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Abstract. For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads
is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory,
one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of
nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture.
Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory
with fewer field variables than first-order plate theory. The governing equations and related classical and
nonclassical boundary conditions are derived based on Hamilton’s principle. These equations are solved for
hinged nanoplates via Galerkin’s method. It is shown that porosities, nonlocal parameter, strain gradient
parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios
have a notable impact on the vibration behavior of nanoporous materials.

1 Introduction

Porosities occurring inside the material structure during construction have a significant effect on the mechanical
performance of inhomogeneous structures [1]. In the last few years, fabrication and synthesis of porous nanoplates have
been performed by several researchers [2–4]. Functionally graded (FG) structures have an inhomogeneous nature, while
their vibration behavior is affected by the porosity volume fraction [5]. These structures have excellent properties under
environmental conditions such as thermal environments due to the gradation of material properties in the thickness
direction which distinguishes them from conventional composites [6–8].

After the fabrication of functionally graded nanoplates [9–12], they have been used as structural components
in nanoelectro-mechanical systems (NEMs) for sensing and actuating purposes [13–15]. Investigation of mechanical
behavior of scale-free plates has been extensively conducted in the literature based on classical theories. However, these
theories are impotent to describe the size effects on the nanostructures. This problem is resolved using the nonlocal
elasticity theory of Eringen [16,17] in which small size effects are considered by introducing an additional scale
parameter. According to the nonlocal stress field theory, the stress state at a given point depends on the strain states
at all points. The nonlocal elasticity theory has been broadly applied to examine the static and dynamic behaviors
of nanoscale structures [18–35]. A finite-element vibration analysis of FG nanosize plates based on classical plate
theory (CPT) has been conducted by Natarajan et al. [36]. Based on the third-order plate theory, Daneshmehr and
Rajabpoor [37] examined the buckling behavior of nonlocal graded nanoplates under different boundary conditions. The
analysis of resonance frequencies of FG micro and nanoplates according to nonlocal elasticity and strain gradient theory
has been performed by Nami and Janghorban [38]. They used nonlocal and strain gradient theories separately, and
concluded that these theories have different mechanisms in the analysis of nanoplates. Application of three-dimensional
nonlocal elasticity theory in static and vibration analysis of FG nanoplate has been investigated by Ansari et al. [39]
based on classical plate model. Based on the generalized differential quadrature method (GDQM), Daneshmehr and
Rajabpoor [40] analyzed the vibrational behavior of higher-order FG nanoplates using nonlocal stress field theory.
Application of four-variable plate theory in vibration analysis of FG nanoplates is examined by Belkorissat et al. [41].
They stated that presented plate model have fewer field variables compared with first-order and third-order plate
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theories. Based on four-variable plate theory, the shear deformation effect is captured, while the governing equations are
very similar to the classical plate theory. Wang and Li [42] examined nonlinear free vibration of nanotubes considering
small-scale effects embedded in a viscoelastic medium. Wave propagation, buckling and vibration analyses of smart
FG nanoplates under various physical fields have been carried out by Ebrahimi and Barati [43–45] using different plate
theories. A comprehensive investigation of bending, buckling and vibrational behaviors of FG nanoplates on elastic
medium is conducted by Sobhy [46]. Also, Khorshidi and Fallah [47] performed buckling analysis of FG nanoplates
via a general nonlocal exponential shear deformation plate model. Sobhy and Radwan [48] presented a new quasi-3D
nonlocal plate theory for vibration and buckling of FGM Nanoplates.

In the previous papers based on FG nanoplates, only the stiffness-softening effect of the nonlocal stress field was
considered. Although the nonlocal elasticity theory (NET) of Eringen is a suitable theory for modeling of nanostruc-
ture, it has some shortcomings due to neglecting the stiffness-hardening mechanism reported in experimental works and
strain gradient elasticity [49]. By using the nonlocal strain gradient theory (NSGT), Lim et al. [50] matched the disper-
sion curves of nanobeams with those of experimental data. They concluded that NSGT is more accurate for modeling
and analysis of nanostructures by considering both stiffness reduction and enhancement effects. The application of
NSGT in the wave dispersion analysis of FG nanobeams has been examined by Li et al. [51]. Also, some investigations
have been performed using NSGT on vibration and buckling of nanorods, nanotubes and nanobeams [52–56]. Also,
Farajpour et al. [57] presented buckling analysis of nanoplates via a nonlocal strain gradient plate model employing
exact and differential quadrature methods. In another work, Farajpour et al. [58] presented nonlocal strain gradient
modeling of nanomechanical vibrating piezoelectric mass sensors. Also, Ebrahimi et al. [59] applied NSGT for wave
propagation analysis of FG nanoplates under thermal loading. Therefore, it is of great importance to analyze the
vibration behavior of FG nanoplates via NSGT. Despite its significance, there is no study on the dynamic stability
analysis of double-layered FG nanoplates supported by elastic medium.

