫ b

0

∫ a

0

(
Xm

∂4Yn

∂y4
XmYn

)
dxdy

))
. (59)

Also, nondimensional parameters are defined as

Kw =
kwa4

Dc
, Kp =

kpa
2

Dc
, Dc =

Ech
3

12(1 − v2
c )

, μ =
ea

a
, λ =

l

a
. (60)

Finally, setting the coefficient matrix to zero gives the natural frequencies. The function Xm for simply-supported
boundary conditions is defined by

Xm(x) = sin(λmx)

λm =
mπ

a
. (61)

The function Yn can be obtained by replacing x, m and a, respectively, by y, n and b.

5 Numerical results and discussions

Dynamic characteristics of size-dependent porous FG nanoplates are examined based on nonlocal strain gradient
theory. The nanoplate is subjected to an in-plane periodic mechanical load. Hamilton’s principle is employed to derive
the governing equations. These equations have been expressed in the context of Mathieu-Hill equations and Bolotin’s
approach is implemented to evaluate the instability boundaries. Exactness of obtained vibration frequencies via four-
variable plate model are verified with those of first-order shear deformation theory obtained by Natarajan et al. [36]
using finite element method and the results are tabulated in table 1. It is noticeable that the presented Galerkin
solution as well as the higher-order plate model can accurately predict the vibrational behavior of FG nanoplates.
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Fig. 2. Variation of dimensionless frequency of perfect nanoplate versus temperature rise for different nonlocal and strain
gradient parameters (a/h = 20, Kw = 0, Kp = 0, ΔC = 0%).

The length of the nanoplate is assumed to be as a = 10nm. Also, the material properties of the nanoplate (alumina
and aluminum) are considered as follows:

– Ec = 380GPa, ρc = 3800 kg/m3, vc = 0.3, αc = 7 × 10−6 1/◦C, βc = 0.001 (wt.% H2o)−1,

– Em = 70GPa, ρm = 2707 kg/m3, vm = 0.3, αm = 23 × 10−6 1/◦C, βm = 0.44 (wt.% H2o)−1.

Investigation of the effects of moisture percentage rise and inhomogeneity index on the variation of free vibration
frequencies of porous FG nanoplates is performed in fig. 3 for different elastic foundation parameters. The moisture
percentage rise leads to lower bending rigidity of nanoplates and lower frequencies. Another interesting observation
is that there is a large gap increasing the inhomogeneity index. In fact, with the increase in the inhomogeneity
index (p), the influence of hygro-thermal loading increases. This is due to the excellent characteristics of ceramic to
block the moisture. Therefore, increasing the metal portion with increasing the inhomogeneity index reveals that the
humidity effect is increased in the structures. Consequently, FG materials are distinct from the conventional composite
materials in the hygro-thermal mechanism, and the structure is more affected by the moisture at larger power-law
indices. However, the elastic medium has an increasing effect on natural frequencies of FG nanoplates. In fact, increase
in the Winkler and Pasternak constants yields enhancement of bending rigidity of the FG nanoplate.
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Fig. 3. Dimensionless frequency of the nanoplate versus dynamic load factor for different gradient index and porosity volume
fractions (a/h = 10, α = 0.3, Kw = 0, Kp = 0).

Free vibration frequency of a FG nanoplate with respect to the temperature rise is plotted in fig. 2 for different
nonlocal (μ) and stain gradient (λ) parameters. It is observed that an increase in the temperature yields a reduction
in both rigidity and natural frequencies of the FG nanoplate. At a certain temperature, the natural frequency of the
nanoplate becomes zero. At this critical temperature, the nanoplate is buckled and does not oscillate. It is found that
natural frequencies and critical buckling temperatures of FG nanoplates are significantly influenced by the value of
nonlocal and strain gradient parameters. In fact, the nonlocal parameter introduces a stiffness-softening mechanism,
while the strain gradient parameter provides a stiffness-hardening mechanism. In other words, increasing the nonlocal
parameter leads to smaller frequencies and critical temperatures. In contrast, increasing the strain gradient parameter
yields larger frequencies and critical temperatures. When λ is smaller than μ, obtained frequency is smaller than that
of nonlocal elasticity theory. However, when λ is bigger than μ obtained frequencies becomes larger than nonlocal
elasticity theory.

