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Abstract. This paper investigates the charged cylindrically symmetric gravitational collapse with perfect
fluid in f(R) gravity. We formulate dynamical equations using the Misner-Sharp formalism and study
the effects of charge, energy density and effective pressure on the cylindrical collapse. We also establish a
relationship between the Weyl tensor, energy density and dark source terms. For constant Ricci scalar, it
is concluded that the spacetime is conformally flat if and only if the energy density is homogeneous.

1 Introduction

Recent evidences from several sources, like cosmic microwave background, supernovae type Ia and weak gravitational
lensing of distant galaxies, indicate an accelerated expansion of the universe. It is assumed that this increasing rate
of cosmic expansion is due to a cryptical force called dark energy (DE). This is an unknown form of energy which
possesses a large negative pressure and is considered to spread all of the space inclined to accelerate expansion of
the universe. There are mainly two ways to study the ambiguous nature of DE: either by modifying the matter or
geometric part of the Einstein-Hilbert action. One of these modified theories, which has received much attention, is
the f(R) theory obtained by replacing the Ricci scalar R by an arbitrary function in the Einstein-Hilbert action. In
the last few years, many people have made theoretical developments in this gravity and compared their results with
general relativity (GR).

The gravitational explosion of astronomical objects is considered an interesting phenomenon for astrophysicists.
It is the basic mechanism for the structure formation of the universe and describes contraction of celestial objects.
For massive stars, gravitational collapse occurs when the nuclear fuel is exhausted and there is not enough pressure
to overcome the gravitational force. The collapsing phenomenon leads to the formation of new relativistic objects,
such as neutron stars, white dwarfs and blackholes. The dynamics of radiating collapse is an interesting issue in GR.
Chandrasekhar [1] initiated the work on gravitational collapse in 1936. Chan [2] explored the collapse of radiating stars
in the presence of anisotropic fluid and described the effect of shear viscosity on the pressure anisotropy. Herrera and
Santos [3] examined the dynamical processes for which dissipation occurs in terms of radiation density and heat flux.
Sharif and Ahmed [4] discussed the spherical collapse for a perfect fluid with the cosmological constant and observed
that the cosmological constant decreases the process of collapse.

It is observed that electromagnetic field acts as a Coulomb repulsive force, which decreases the collapsing phe-
nomenon by hydrostatic equilibrium. If stellar objects contain non-zero electric charge, then the collapse of such
astronomical objects leads to the formation of a Reissner-Nordström black hole. Benkenstein [5] analyzed the charged
spherical collapse for a perfect fluid. Di Prisco et al. [6] investigated spherical collapse with an anisotropic fluid and
formulated dynamical as well as causal transport equations. Sharif and Siddiqa [7] studied the plane symmetric collapse
in the presence of a charge viscous fluid with non-adiabatic flow and formulated dynamical equation, Weyl tensor and
heat transport equation.

The deviation from spherical to other symmetries is an incidental characteristic which reveals significant mathemat-
ical results about self-gravitating objects. There is a strong motivation for cylindrical symmetry due to the existence of
cylindrical gravitational waves. Sharif and Abbas [8] analyzed charged cylindrical perfect fluid collapse and found that
the collapsing process slows down when the gravitational and Coulomb forces balance each other due to hydrostatic
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equilibrium. The same authors [9] explored the charged spherical perfect fluid collapse in the presence of the cosmo-
logical constant. Sharif and his collaborators [10–12] analyzed the effects of the electromagnetic field on the dynamical
instability of collapsing systems and found that the collapse rate decreases by increasing electric charge. Chakraborty
and Chakraborty [13] studied cylindrical collapse in the presence of an anisotropic fluid using the Misner-Sharp formal-
ism and concluded that collapsing matter is affected by radial pressure, which acts as a gravitational wave. Shah and
Abbas [14] discussed the charged cylindrical collapse for the radiating stars and formulated heat transport equation.

The phenomenon of gravitational collapse has also been examined in f(R) gravity by taking isotropic as well as
anisotropic fluids. Sharif and Kausar [15] explored the spherical perfect fluid collapse in this gravity and examined the
apparent horizon as well as time formation of singularity. Cembranos et al. [16] analyzed the collapsing phenomenon
in modified theories and considered the collapse of dust particles for a particular f(R) model. Chakrabarti and
Banerjee [17] investigated spherical collapse with perfect fluid in f(R) gravity and formulated time formation of
singularity as well as apparent horizon.