The porosity-dependent dynamic analysis of double-layered nanoplates under in-plane periodic loads is presented
for the first time according to the nonlocal strain gradient theory. In contrast to the nonlocal elasticity theory in which
one scale parameter is used to describe the size effect, the present theory possesses two scale parameters for a better
description of size effects. The material properties of a porous nanoplate are described via a new power-law function.
Nonclassical boundary conditions related to nonlocal strain gradient theory as well as governing equations are obtained
using Hamilton’s principle. By solving the governing equations using Galerkin’s method, natural frequencies of the
nanoplate are obtained. The results show that the vibrational behavior of the nanoplate are significantly influenced
by the porosities, nonlocality, strain gradient parameter, material composition, elastic foundation and geometrical
parameters. The obtained frequencies can be used as benchmark results in the analysis of nanoplates modeled by
nonlocal-strain gradient elasticity.

2 Nonlocal strain gradient nanoplate model

The proposed nonlocal strain gradient theory [50] takes into account both nonlocal stress field and the strain gradient
effects by introducing two scale parameters. This theory defines the stress field as

σij = σ
(0)
ij −∇σ

(1)
ij (1)

in which the stresses σ
(0)
ij and σ

(1)
ij are corresponding to strain εij and strain gradient ∇εij , respectively as

σ
(0)
ij =

∫
V

Cijklα0(x, x′, e0a)ε′kl(x
′)dx′, (2)

σ
(1)
ij = l2

∫
V

Cijklα1(x, x′, e1a)∇ε′kl(x
′)dx′, (3)

in which Cijkl are the elastic coefficients and e0a and e1a capture the nonlocal effects and l captures the strain gradient
effects. When the nonlocal functions α0(x, x′, e0a) and α1(x, x′, e1a) satisfy the developed conditions by Eringen, the
constitutive relation of nonlocal strain gradient theory has the following form:

[1 − (e1a)2∇2][1 − (e0a)2∇2]σij = Cijkl[1 − (e1a)2∇2]εkl − Cijkll
2[1 − (e0a)2∇2]∇2εkl, (4)

in which ∇2 denotes the Laplacian operator. Considering e1 = e0 = e, the general constitutive relation in eq. (3)
becomes

[1 − (ea)2∇2]σij = Cijkl[1 − l2∇2]εkl. (5)
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Fig. 1. Configuration of a nanoporous inhomogeneous double-layered nanoplate on elastic substrate.

Fig. 2. Different types of motion for a double-layered nanoplate.

3 FG plate model based on neutral surface position

Consider a rectangular (a×b) porous nanoplate of uniform thickness h as shown in fig. 1. The double-layered nanoplate
experiences different types of vibration as shown in fig. 2. A FG material can be specified by the variation in the volume
fractions. Due to this variation, the neutral axis of the nanoplate may not coincide with its mid-surface which leads
to bending-extension coupling. By using neutral axis, this coupling is eliminated. Based on the modified power-law
model, Young’ modulus E and mass density ρ are described as [5]

E(z) = (Ec − Em)
(

z

h
+

1
2

)p

+ Em − ξ

2
(Ec + Em), (6a)

ρ(z) = (ρc − ρm)
(

z

h
+

1
2

)p

+ ρm − ξ

2
(ρc + ρm), (6b)

in which c and m denote the material properties of the ceramic and metal phases, respectively and p is the inho-
mogeneity or the power-law index. Also, ξ is the porosity volume fraction. The displacement field according to the
four-variable plate model considering an exact position of the neutral surface can be expressed by

u1(x, y, z, t) = u(x, y, t) − (z − z∗)
∂wb

∂x
− [f(z) − z∗∗]

∂ws

∂x
, (7a)

u2(x, y, z, t) = v(x, y, t) − (z − z∗)
∂wb

∂y
− [f(z) − z∗∗]

∂ws

∂y
, (7b)

u3(x, y, z, t) = w(x, y, t) = wb(x, y, t) + ws(x, y, t), (7c)
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where

z∗ =

∫ h/2

−h/2
E(z)zdz∫ h/2

−h/2
E(z)dz

, z∗∗ =

∫ h/2

−h/2
E(z)f(z)dz∫ h/2

−h/2
E(z)dz

. (8)

Also, u and v are in-plane displacements and wb and ws denote the bending and shear transverse displacement,
respectively. The shape function of transverse shear deformation is considered as

f(z) = −z

4
+

5z3

3h2
. (9)

According to the present plate theory with four unknowns, the nonzero strains are obtained as

εx =
∂u

∂x
− (z − z∗)

∂2wb

∂x2
− [f(z) − z∗∗]

∂2ws

∂x2
,

εy =
∂v

∂y
− (z − z∗)

∂2wb

∂y2
− [f(z) − z∗∗]

∂2ws

∂y2
,

γxy =
∂u

∂y
+

∂v

∂x
− 2(z − z∗)

∂2wb

∂x∂y
− 2[f(z) − z∗∗]

∂2ws

∂x∂y
,

γyz = g(z)
∂ws

∂y
, γxz = g(z)

∂ws

∂x
. (10)

Also, the extended Hamilton’s principle express that:

∫ t

0

δ(U − T + V )dt = 0, (11)

here U is the strain energy, T is the kinetic energy and V is the work done by the external forces. The first variation
of the strain energy can be calculated as

δU =
∫

V

(
σxxδεxx + σ(1)

xx δ∇εxx + σyyδεyy + σ(1)
yy δ∇εyy + σxyδγxy + σ(1)

xy δ∇γxy

+ σyzδγyz + σ(1)
yz δ∇γyz + σxzδγxz + σ(1)

xz δ∇γxz

)
dV, (12)

in which σ are the components of the stress tensor and ε are the components of the strain tensor.