The porosity effect on the stability boundaries of FG nanoplates with respect to the dynamic load factor is presented
in fig. 3 at μ = 0.2, α = 0.3, Kw = 0 and Kp = 0 for different material inhomogeneity index (p). Porosities inside the
material lead to smaller frequencies by reducing the stiffness of the nanoplate. However, the instability region becomes
smaller with the increase of porosity volume fraction. Therefore, a porous FG nanoplate under periodic in-plane loads
is more stable than a perfect one. It can be also deduced that by reducing the gradient index, the width of the
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Fig. 4. Dimensionless frequency of the nanoplate versus dynamic load factor for different moisture percentage rises and static
load factors (a/h = 10, p = 1, ΔT = 0, ξ = 0.1, Kw = 0, Kp = 0, μ = 0.2, λ = 0.1).

instability region increases. Also, it is observed that as the gradient index rises, the magnitude of the nondimensional
excitation frequency increases at a fixed dynamic load factor. Therefore, material gradation plays a major role on the
unstable region and should be considered in the dynamic analysis of nanoplates.

Figure 4 shows the influence of static load factor (α) and moisture percentage rise on the dynamic stability
characteristics of size-dependent FGM nanoplates at a/h = 10, p = 1 and Kw = Kp = 0. It can be observed, in the
figure, that when the moisture percentage increases, the dynamic buckling boundaries decrease. It means that the
parametric instability can be enhanced by the moisture change. However, the starting point (β = 0) is reduced with
the increase in the moisture percentage. The reason is that the existence of a humidity field diminishes the bending
rigidity of the FG nanoplates leading to a reduction in the frequencies. According to this figure, when the static load
factor rises, the boundaries of dynamic instability region reduce at a fixed nonlocal parameter. This is due to the fact
that compressive static load reduces the flexibility of the FGM nanoplate, and leads to smaller excitation frequencies.
One can see that the instability region of FGM nanoplates becomes closer to the origin by increasing the magnitude
of static load factor.
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Fig. 5. Dimensionless frequency of the nanoplate versus dynamic load factor for various foundation constants (a/h = 10,
α = 0.3, p = 1, ΔT = 0, μ = 0.2, λ = 0.01).

In fig. 5, the variation of the dimensionless excitation frequency with respect to the dynamic load factor for various
elastic foundation constants is studied for simply-supported nanoplates when p = 1, α = 0.3 and μ = 0.2. It is
observable that increasing the foundation constants gives larger magnitudes of nondimensional excitation frequency.
In fact, with increasing foundation constants, i.e. overall increase in the plate rigidity, the dynamic buckling boundaries
are transferred to the upper points of origin. Although both Winkler and Pasternak constants yield larger excitation
frequencies, one can see that the Pasternak’s constant has more increasing influence on the dimensionless excitation
frequency compared to the Winkler constant. Therefore, the shear layer of the elastic foundation, called Pasternak
foundation, plays an important role on the instability behavior of FGM nanoplates.

Figure 6 shows the variation of nondimensional free vibration frequency of FG nanoplates versus the moisture
percentage rise for various side-to-thickness ratios (a/h) at ΔT = 50, Kw = 25, Kp = 10, ξ = 0.05, μ = 0.2 and
λ = 0.1. As previously mentioned, increasing the side-to-thickness ratio gives smaller natural frequencies. The reason
is more flexibility of the nanoplate with an increase in the side-to-thickness ratio. Also, it is found that the FG
nanoplates with higher side-to-thickness ratios are more affected by the moisture rise. In fact, natural frequency of a
FG nanoplate at high side-to-thickness ratios reduces with a higher rate with respect to moisture percentage rise than
a nanoplate with a small side-to-thickness ratio.
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Fig. 6. Variation of dimensionless frequency of porous nanoplates versus moisture percentage for different aspect ratios (ΔT =
50, Kw = 25, Kp = 10, μ = 0.2, λ = 0.1).

6 Conclusions

Based on generalized nonlocal strain gradient theory, dynamic analysis of inhomogeneous nanoplates with porosities
is presented for the first time. Therefore, it is possible to capture both stiffness-softening and stiffness-hardening
effects for a more accurate vibration analysis of nanoplates. The nanoplate is in hygro-thermal environments and it is
subjected to an in-plane harmonic load. Increase in the nonlocality leads to lower resonance frequencies, while increase
in the strain gradient parameter leads to larger resonance frequencies. It is also shown that the proposed higher-order
refined theory provides a more accurate estimation of the resonance frequency of a nanoplate. It is concluded that the
instability region is wider for FGM nanoplates with larger magnitudes of the Winkler’s and Pasternak’s constants. The
Pasternak’s elastic foundation constant has a higher impact on increasing the instability regions than the Winkler’s
constant.
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