In this paper, we study the dynamics of the charged cylindrical collapse with a perfect fluid in f(R) gravity using the
Misner-Sharp formalism. The format of the paper is as follows. In the next section, we formulate the Einstein-Maxwell
field equations and obtain C-energy. We also discuss Darmois junction conditions. Section 3 deals with dynamical
equations. In sect. 4, we establish the relationship between the Weyl tensor, energy density and dark source terms.
Finally, we conclude our results in the last section.

2 Collapsing model and field equations

The action of f(R) gravity is defined as [18]

S̃ =
∫ [

f(R)
2κ

+ Lm

]√
−gd4x. (1)

Taking variation of this action with respect to gμν , we obtain the field equations in f(R) gravity as

fRRμν − 1
2
f(R)gμν∇μ∇νfR + gμν�fR = 8πGT (m)

μν , (2)

where fR = df
dR and � is the d’Alembert operator. In terms of the Einstein tensor, the field equations can be written

as
Gμν =

κ

fR
(T (m)

μν + T (D)
μν ), (3)

where

T (D)
μν =

1
κ

(
f(R) − RfR

2
gμν + ∇μ∇νfR − gμν�fR

)
(4)

is the effective energy-momentum tensor, which gives contribution of curvature to the Einstein tensor. The stress-energy
tensor for the perfect fluid is

T (m)
μν = (ρ + p)vμvν + gμνp,

where p and ρ represent pressure and density of the fluid, respectively. The four-velocity of the fluid particles (vμ) is
given by vμ = A−1δμ

0 and, being it a unit timelike vector, it is normalized as vμvμ = −1.
The cylindrically symmetric metric (V −) with comoving coordinates inside the hypersurface is of the form [19]

ds2
− = −A2(t, r)dt2 + B2(t, r)dr2 + C2(t, r)dφ2 + D2(t, r)dz2, (5)

where −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ φ ≤ 2π, −∞ < z < +∞. For the exterior spacetime (V +), we consider a charged
cylindrically symmetric metric as [20]

ds2
+ = −HdT̂ 2 + HdR̂2 + R̂2(dφ2 + β2dz2), (6)

where

H =
(

2Q2

R̂2
− 4M

R̂

)
. (7)

Here Q is the charge per unit length of the cylinder, M represents the mass and β is a constant having dimension of
1

lenth . In the presence of electromagnetic field, the field equations become

Gμν =
κ

fR

(
T (m)

μν + T (D)
μν + Eμν

)
, (8)
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where Eμν is the energy-momentum tensor for electromagnetic field given by

Eμν =
1
4π

(
Fλ

μ Fνλ − 1
4
FλγFλγgμν

)
. (9)

The Maxwell field equations are

Fλγ = Φγ,λ − Φλ,γ , Fλγ
γ = 4πJλ, (10)

where Fλγ is the Maxwell field tensor, Φλ denotes the four-potential and Jλ represents the four-current. Since in
comoving coordinates, charge is considered to be at rest, so the magnetic field vanishes [21]. Consequently, the four-
potential and four-current take the form

Φλ = Φδ0
λ, Jλ = μov

λ. (11)

The charge conservation, Jλ
;λ = 0, yields

q̌(r) = 2π
∫

μoBCDdr, (12)

which gives total charge distribution per unit length of the cylinder. The electric field intensity for the given cylindrical
surface is defined as

E =
q̌(r)
2πC

.