Substituting eqs. (8) and (10) into eq. (12) yields

δU =
∫ a

0

∫ b

0

[
Nxx

[
∂δu

∂x
+

∂w

∂x

∂δw

∂x

]
− M b

xx

∂2δwb

∂x2
− Ms

xx

∂2δws

∂x2
+ Nyy

[
∂δv

∂y
+

∂w

∂y

∂δw

∂y

]

− M b
yy

∂2δwb

∂y2
− Ms

yy

∂2δws

∂y2
+ Nxy

(
∂δu

∂y
+

∂δv

∂x
+

∂w

∂x

∂δw

∂y
+

∂w

∂y

∂δw

∂x

)
− 2M b

xy

∂2δwb

∂x∂y

− 2Ms
xy

∂2δws

∂x∂y
+ Qyz

∂δws

∂y
+ Qxz

∂δws

∂x

]
dy dx (13)
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in which

Nxx =
∫ h/2

−h/2

(
σ0

xx −∇σ(1)
xx

)
dz = N (0)

xx −∇N (1)
xx ,

Nxy =
∫ h/2

−h/2

(
σ0

xy −∇σ(1)
xy

)
dz = N (0)

xy −∇N (1)
xy ,

Nyy =
∫ h/2

−h/2

(
σ0

yy −∇σ(1)
yy

)
dz = N (0)

yy −∇N (1)
yy ,

M b
xx =

∫ h/2

−h/2

z
(
σ0

xx −∇σ(1)
xx

)
dz = M b(0)

xx −∇M b(1)
xx ,

Ms
xx =

∫ h/2

−h/2

f
(
σ0

xx −∇σ(1)
xx

)
dz = Ms(0)

xx −∇Ms(1)
xx ,

M b
yy =

∫ h/2

−h/2

z
(
σ0

yy −∇σ(1)
yy

)
dz = M b(0)

yy −∇M b(1)
yy ,

Ms
yy =

∫ h/2

−h/2

f
(
σ0

yy −∇σ(1)
yy

)
dz = Ms(0)

yy −∇Ms(1)
yy ,

M b
xy =

∫ h/2

−h/2

z
(
σ0

xy −∇σ(1)
xy

)
dz = M b(0)

xy −∇M b(1)
xy ,

Ms
xy =

∫ h/2

−h/2

f
(
σ0

xy −∇σ(1)
xy

)
dz = Ms(0)

xy −∇Ms(1)
xy ,

Qxz =
∫ h/2

−h/2

g
(
σ0

xz −∇σ(1)
xz

)
dz = Q(0)

xz −∇Q(1)
xz ,

Qyz =
∫ h/2

−h/2

g
(
σ0

yz −∇σ(1)
yz

)
dz = Q(0)

yz −∇Q(1)
yz , (14a)

where

N
(0)
ij =

∫ h/2

−h/2

(
σ

(0)
ij

)
dz, N

(1)
ij =

∫ h/2

−h/2

(
σ

(1)
ij

)
dz,

M
b(0)
ij =

∫ h/2

−h/2

z
(
σ

b(0)
ij

)
dz, M

b(1)
ij =

∫ h/2

−h/2

z
(
σ

b(1)
ij

)
dz,

M
s(0)
ij =

∫ h/2

−h/2

f
(
σ

s(0)
ij

)
dz, M

s(1)
ij =

∫ h/2

−h/2

f
(
σ

s(1)
ij

)
dz,

Q(0)
xz =

∫ h/2

−h/2

g
(
σi(0)

xz

)
dz, Q(1)

xz =
∫ h/2

−h/2

g
(
σi(1)

xz

)
dz,

Q(0)
yz =

∫ h/2

−h/2

g
(
σi(0)

yz

)
dz, Q(1)

yz =
∫ h/2

−h/2

g
(
σi(1)

yz

)
dz, (14b)

in which (ij = xx, xy, yy). The first variation of the work done by the applied forces can be written as

δV =
∫ a

0

∫ b

0

(
N0

x

∂(wb + ws)
∂x

∂δ(wb + ws)
∂x

+ N0
y

∂(wb + ws)
∂y

∂δ(wb + ws)
∂y

+ 2δN0
xy

∂(wb + ws)
∂x

∂(wb + ws)
∂y

− kw(wb + ws)δ(wb + ws)

+ kp

(
∂(wb + ws)

∂x

∂δ(wb + ws)
∂x

+
∂(wb + ws)

