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Abstract. In this paper, we introduce a new understanding tool, the Finsler hyperbolic geometric flow, and
establish the short-time existence and uniqueness theorem for reduced Berwald spaces. This kind of flow is
very natural to understand certain wave phenomena in physics as well as the geometry of Finsler manifolds.
Also we illustrate the wave character of the metrics and curvatures of reduced Berwald manifolds.

1 Introduction

Geometric flows are important in many sections of mathematics and physics. A geometric flow is an evolution of a
geometric structure under a differential equation related to a functional on a manifold, usually associated with some
curvature. The well-known geometric flows in mathematics are the heat flow, the Ricci flow and the mean curvature
flow. The subject of Hamilton’s Ricci flow, %g(t) = —2Ricy(), lies in the more general field of geometric flows, which,
in turn, lies in the even more general field of geometric analysis. As a fully nonlinear system of parabolic partial
differential equations of second order, the Ricci flow in many respects appears to be a very natural equation. Similarly,
since the hyperbolic equation or system is one of the most natural models in physics, we feel the hyperbolic geometric
flow, introduced by Kong and Liu [1] in 2007, is also a very natural tool. Note that the elliptic, parabolic and hyperbolic
partial differential equations have been successfully applied to differential geometry and physics.

The hyperbolic geometric flow is a system of nonlinear evolution partial differential equations of second order,
and is useful to understand certain wave phenomena in physics as well as the geometry of manifolds, in particular,
it describes the wave character of the metrics and curvatures of manifolds. A Riemannian geometry is defined on a
manifold by a symmetric metric tensor and the corresponding Levi-Civita connection structure. However, the Finsler
and Lagrange geometries are constructed from three fundamental and independent geometric objects: the nonlinear
connection, metric and linear connection.

The hyperbolic geometric flow on a Riemannian manifold M with a Riemannian metric go is defined by the family
g(t) of Riemannian metrics on M satisfying

32

.0 95 I‘,t = —2(Ric ij Z,t
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9i5(2,0) = (90)is(z), 57 (x,0) = Kjj(x)

where € M and K7; is a symmetric tensor on M, and Ric is the Ricci tensor of g(t). Kong and Liu in [1] showed that
there is a unique solution to this equation for an arbitrary smooth metric on a compact manifold over a sufficiently
short time. In this paper we are going to study the hyperbolic geometric flow in the Finsler geometry. The Finsler
hyperbolic geometric flow (FHGF) under consideration is the following evolution equation:

O?F*?
ot?

for a family of Finsler metrics F'(t) on M. In this paper, we prove the short-time existence and uniqueness theorem
for reduced Berwald metrics, and drive the corresponding wave equations for the curvatures. The main difficulty to

— _9F?Ric, (2)
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prove this theorem is that the Finsler hyperbolic geometric flow (2) is a system of nonlinear weakly hyperbolic partial
differential equations of second order. As the Finsler hyperbolic geometric flow (2) is only weakly hyperbolic, the
short-time existence and uniqueness result on a compact manifold does not come from the standard PDEs theory
directly. In order to prove the short-time existence and uniqueness theorem, using the gauge fixing idea as in the Ricci
flow, we can derive a system of nonlinear strictly hyperbolic partial differential equations of second order.

Preliminaries
1.1 Berwald metric

Let M be a connected n-dimensional manifold. Denote by T, M the tangent space at x € M, and TM = Uzep T M
the tangent bundle of M. Any element of TM has the form (x,y), where x € M and y € T, M. The natural projection
m: TM — M is given by m(z,y) = x. Denote the pull-back tangent bundle 7*T'M by

7 TM = {(z,y,v) |y € T, My, ve T, M},

where TMy = TM \ {0}, 7(v) = 2. A Finsler metric on a manifold M is a function F : TM — [0, c0), which has the
following properties:

1) F(x,\y) = AF(z,y), VA >0
2) F(x,y) is C* on T My;
3) For any tangent vector y € T,, M, the symmetric bilinear form g, : T, M x T, M — R on T'M is positive definite,
where
1
9y(w,v) := 2 dsOr

[F2 (z,y + su+ rv)] |8:T:0. (3)

In the local coordinate system (z%,y") we have g;;(z,y) = %%(z,y) and (g*) := (gi;)~'. The pair (M, F) is called

a Finsler manifold. The geodesics of F' are characterized locally by

d2a? dx
26" =
e T ( dt) 0
Lo [,090 99k ok
[a——— 27_ J . 4
G 4g{amk ol (VY (4)