The corresponding Maxwell equations are given by

Φ′′ −
(

A′

A
+

B′

B
− C ′

C
− D′

D

)
Φ′ = 4πμoAB2, (13)

Φ̇′ −
(

Ȧ

A
+

Ḃ

B
− Ċ

C
− Ḋ

D

)
= 0, (14)

where dot and prime denote differentiation with respect to t and r, respectively. Integrating eq. (13), we have

Φ′ =
2q̌(r)AB

CD
. (15)

The C-energy for a cylindrically symmetric spacetime is defined by [22]

Ê = m(t, r) =
1
8

(
1 − L−2∇βr∇βr

)
, (16)

where Ê is the gravitational energy per specific length of the cylinder. The specific length L, circumference radius ρ

and areal radius r are expressed as L2 = ξ(3)βξβ
(3), ρ2 = ξ(2)βξβ

(2) and r = ρL. For the interior spacetime, the C-energy
becomes

Ê =
1
8

+
1

8D2

[
1

A2
(CḊ + ĊD) − 1

B2
(CD′ + DC ′)

]
.

In the presence of an electromagnetic field in the interior region of stars, the specific energy (E∗ = ÊL) of the cylinder
is given as follows:

E∗ =
L

8
+

1
8D

[
1

A2
(CḊ + ĊD) − 1

B2
(CD′ + DC ′)

]
+

q̌2

2C
. (17)
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The corresponding Einstein-Maxwell field equations (8) give

κ

fR

(
ρ +

T
(D)
00

A2
− 2πE

2

D2

)
A2 =

A2

B2

(
−C ′′

C
− D′′

D
+

B′C ′

BC
+

B′D′

BD
− C ′D′

CD

)

+

(
ḂĊ

BC
+

ḂḊ

BD
+

ĊḊ

CD

)
, (18)

κ

fR

(
p +

T
(D)
11

B2
− 2πE

2

D2

)
B2 = −B2

A2

(
C̈

C
+

D̈

D
+

ĊḊ

CD
− ȦĊ

AC
− ȦḊ

AD

)

+
(

C ′D′

CD
+

A′C ′

AC
+

A′D′

AD

)
, (19)

κ

fR

(
p +

T
(D)
22

C2
+

2πE
2

D2

)
C2 =

C2

B2

(
A′′

A
+

D′′

D
+

A′D′

AD
− A′B′

AB
− D′B′

DB

)

− C2

A2

(
B̈

B
+

D̈

D
− ȦḂ

AB
− ȦḊ

AD
+

ḂḊ

BD

)
, (20)

κ

fR

(
p +

T
(D)
33

D2
+

2πE
2

D2

)
D2 =

D2

B2

(
A′′

A
+

C ′′

C
+

A′C ′

AC
− A′B′

AB
− C ′B′

CB

)

− D2

A2

(
B̈

B
+

C̈

C
− ȦḂ

AB
− ȦĊ

AC
+

ḂĊ

BC

)
, (21)

κ

fR

(
T

(D)
01

)
=

(
− Ċ ′

C
− Ḋ′

D
+

C ′Ḃ

CB
+

D′Ḃ

DB
+

A′Ċ

AC
+

A′Ḋ

AD

)
. (22)

Equations (18)–(22) describe how the spacetime is affected by the electromagnetic field and how it is curved due to
the gravitation, mass and energy of the system. The values of T

(D)
00 , T

(D)
11 , T

(D)
22 and T

(D)
33 are given in appendix A.

Equations (A.1)–(A.5) indicate that they contain third-order derivatives of f . The term (ρ + T
(D)
00
A2 ) represents the

effective energy density, while the terms (p + T
(D)
11
B2 ), (p + T

(D)
22
C2 ) and (p + T

(D)
33
D2 ) give effective pressure.

Now we apply Darmois junction conditions [23,24] between interior (V −) and exterior (V +) spacetimes to find the
mass function. These conditions are given as follows.
i) Over the hypersurface (Σ), the continuity of the first fundamental form gives

ds2
− = ds2

+ = ds2. (23)

ii) The continuity of the second fundamental form yields

[Kjl]Σ = K+
jl − K−

jl = 0, (24)

where

K±
jl = −n±

δ

(
∂2xδ

±
∂ξj∂ξl

+ Γ δ
jl

∂xδ
±

∂ξj∂ξl

)
, (δ, j, l = 0, 2, 3), (25)

is the extrinsic curvature over the hypersurface, n±
δ represents the outward unit normal to the hypersurface and

ξj = (τ, φ, z). The equations of hypersurface are

f−(t, r) = r − r̂Σ = 0, (26)

f+(T̂ , R̂) = R̂ − R̂Σ(T̂ ) = 0, (27)

where r̂Σ is a constant. Substituting eq. (27) in (6) and eq. (26) in (5), we obtain exterior and interior metrics on
hypersurface, respectively,