∂y

∂δ(wb + ws)
∂y

))
dy dx, (15)
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where N0
x , N0

y , N0
xy are the in-plane applied loads; kw and kp are Winkler and Pasternak constants. However, shear

loading is discarded in this article. The first variation of the kinetic energy can be written in the following form:

δK =
∫ a

0

∫ b

0

[
I0

(
∂u

∂t

∂δu

∂t
+

∂v

∂t

∂δv

∂t
+

∂(wb + ws)
∂t

∂δ(wb + ws)
∂t

)
− I1

(
∂u

∂t

∂δwb

∂x∂t
+

∂wb

∂x∂t

∂δu

∂t
+

∂v

∂t

∂δwb

∂y∂t

+
∂wb

∂y∂t

∂δv

∂t

)
− I3

(
∂u

∂t

∂δws

∂x∂t
+

∂ws

∂x∂t

∂δu

∂t
+

∂v

∂t

∂δws

∂y∂t
+

∂ws

∂y∂t

∂δv

∂t

)
+ I2

(
∂wb

∂x∂t

∂δwb

∂x∂t
+

∂wb

∂y∂t

∂δwb

∂y∂t

)

+ I5

(
∂ws

∂x∂t

∂δws

∂x∂t
+

∂ws

∂y∂t

∂δws

∂y∂t

)
+ I4

(
∂wb

∂x∂t

∂δws

∂x∂t
+

∂ws

∂x∂t

∂δwb

∂x∂t
+

∂wb

∂y∂t

∂δws

∂y∂t
+

∂ws

∂y∂t

∂δwb

∂y∂t

)]
dy dx, (16)

in which

(I0, I1, I2, I3, I4, I5) =
∫ h/2

−h/2

(
1, z − z∗, (z − z∗)2, f − z∗∗, (z − z∗)(f − z∗∗), (f − z∗∗)2

)
ρ(z)dz. (17)

By inserting eqs. (13)–(16) into eq. (11) and setting the coefficients of δu, δv, δwb and δws to zero, the following
Euler-Lagrange equations can be obtained:

∂Nx

∂x
+

∂Nxy

∂y
= I0

∂2u

∂t2
− I1

∂3wb

∂x∂t2
− I3

∂3ws

∂x∂t2
, (18)

∂Nxy

∂x
+

∂Ny

∂y
= I0

∂2v

∂t2
− I1

∂3wb

∂y∂t2
− I3

∂3ws

∂y∂t2
, (19)

∂2M b
x

∂x2
+ 2

∂2M b
xy

∂x∂y
+

∂2M b
y

∂y2
− kw(wb + ws) + (kp − N0)∇2(wb + ws),

= I0
∂2(wb + ws)

∂t2
+ I1

(
∂3u

∂x∂t2
+

∂3v

∂y∂t2

)
− I2∇2

(
∂2wb

∂t2

)
− I4∇2

(
∂2ws

∂t2

)
, (20)

∂2Ms
x

∂x2
+ 2

∂2Ms
xy

∂x∂y
+

∂2Ms
y

∂y2
+

∂Qxz

∂x
+

∂Qyz

∂y
− kw(wb + ws) + (kp − N0)∇2(wb + ws) =

I0
∂2(wb + ws)

∂t2
+ I3

(
∂3u

∂x∂t2
+

∂3v

∂y∂t2

)
− I4∇2

(
∂2wb

∂t2

)
− I5∇2

(
∂2ws

∂t2

)
. (21)

The classical and nonclassical boundary conditions can be obtained in the derivation process when using the integra-
tions by parts. Thus, we obtain classical boundary conditions at x = 0 or a and y = 0 or b as

Specify wb or

(
∂M b

xx

∂x
+

∂M b
xy

∂y

)
nx +

(
∂M b

yy

∂y
+

∂M b
xy

∂x

)
ny = 0,

Specify ws or
(

∂Ms
xx

∂x
+

∂Ms
xy

∂y
+ Qxz

)
nx +

(
∂Ms

yy

∂y
+

∂Ms
xy

∂x
+ Qyz

)
ny = 0,

Specify
∂wb

∂n
or M b

xxn2
x + nxnyM b

xy + M b
yyn2

y = 0, (22)

where ∂()
∂n = nx

∂()
∂x + ny

∂()
∂y ; nx and ny are the x and y-components of the unit normal vector on the nanoplate

boundaries, respectively and the nonclassical boundary conditions are:

Specify
∂2wb

∂x2
or M b(1)

xx = 0,

Specify
∂2wb

∂y2
or M b(1)

yy = 0,

Specify
∂2ws

∂x2
or Ms(1)

xx = 0,

Specify
∂2ws

∂y2
or Ms(1)

yy = 0. (23)
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Based on the NSGT, the constitutive relations of the presented higher-order FG nanoplate can be stated as

(1 − μ∇2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σx

σy

σxy

σyz

σxz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
E(z)
1 − v2

(1 − λ∇2)

⎛
⎜⎜⎜⎜⎜⎝

1 v 0 0 0
v 1 0 0 0
0 0 (1 − v)/2 0 0
0 0 0 (1 − v)/2 0
0 0 0 0 (1 − v)/2

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx

εy

γxy

γyz

γxz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (24)