(ds2
+)Σ = −

⎡
⎣H(R̂Σ) − (H(R̂Σ))−1

(
dR̂Σ

dT̂

)2
⎤
⎦dT̂ 2 + R̂2(dφ2 + β2dz2), (28)

(ds2
−)Σ = −A2(t, r̂Σ)dt2 + C2(t, r̂Σ)dφ2 + D2(t, r̂Σ)dz2. (29)
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The first fundamental form yields

C =
1
β

D = R̂Σ ,
dt

dτ
=

1
A

, (30)

dT̂

dτ
=

⎡
⎣H − H−1

(
dR̂Σ

dT̂

)2
⎤
⎦
− 1

2

. (31)

The outward unit normal for interior and exterior spacetimes are of the form

n
−

r = (0, B, 0, 0), n
+

r =

(
dR̂Σ

dτ
,
dT̂

dτ
, 0, 0

)
.

The non-zero components of extrinsic curvature K±
jl are

K−
00 = − A′

AB
, K−

22 =
1
β2

K−
33 = −CC ′

B
, (32)

K+
00 =

⎡
⎣d2T̂

dτ2

dR̂

dτ
− d2R̂

dτ2

dT̂

dτ
− H

2
dH

dR̂

(
dT̂

dτ

)3

+
3

2H

dH

dR̂

(
dR̂

dτ

)2
dT̂

dτ

⎤
⎦ , (33)

K+
22 =

1
β2

K+
33 =

[
HR̂

dT̂

dτ

]
. (34)

The second fundamental form leads to

− A′

AB
=

⎡
⎣d2T̂

dτ2

dR̂

dτ
− d2R̂

dτ2

dT̂

dτ
− H

2
dH

dR̂

(
dT̂

dτ

)3

+
3

2H

dH

dR̂

(
dR̂

dτ

)2
dT̂

dτ

⎤
⎦ , (35)

−CC ′

B
=

[
HR̂

dT̂

dτ

]
. (36)

Using eq. (31), it follows that

dT̂

dτ
=

1
H

⎡
⎣H +

(
dR̂

dτ

)2
⎤
⎦

1
2

. (37)

Substituting eq. (37) in (36), we obtain

H =
(

C ′

B

)2

−
(

Ċ

A

)2

. (38)

From eqs. (7) and (38), the mass function becomes [25,26]

M =
C

4

(
Ċ2

B2
− C ′2

A2

)
+

Q2

2C
. (39)

The following relationships are satisfied over the hypersurface:

E∗ − L

8
= M ⇐⇒ q̌ = Q, λ =

1
2
,

p +
T

(D)
11

B2
= −T

(D)
01

AB
⇐⇒ E∗ = 0. (40)

This provides a relationship between mass function and C-energy of the cylinder over the hypersurface, while the
second equation represents the relationship between the f(R) term and the pressure. In general, T

(D)
22 	= T

(D)
33 , but for

perfect fluid, the hypersurface condition, βC = D, leads to T
(D)
22 = β−2T

(D)
33 .
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3 Dynamical equations

In this section, we use the Misner-Sharp formalism [27] to construct dynamical equations. In the Misner-Sharp tech-
nique we discuss the dynamics of collapsing fluid under the f(R) gravity. We discuss the effects of charge, properties
of fluid and dark source terms on the rate of collapse. Bianchi identities yield

(T (m)μν + T (D)μν + Eμν);νvμ = 0,

(T (m)μν + T (D)μν + Eμν);νχμ = 0,

where χμ = B−1δμ
1 = (0, B, 0, 0). Using the above two equations, we obtain the following dynamical equations:

(
T

(D)
00

A2

)·

− 1
AB

(
T

(D)
01

AB

)′

− T
(D)
01

A2B2

(
2A′

A
+

2C ′

C

)
+

Ḃ

A2B

(
ρ + p +

T
(D)
00

A2
+

T
(D)
11

B2

)