Integrating eq. (24) over the plate’s cross-section area, one can obtain the force-strain, and the moment-strain of the
nonlocal refined FG plates can be obtained as follows:

(1 − μ∇2)

⎧⎨
⎩

Nx

Ny

Nxy

⎫⎬
⎭ = A(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂u

∂y
+

∂v

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (25)

(1 − μ∇2)

⎧⎪⎨
⎪⎩

M b
x

M b
y

M b
xy

⎫⎪⎬
⎪⎭ = D(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2wb

∂x2

−∂2wb

∂y2

−2
∂2wb

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+ E(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2ws

∂x2

−∂2ws

∂y2

−2
∂2ws

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(26)

(1 − μ∇2)

⎧⎪⎨
⎪⎩

Ms
x

Ms
y

Ms
xy

⎫⎪⎬
⎪⎭ = E(1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2wb

∂x2

−∂2wb

∂y2

−2
∂2wb

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+ F (1 − λ∇2)

⎛
⎝

1 v 0
v 1 0
0 0 (1 − v)/2

⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2ws

∂x2

−∂2ws

∂y2

−2
∂2ws

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(27)

(1 − μ∇2)
{

Qx

Qy

}
= A44(1 − λ∇2)

(
1 0
0 1

)
⎧⎪⎪⎨
⎪⎪⎩

∂ws

∂x

∂ws

∂y

⎫⎪⎪⎬
⎪⎪⎭

, (28)

in which

A =
∫ h/2

−h/2

E(z)
1 − v2

dz, D =
∫ h/2

−h/2

E(z)(z − z∗)2

1 − v2
dz, E =

∫ h/2

−h/2

E(z)(z − z∗)(f − z∗∗)
1 − v2

dz

F =
∫ h/2

−h/2

E(z)(f − z∗∗)2

1 − v2
dz, A44 =

∫ h/2

−h/2

E(z)
2(1 + v)

g2dz. (29)

The governing equations in terms of the displacements for a NSGT refined four-variable FG nanoplate can be derived
by substituting eqs. (25)–(28), into eqs. (18)–(21) as follows:

A(1 − λ∇2)
(

∂2u1

∂x2
+

1 − v

2
∂2u1

∂y2
+

1 + v

2
∂2v1

∂x∂y

)
+ (1 − μ∇2)

(
−I0

∂2u1

∂t2
+ I1

∂3w1,b

∂x∂t2
+ I3

∂3w1,s

∂x∂t2

)
= 0, (30)

A(1 − λ∇2)
(

∂2v1

∂y2
+

1 − v

2
∂2v1

∂x2
+

1 + v

2
∂2u1

∂x∂y

)
+ (1 − μ∇2)

(
−I0

∂2v1

∂t2
+ I1

∂3w1,b

∂y∂t2
+ I3

∂3w1,s

∂y∂t2

)
= 0, (31)
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− D(1 − λ∇2)
(

∂4w1,b

∂x4
+ 2

∂4w1,b

∂x2∂y2
+

∂4w1,b

∂y4

)
− E(1 − λ∇2)

(
∂4w1,s

∂x4
+ 2

∂4w1,s

∂x2∂y2
+

∂4w1,s

∂y4

)

+ (1 − μ∇2)
(
−I0

∂2(w1,b + w1,s)
∂t2

− I1

(
∂3u1

∂x∂t2
+

∂3v1

∂y∂t2

)
+ I2∇2

(
∂2w1,b

∂t2

)

+ I4∇2

(
∂2w1,s

∂t2

)
− kw(w1,b + w1,s) + (kp − N0)∇2(w1,b + w1,s)

)

− k0

[
(w1,b + w1,s − w2,b − w2,s) − μ

(
∂2

∂x2
+

∂2

∂y2

)
(w1,b + w1,s − w2,b − w2,s)

]
= 0, (32)

− E(1 − λ∇2)
(

∂4w1,b

∂x4
+ 2

∂4w1,b

∂x2∂y2
+

∂4w1,b

∂y4

)
− F (1 − λ∇2)

(
∂4w1,s

∂x4
+ 2

∂4w1,s

∂x2∂y2
+

∂4w1,s

∂y4

)

+ A44(1 − λ∇2)
(

∂2w1,s

∂x2
+

∂2w1,s

∂y2

)
+ (1 − μ∇2)

(
−I0

∂2(w1,b + w1,s)
∂t2

− I3

(
∂3u1

∂x∂t2
+

∂3v1

∂y∂t2

)

+ I4∇2

(
∂2w1,b

∂t2

)
+ I5∇2

(
∂2w1,s

∂t2

)
− kw(w1,b + w1,s) + (kp − N0)∇2(w1,b + w1,s)

)

− k0

[
(w1,b + w1,s − w2,b − w2,s) − μ

(
∂2

∂x2
+

∂2

∂y2

)
(w1,b + w1,s − w2,b − w2,s)

]
= 0, (33)

4 Solution procedure

In this section, Galerkin’s method is implemented to solve the governing equations of nonlocal strain gradient based
double-layered nanoplates. The double-layered nanoplates experience three kinds of vibrations as indicate in fig. 2:

– Out of phase vibration: wb = w1,b − w2,b �= 0 and ws = w1,s − w2,s �= 0.
– In-phase vibration: wb = w1,b − w2,b = 0 and ws = w1,s − w2,s = 0.
– One nanoplate fixed: wb = w1,b = 0 and ws = w1,s = 0.