+
2Ċ

A2C

(
ρ + p +

T
(D)
00

A2
+

T
(D)
22

C2

)
+

2Ȧ

A

(
T

(D)
00

A4

)
+

ρ̇

A2
= 0,

[
p +

T
(D)
11

B2

]′

+

[
ρ + p +

T
(D)
00

A2
+

T
(D)
11

B2

]
A′

A
− B

A

[(
T

(D)
01

AB

)·

+ 2
Ċ

A

T
(D)
01

BC

]

+
2C ′

C

[
T

(D)
11

B2
− T

(D)
22

C2

]
− aa′

β2πC4
= 0. (41)

We define the proper time and radial derivatives as

DT̂ = vμ ∂

∂X−μ
=

1
A

∂

∂t
, DR̂ =

1
R̂′

∂

∂R̂
. (42)

Let Ũ be the velocity of fluid particles, which is negative for the collapsing phenomenon, defined as [28]

Ũ = DT̂ (C) = DT̂ (R̂) < 0. (43)

Using eq. (32), we obtain

Ẽ =
C ′

B
=

[
Ũ2 − 2

βC

(
E∗ − L

8

)
+

q̌2

βC2

]
. (44)

Using eqs. (18)–(22) and (42), the time rate of change of C-energy is given as

DT̂ (E∗) = −4πR̂2β

fR

[(
p +

T
(D)
11

B2
− 2πE

2

(βR̂)2

)
Ũ +

T
(D)
01

AB
Ẽ

]
− q̌2

2̂R
2 Ũ +

Ũβ

8
. (45)

This shows the behavior of energy with the contribution of dark source terms and matter variables. Since Ũ < 0, in

the first square bracket on the right-hand side the term (p + T
(D)
11
B2 − 2πE2

(βR̂)2
) indicates that the energy will increase if

(
p +

T
(D)
11

B2

)
>

2πE
2

(βR̂)2
.

This indicates that work done by the effective pressure is greater than effects of charge on the system. The second dark

source term (T
(D)
01
AB Ẽ) represents the outgoing energy of the system, while the third term q̌2

R̂2 is just like the Coulomb

force which can increase the energy of the collapsing system, since Ũ < 0 and the last term Ũβ
8 indicate the collapsing

phenomenon. This term will increase or decrease the energy of the system for β < 0 or β > 0.
Now we discuss radial derivative of the C-energy inside the hypersurface. Using eqs. (18)–(22) along with (42)

and (17), it follows that

DR̂(E∗) =
4πR̂2β

fR

[(
ρ +

T
(D)
00

A2
+

2πE
2

(βR̂)2

)
− T

(D)
01

AB

Ũ

Ẽ

]
+

q̌

R̂
DR̂(q̌) − q̌2

2R̂2
+

β

8
. (46)
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This shows the variation of energy between adjacent cylindrical surfaces. The first term in the square bracket indicates
the work done due to effective energy density and effects of charge on the system. Thus energy between cylindrical
surfaces grows up due to this work done by energy density. The second term in the square bracket shows the release

of energy, which occurs in the inward direction as this term remains positive due to T
(D)
01
AB

Ũ
Ẽ

< 0 (due to collapse). The
next two terms are due to the electromagnetic field and the last term causes an increase or decrease of energy inside
the collapsing cylinder provided β > 0 or β < 0, respectively. Integrating the above equation with respect to R̂, we
obtain

E∗ =
∫ R̂

0

4πR̂2β

fR

[(
ρ +

T
(D)
00

A2
+

2πE
2

(βR̂)2

)
− T

(D)
01

AB

Ũ

Ẽ

]
dR̂ +

2
β

∫ R

0

q̌2

R̂2
dR +

R̂β

8
. (47)

Using eqs. (42) and (43), we find the acceleration of collapsing matter inside the hypersurface as

DT̂ (Ũ) = −4πR̂

fR

(
p +

T
(D)
11

B2
− 2πE

2

(βR̂)2

)
− 1

βR̂2

(
E∗ − L

8

)
+

A′

A

Ẽ

B
+

q̌2

2βR̂3
. (48)

Replacing the value of A′

A from eq. (41) in the above equation, we have
(

ρ + p +
T

(D)
00

A2
+

T
(D)
11

B2

)
DT̂ (Ũ) = −

(
ρ + p +

T
(D)
00

A2
+

T
(D)
11

B2

)

×
[

4πR̂

fR

(
p +

T
(D)
11

B2
− 2πE

2

(βR̂)2

)
+

M

βR̂2
− q̌2

2βR̂3

]
− Ẽ2

[
DR̂

(
p +

T
(D)
11

B2

)

− q̌

πR̂4β2
(DRq̌) +

2
R̂

(
T

(D)
11

B2
− T

(D)
22

C2

)]
+ Ẽ

[
DT̂

(
T

(D)
01

AB

)
+

2Ũ

R̂

T
(D)
01

AB

]
. (49)

This expression is like the Newtonian force (force = mass density × acceleration) and shows that there are some
forces which affect the fluid in the collapsing system. The term appearing on the left-hand side denotes inertial mass
including effective pressure and effective density, whereas DT̂ Ũ represents acceleration of the fluid particles. The first
term on the right-hand side in the round bracket is the same as that on the left-hand side. By the equivalence principle,
the factor in the round bracket indicates active gravitational mass. The first square bracket expresses the gravitational
force (Fgrav), whose Newtonian part is M . In this bracket, the term 4πR̂

fR
(p + T D

11
B2 ) represents the relativistic part

and ( q̌2

2βR̂3 ) shows the effect of the electromagnetic field on the collapsing rate. This bracket describes how the active
gravitational mass is affected by variables. The second square bracket denotes hydrodynamical force (Fhyd) in which the
first term indicates resistance for the collapse. This resistance is due to the negative gradient of the effective pressure
and work done by this gradient lies in the outward direction, hence decreases the process of collapse. The next term

shows electromagnetic effects and the third term (T
(D)
11
B2 − T

(D)
22
C2 ) is f(R) terms. For the constant Ricci scalar, we have

T D
11

B2 = T D
22

C2 = −C0, where C0 = 1
2κ (R0fR(R0) − f(R0)), so this term does not affect hydrodynamical equilibrium.

The last square bracket describes the role of dark source terms on the rate of collapse. The first term is the proper
time derivative of dark source, and for a constant Ricci scalar, we have T D

01
AB = 0. Thus the first term does not contribute

in the rate of collapse whereas the second term 2Ũ
R̂

T
(D)
01
AB is negative as Ũ < 0 and this term always helps the collapsing

phenomenon. Substituting the value of E∗ from eq. (47) into (49), it follows that:
(

ρ + p +
T

(D)
00

A2
+

T
(D)
11

B2

)
DT̂ (Ũ) = −

(
ρ + p +

T
(D)
00

A2
+

T
(D)
11

B2

)

×
[

1
R̂2

∫ R̂

0

(
4πR̂2

fR

(
ρ +

T
(D)
00

A2
+

2πE
2

(βR̂)2

)
− T

(D)
01

AB

Ũ

Ẽ

)
dR̂ − 2q̌2

β2R̂3

+
2

β2R̂2

∫ R̂

0

q̌2

R̂2
dR̂ +

4πR̂

fR

(
p +

T
(D)
11

B2
− 2πE

2

(βR̂)2

)]

− Ẽ2

[
DR̂

(
p +

T
(D)
11

B2

)
− q̌

πR̂4β2
(DR̂a) +

2
R̂

(
T

(D)
11

B2
− T

(D)
22

C2

)]
+ Ẽ

[
DT̂

(
T

(D)
01

AB

)
+

2Ũ

R̂

T
(D)
01

AB

]
. (50)
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The first square bracket on the right-hand side indicates that the active gravitational mass term (ρ+ p+ T
(D)
00
A2 + T

(D)
11
B2 )

increases only if
2

β2R̂2

∫ R̂

0

q̌2

R̂2
dR̂ >

2q̌2

β2R̂3
.

Differentiating the above inequality, we have
q̌

R̂
> DR̂q̌.

If total charge of the cylinder is greater than the charge variation of the cylinder with respect to its radius, then the
charge will enhance the active gravitational mass.