In the case of out-of-phase vibration, both nanoplates vibrate asynchronously, however, in the case of in-phase vibration
both nanoplates vibrate synchronously. Thus, the displacement field can be calculated as:

u =
∞∑

m=1

∞∑
n=1

Umn
∂Xm(x)

∂x
Yn(y)eiωnt, (34)

v =
∞∑

m=1

∞∑
n=1

VmnXm(x)
∂Yn(y)

∂y
eiωnt, (35)

wb =
∞∑

m=1

∞∑
n=1

WbmnXm(x)Yn(y)eiωnt, (36)

ws =
∞∑

m=1

∞∑
n=1

WsmnXm(x)Yn(y)eiωnt, (37)

where (Umn, Vmn,Wbmn,Wsmn) are the unknown coefficients and the functions Xm and Yn satisfy the boundary
conditions. The classical and nonclassical boundary condition for each nanoplate are

wb = ws = 0,

∂2wb

∂x2
=

∂2ws

∂x2
=

∂2wb

∂y2
=

∂2ws

∂y2
= 0,

∂4wb

∂x4
=

∂4ws

∂x4
=

∂4wb

∂y4
=

∂4ws

∂y4
= 0. (38)

By substituting eqs. (34)–(37) into eqs. (30)–(33), the matrix form of the governing equations of harmonically loaded
nanoplate can be expressed by

[M ]{Λ̈} + [[K] + N0(t)[G]]{Λ} = 0, (39)

where [M], [K] and [G] denote the mass, stiffness and geometric stiffness matrices, respectively, and {Λ} is the
displacement vector ({Λ} = {Umn, Vmn,Wbmn,Wsmn}). Also, the components of stiffness and mass matrices are listed
in appendix A.
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Considering periodic axial excitation compressive load N0(t) = −[α + β cos(t)]Ncr which is consist of static and
dynamical components, the governing equation can be expressed by

[M ]{Λ̈} + [[K] − {α + β cos(t)}Ncr[G]]{Λ} = 0, (40)

where  and Ncr denote excitation frequency and buckling load, respectively; α and β denote the static and dynamic
load factors. To calculate dimensionless excitation frequency, the following relation is adopted:

Ω = a

√
ρc

Ec
. (41)

The instability boundaries considering periodic coefficients of the Mathieu-Hill type can be formed by periodic T0 and
2T0 in which T0 = 2π/. It is reported that the boundaries of instability regions with period T0 are less important
compared to those with period 2T0. The solution with respect to period 2T0 can be obtained by the following equation:

[[K] − Ncr{α ± 0.5β}[G] − 0.25[M ]]{Λ} = 0. (42)

The nontrivial solution of eq. (20) gives

det
∣∣∣∣ [K̄] − (0.5β)Ncr[G] − (0.25)[M ] 0

0 [K̄] + (0.5β)Ncr[G] − (0.25)[M ]

∣∣∣∣ = 0, (43)

in which [K̄] = [K]−αNcr[G]. For a given value of α, the plots of eigenfrequency Ω with respect to β provide stability
regions of the doble-layered FGM nanoplates. Also, nondimensional parameters are defined as

μ =
ea

a
, λ =

l

a
, Kw =

kwa4

Dc
, K0 =

k0a
4

Dc
, Kp =

kpa
2

Dc
, Dc =

Ech
3

12(1 − v2
c )

. (44)

Finally, setting the coefficient matrix to zero gives the natural frequencies. The function Xm for simply-supported
boundary conditions is defined by

Xm(x) = sin(λmx),

λm =
mπ

a
. (45)

The function Yn can be obtained by replacing x, m and a, respectively by y, n and b.

5 Numerical results and discussions

In this section, results are presented for dynamic study of size-dependent and double-layered porous FGM nanoplates
modeled via a 4-unknown plate model considering the exact position of neutral surface. First of all, the frequency
response of the present study is validated with those of the classical plate theory obtained by Natarajan et al. (2012)
through the finite-element approach. These results are tabulated in table 1 for fully simply-supported and fully clamped
edge conditions and a good agreement is observed. The length of nanoplate is assumed as a = 50nm. Also, the material
properties of nanoplate (alumina and aluminum) are considered as:

– Ec = 380GPa, ρc = 3800 kg/m3, vc = 0.3,
– Em = 70GPa, ρm = 2707 kg/m3, vm = 0.3.