4 Relation between the Weyl Tensor and Matter Variables

Here we develop a relationship between the Weyl tensor, charge of the cylinder, energy density, effective pressure and
dark source terms. The Weyl tensor is a measure of curvature of the spacetime and it gives distortion in the shape of
body by the tidal force. It can be defined as [28]

C =
1
3
R2 − 2RμνRμν + R, (51)

where R is the Kretschmann scalar, R represents the Ricci scalar and Rμν denotes the Ricci tensor. The Kretschmann
scalar is defined by

R = RμνγδRμνγδ.

Substituting the values of the Reimann tensor from eqs. (A.6)–(A.10), this takes the form

R =
48

β2C6

(
E∗ − L

8
− a2

2C

)2

− 16
βC3

(
E∗ − L

8
− a2

2C

) (
G00

A2
− G11

B2
+

G22

C2

)

+ 4

[(
G22

C2

)2

−
(

G01

AB

)2
]

+ 3

[(
G00

A2

)2

+
(

G11

B2

)2
]
− 2

G00G11

A2B2
+ 4

(
G00

A2
− G11

B2

)
G22

C2
. (52)

Inserting eq. (52) in (51) and making use of eqs. (18)–(22), it follows that

� = E∗ − L

8
− 4πR̂3β

3fR

(
ρ +

T
(D)
00

A2
− T

(D)
11

B2
+

T
(D)
22

C2
+

6πE
2

(βR̂)2

)
− q̌2

2R̂
, (53)

where � = CR̂3β√
48

.
Taking proper time derivative of eq. (53) and using (42), we have

DT̂ � = −4πR̂2β

fR

[(
ρ + p +

T
(D)
00

A2
+

T
(D)
22

C2
+

4πE
2

(βR̂)2

)
Ũ +

TD
01

AB
Ẽ

]

− 4πR̂3β

3fR
DT̂

(
ρ +

T
(D)
00

A2
− T

(D)
11

B2
+

T
(D)
22

C2
+

6πE
2

(βR̂)2

)
. (54)

Using eq. (42) in (53), the radial derivative of � becomes

DR̂� = −4πR̂3β

3
DR̂

[
1
fR

(
ρ +

T
(D)
00

A2
+

2πE
2

(βR̂)2

)]
− 4πR2β

fR

Ũ

Ẽ

T
(D)
01

AB

+ DR̂

[
4πR̂3β

3fR

(
T

(D)
11

B2
− T

(D)
22

C2
− 4πE

2

(βR̂)2

)]
−

(
q̌2

βR̂2

)
.

This provides a relationship between the Weyl tensor, dark source terms, electromagnetic field and energy density in
f(R) gravity. For zero charge distribution, it follows that

DR̂� +
4πR̂3β

3
DR̂

[
1
fR

(
ρ +

T
(D)
00

A2

)]
= DR̂

[
4πR̂3β

3fR

(
T

(D)
11

B2
− T

(D)
22

C2

)]
+

4πR̂2β

fR

Ũ

Ẽ

T
(D)
01

AB
. (55)
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For the constant Ricci scalar, R = R0, we obtain

DR̂� +
4πR̂3β

3fR(R0)
DR̂

[
ρ +

1
2κ

(R0fR(R0) − f(R0))
]

= 0. (56)

Taking C0 = 1
2κ (R0fR(R0) − f(R0)), this implies that

DR̂

(
CR̂3β√

48

)
+

4πR̂3β

3fR(R0)
DR̂(ρ + C0) = 0.

This indicates that � = 0 ⇐⇒ DRρ = 0 (using regular axis condition), where DRρ = 0 implies homogeneity in the
energy density.

5 Concluding remarks

In this paper, we have studied the charged cylindrical collapse with perfect fluid in f(R) gravity. At the hypersurface, we
matched the static interior and non-static exterior spacetimes. We have developed a relationship between gravitational
mass, C-energy and specific length of the cylinder with the help of junction conditions. We have formulated dynamical
equations using the Misner-Sharp formalism and discussed the effect of charge, energy density, effective pressure as
well as dark source terms on the rate of collapse. Finally, we have developed a relationship between the Weyl tensor,
matter variables and dark source terms which provides energy density inhomogeneity. The summary of the results is
given as follows.

– The variation of energy with respect to different radii indicates that the work done due to the effective energy
density leads to an increase in the energy between cylindrical surfaces. The internal energy of the cylindrical surface
is increased due to the release of energy in the inward direction. Also, energy will increase or decrease according
to β > 0 or β < 0 between adjacent cylindrical layers.

– The variation of energy with respect to time shows the following results. The outgoing energy is greater than the

ingoing energy of the system and for Ũ < 0, the energy will increase only if (p + T
(D)
11
B2 ) > 2πE

2

(βR̂)2
, i.e., the work done

by effective pressure is greater than the electric field strength of the system.
– The force in eq. (49) is just like the Newtonian force which affects the collapse due to gravitational and hydrody-

namical forces.
– The hydrodynamical force prevents the collapse completely if T D

11
B2 = T D

22
C2 ; this condition is satisfied only when the

Ricci scalar is constant.
– The pressure helps to keep the stars in equilibrium position through the pressure gradient, which is balanced by

the gravitational force. However, if this negative gradient of effective pressure dominates, then it decreases the
collapsing phenomenon as this does the work in outward direction.

– The Coulomb force may lead to stop the collapse because it shows the repulsive effect just like the cosmological
constant and is balanced by gravitational force.

– The inertial mass density of the system increases only for q̌

R̂
> DR̂q̌ which causes rapid collapsing phenomenon.

– For constant Ricci scalar, R = R0, energy density is homogeneous if and only if the metric is conformally flat.

We can also conclude that gravitational collapse will be slower in f(R) gravity as compared to GR.

Appendix A.

T
(D)
00 =

A2

κ

[
RfR − f

2
+

1
B2

(
f ′′

R − BḂ ˙fR

A2
− B′f ′

R

B

)
+

1
C2

(
CC ′f ′

R

B2
− CĊ ˙fR

A2

)

+
1

C2

(
DD′f ′

R

B2
− DḊ ˙fR

A2

)]
, (A.1)
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T
(D)
11 =

B2

κ

[(
f − RfR

2

)
+

1
A2

(
f̈R − Ȧ ˙fR

A
− AA′f ′

R

B2

)
− 1

C2

(
CC ′f ′

R

B2
− CĊ ˙fR

A2

)

− 1
D2

(
DD′f ′

R

B2
− DḊ ˙fR

A2

)]
, (A.2)

T
(D)
22 =

C2

κ

[(
f − RfR

2

)
+

1
A2

(
f̈R − Ȧ ˙fR

A
− AA′f ′

R

B2

)
− 1

B2

(
f ′′

R − BḂ ˙fR

A2
− B′f ′

R

B

)

− 1
D2

(
DD′f ′

R

B2
− DḊ ˙fR

A2

)]
, (A.3)

T
(D)
33 =

D2

κ

[(
f − RfR

2

)
+

1
A2

(
f̈R − Ȧ ˙fR

A
− AA′f ′

R

B2

)
− 1

B2

(
f ′′

R − BḂ ˙fR

A2
− B′f ′

R

B

)

− 1
C2

(
CC ′f ′

R

B2
− CĊ ˙fR

A2

)]
, (A.4)

T
(D)
01 =

1
κ

[
˙f ′
R − A′ ˙fR

A
− Ḃf ′

R

B

]
. (A.5)

The Kretschmann scalar yields

R = 4
[

1
(AB)4

(R1010)2 +
2

(AC)4
(R2020)2 −

4
(AB)2C4

(R0212)2 +
2

(BC)4
(R1212)2 +

1
C8

(R2323)2
]

.

The Reimann tensors in terms of the Einstein tensor can be written as

R1010 = (AB)2
[

G00

2A2
− G11

2B2
+

G22

C2
− 2

βC3

(
E∗ − L

8
− a2

2C

)]
, (A.6)

R0202 = (AC)2
[

G11

2B2
+

1
βC3

(
E∗ − L

8
− a2

2C

)]
, (A.7)

R1212 = (BC)2
[

G00

2A2
− 1

βC3

(
E∗ − L

8
− a2

2C

)]
, (A.8)

R0212 =
C2

2
G01 , (A.9)

R2323 = 2Cβ

(
E∗ − L

8
− a2

2C

)
, (A.10)

where β2R0202 = R0303, β2R1212 = R1313, β2R0212 = R0313.
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