The variation of natural frequency of double-layered nanoplates with respect to nonlocal and strain gradient parameters
is presented in fig. 3 when a/h = 10, p = 1, Kw = 25, Kp = 5 and K0 = 25. It is clear that the natural frequency of
double-layered nanoplates reduces with the increase of the nonlocal parameter for every value of the strain gradient
parameter. But, the vibration frequency increases at a fixed nonlocal parameter and inhomogeneity index. Due to
the lack of a strain gradient parameter in the previous vibration analyses of nanoplates, only the softening effect
due to nonlocality was concluded. Therefore, the material instability and heterogeneous deformation due to the strain
gradient could not be considered within the framework of the nonlocal elasticity theory. These observations are valid for
every types of vibration. However, at fixed nonlocal and strain gradient parameters, the out-of-phase vibration of the
system has larger frequencies compared with the in-phase motion. Also, when one nanoplate is fixed, the frequencies
are always between those obtained for in-phase and out-of-phase motion.
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Table 1. Comparison of nondimensional fundamental natural frequency ω̂ = ωh
p

ρc/Gc of the nanoplates with simply-
supported and clamped boundary conditions (p = 5).

a/h μ

a/b = 1 a/b = 2

Natarajan et al. (2012) Present study Natarajan et al. (2012) Present study

10 0 0.0441 0.043823 0.1055 0.104329

1 0.0403 0.04007 0.0863 0.085493

2 0.0374 0.037141 0.0748 0.074174

4 0.0330 0.032806 0.0612 0.060673

20 0 0.0113 0.011256 0.0279 0.027756

1 0.0103 0.010288 0.0229 0.022722

2 0.0096 0.009534 0.0198 0.019704

4 0.0085 0.008418 0.0162 0.016110

 
(a) Out-of-phase vibration 

 
(b) One nanoplate fixed 

 
(c) In-phase vibration 

Fig. 3. Variation of the dimensionless frequency of a double-nanoplate system versus nonlocal and strain gradient parameters
(a/h = 10, p = 1, Kw = 25, Kp = 5, K0 = 25).
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(a) Kw=25, Kp=5 

 
(b) Kw=50, Kp=5 

 
(c) Kw=50, Kp=10 

Fig. 4. Variation of the dimensionless frequency of a double-nanoplate system versus interlayer stiffness for various elastic
foundation parameters (a/h = 10, p = 1, μ = 0.2, λ = 0.1).

The influences of interlayer stiffness (K0) and Winkler-Pasternak coefficients on the vibrational frequencies of
double-layered nanoplates are illustrated in fig. 4 at a/h = 10, p = 1, μ = 0.2 and λ = 0.1. As previously stated, the
in-phase vibration of double-layered nanoplates is not influenced by the interlayer springs. However, the frequencies
of out-of-phase and one nanoplate fixed vibrations enlarge with the increase of interlayer stiffness. Also, it is seen that
the out-of-phase vibration of double-layered nanoplates is more influenced by the interlayer stiffness than when one
nanoplate is fixed.

It is also obvious that the vibrational behavior of double-layered nanoplates rely on the magnitudes of both Winkler
and Pasternak parameters. It should be mentioned that Pasternak layer has a continuous interaction with nanoplates,
while Winkler layer has a discontinuous interaction with the nanoplate. The enlargement of Winkler and Pasternak
coefficients yields the enhancement of the bending rigidity and natural frequency of the system.

Figure 5 shows the influence of the static load factor (α) and nonlocality parameter (μ) on the dynamic stability
characteristics of the size-dependent FGM nanoplates at a/h = 10, p = 1 and Kw = Kp = 0. It can be observed in
the figure that when the nonlocal parameter (μ) increases, the dynamic buckling boundaries are degraded. It means
that the parametric instability can be enhanced by the nanoscale. However, the starting point (β = 0) is reduced with
the increase of the nonlocal parameter. The reason is that the existence of nonlocality diminishes the bending rigidity
of the FG nanoplates leading to the reduction in the frequencies. Hence, the nonlocal FGM plate model gives lower
excitation frequency compared to local one. According to this figure, when the static load factor rises, the boundaries
of the dynamic instability region reduce at a fixed nonlocal parameter. This is due to the fact that compressive static
load degrades the flexibility of the FGM nanoplate, and leads to smaller excitation frequencies. One can see that
the instability region of FGM nanoplates becomes closer to the origin by increasing the magnitude of the static load
factor.
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(a) α=0.1 

 
(b) α=0.2 

 
(c) α=0.3 

Fig. 5. Dimensionless frequency of the nanoplate versus the dynamic load factor for different nonlocal parameters an static
load factors (a/h = 10, p = 1, ξ = 0, Kw = 0, Kp = 0).

In the case of in-phase vibration, the porosity effect on the stability boundaries of FG nanoplates with respect to
the dynamic load factor is presented in fig. 6 at μ = 0.2, α = 0.3, Kw = 0 and Kp = 0 for different material inhomo-
geneity index (p). Porosities inside the material lead to smaller frequencies by reducing the stiffness of the nanoplate.
However, the instability region becomes smaller with the increase of porosity volume fraction. Therefore, a porous FG
nanoplate under periodic in-plane loads is more stable than a perfect one. It can be also deduced that by reducing the
gradient index, the width of the instability region is increased. Also, it is observable that as the gradient index rises,
the magnitude of nondimensional excitation frequency increases at a fixed dynamic load factor. Therefore, material
gradation has a major role on the unstable region and should be considered in the dynamic analysis of nanoplates.

Figure 7 illustrates the dimensionless frequency of the double-layered nanoplate versus the dynamic load factor for
different cases of motion when a/h = 10, p = 1, ξ = 0.1, Kw = 25, Kp = 5, K0 = 50, μ = 0.2, λ = 0.1. As previously
stated, the boundaries of the dynamic instability region reduce with the increase of the static load factor. This is due
to the fact that a compressive static load degrades the flexibility of the FGM nanoplate, and leads to smaller excitation
frequencies. It is also seen that the instability region of FGM nanoplates becomes closer to the origin by increasing the
magnitude of the static load factor. Also, the stability region in the case of one nanoplate fixed is placed between the
regions of in-phase and out-of-phase vibrations. It can be observed in the figure that the maximum frequency when
β = 0 is observed for out-of-phase vibration.

Investigation of porosity and inhomogeneity effects on the free vibrational behavior of double-layered nanoplates
is plotted in fig. 8 when a/h = 10, Kw = 10, Kp = 0.5, K0 = 10 and μ = 0.2. It is observed that the presence of
porosities inside the material leads to lower plate stiffness and natural frequency. So, the obtained frequencies are
overestimated by neglecting the porosity effect. Also, all these observations are affected by the gradation of material
properties or inhomogeneity index (p). In fact, the increase of the inhomogeneity index (p) is proportional to higher
metal constituent which leads to smaller frequencies. Another observation is that the effect of porosity on vibration
frequencies becomes more significant at larger inhomogeneity indices.
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(a) p=1 

 
(b) p=2 

 
(c) p=5 

Fig. 6. Dimensionless frequency of the nanoplate versus the dynamic load factor for different gradient index and porosity
volume fractions (a/h = 10, α = 0.3, Kw = 0, Kp = 0, μ = 0.2).

6 Conclusions

A new nanoplate model based on the nonlocal strain gradient theory was presented for the dynamic analysis of
double-layered porous nanoplates. The proposed model introduced two scale parameters for the prediction of vibra-
tion frequencies of nanoplates very accurately. The formulation of the nanoplate was based on a higher-order shear
deformation theory with four field variables. A power-law function was employed to describe the graded material
properties. Employing extended Hamilton’s principle, the governing equations of the nanoplate were derived. These
equations were solved via Galerkin’s method to obtain the frequencies. It was shown that porosities inside the material
significantly affect the stability regions of the nanoplates. It was also reported that both nonlocal and strain gradient
parameters should be considered in the modeling of double-layered nanoplates to capture both stiffness-softening and
stiffness-hardening effects. Also, by reducing the gradient index, the width of the instability region is increased.

Appendix A.

k1,1 = A

(∫ b

0

∫ a

0

(
∂3Xm

∂x3
Yn

∂Xm

∂x
Yn

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂5Xm

∂x5
Yn

∂Xm

∂x
Yn

)
dxdy

+
∫ b

0

∫ a

0

(
∂3Xm

∂x3

∂2Yn

∂y2

∂Xm

∂x
Yn

)
dxdy

))
+ A

1 − v

2

(∫ b

0

∫ a

0

(
∂Xm

∂x

∂2Yn
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∂Xm

∂x
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0

∫ a

0
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∂x3

∂2Yn
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∂x
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(
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∂4Yn

∂y4

∂Xm

∂x
Yn

)
dxdy

))
, (A.1)
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(a) α=0.1 

 
(b) α=0.2 

 
(c) α=0.3 

Fig. 7. Dimensionless frequency of the double-layered nanoplate versus the dynamic load factor for different cases of motion
(a/h = 10, p = 1, ξ = 0.1, Kw = 25, Kp = 5, K0 = 50, μ = 0.2, λ = 0.1).

k1,2 = A
1 + v

2

(∫ b

0

∫ a

0
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∂x2

∂Yn
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(∫ b
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k2,1 = A
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(a) p=1 

 
(b) p=2 

 
(c) p=5 

Fig. 8. Variation of the in-phase frequency of the double-nanoplate system versus the strain gradient parameter for different
power-law indices and aspect ratios (a/h = 10, Kw = 10, Kp = 0.5, K0 = 10, μ = 0.2).

k2,2 = A

(∫ b

0

∫ a

0

(
Xm

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy − λ

(∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

+
∫ b

0

∫ a

0

(
Xm

∂5Yn

∂y5
Xm

∂Yn

∂y

)
dxdy

))
+ A

1 − v

2

(∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy

− λ

(∫ b

0

∫ a

0

(
∂4Xm

∂x4

∂Yn

∂y
Xm

∂Yn

∂y

)
dxdy +

∫ b

0

∫ a

0

(
∂2Xm

∂x2

∂3Yn

∂y3
Xm

∂Yn

∂y

)
dxdy

))
, (A.4)
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k3,3 = −D
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