For a Finsler metric F = F(z,y), its geodesics are characterized by the system of differential equations ¢ 42G*(¢) = 0,
where the local functions G* = G*(x,y) are called the spray coefficients and are given by

G' =

1 0%F? OF?
Zg [31"“33}1 yk 6.’,El :| ) Yy € TIM (5)
Finsler spaces for which the canonical parallel transport is a linear process are said to be of Berwald type. Thus,
on Berwald spaces, the F-preserving diffeomorphisms, ¢; : T, M \ {0} — T,)M \ {0}, generated by the canonical
parallel transport become linear isometries between normed tangent spaces. For example, Riemannian spaces and
locally Minkowskian spaces belong to this family.

A Finsler metric F is called a Berwald metric, if G = %F]’k (x)y?y" is quadratic in y € T, M for any € M, where

i Ogi; Ok | 09k Ogij v | OGjk r_agkl .
ok = 29 <3xk oal T ow oy Okt gy G 5, G ) (6)

and Gz aG . Put Alk_ g’l(ag“ GT 8g]k G""—‘,—ag“ G?") [ } and define the

For a Berwald metric we have I ;k =3

following.

el
oyJ ay

Definition 1. A Berwald metric F is called a reduced Berwald metric if Afj is independent of y.

Ezample 1. Let F(x,y) = (yyﬁ such that y'y? # 0, we have gy = 3(5*1) ) ga2 = 6(y—1) and gia = 7(3—3)3 = ¢o1. This
is a non-Riemannian reduced Berwald metric.
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For a vector y € T,, My, the Berwald connection is a map V¥ : T, M x C*°(TM) — T, M defined by

0

VIV = {u(V)(@) + V@) Dy ()} 5

)

where u = ui% e €ET,M and V = V? B‘Zi € C>®(TM).
From now, for a vector y € T, My, we suppose that V = VY. The coefficients of the Riemann curvature R, =

R dx' ® 52 are given by

. OG? LI CL - 92GH 0G* 0GI
i ._ o9& j j _ = g
R 28x’“ (%cjay""‘y 26 Oyioyk  Oyi Oyk (™)
and
; 1 (OR; OR;
=i (o5 ”
kL3 \ayidyl  dyioyk )

The Ricci scalar function of F' is given by
1

Ric := 72

R

A companion of the Ricci scalar is the Ricci tensor,

1
Ricy; = <2F2Ric> . (10)

yiyd

A Finsler metric is said to be Einstein if the Ricci scalar function is a function of = alone, equivalently Ric;; = R(x).

2 Finslerian hyperbolic geometric flow

In this section we state the short-time existence and uniqueness result for the Finsler hyperbolic geometric flow (2)
on a compact n-dimensional reduced Berwald manifold M. We can show that it is a system of second-order nonlinear
weakly hyperbolic PDE therefore we consider a modified system of evolution equations of the hyperbolic geometric
flow, which is strictly hyperbolic, so that we can get a solution for a short time by solving the corresponding Cauchy
problem. The solution of the system (2) comes from the solution of the modified equations.

More generally, one can provide lower bounds for the “life span” of solutions of second-order hyperbolic equations,

Ut — G(DU, DxD'LL) = O, (11)
where
Du = (ug,Ugyy ...y Usg,)
D,Du = (um%), i,7=0,....n 14+75>0

and, by convention, ug, = .

We suppose G is a smooth function of A = ((\;), i =0,...,n, (Xij)s 4,J,=0,...,n,i4+ 5 > 0), in a neighborhood
of A =0. Also G(0,0) = 0 and

n

> G5, (0,068 > ml¢* m >0, forany &= (&,...,&) ERT, (12)

i,j=1
which expresses the fact that (11) is hyperbolic near the origin.

Proposition 1. Let (M,g) be a compact Finsler manifold with reduced Berwald metric. Then the Finsler hyperbolic
geometric flow on M is not strictly hyperbolic.
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Proof. From (2), (3), (7) and (10), we have

H? 9
s = —(FRic)yrys
OG" - 92GH - 0%2GE 0G* 9GY
ozt OxI Oyt Oyidyl Oyl Oyt Ty
_ N a291“l N azgsl + 8297“5 8291’1
g Ozsoxt OzrOzt  OziOzx!  OzxsOz"
If we put & = (1,—1,0,...,0), it satisfies & = 1, & = —1 and & = 0 for ¢ > 2, then |¢|? = 2 and

> G5, (0,0)&¢; = G5, (0,0) + G5, (0,0) — 2G5, (0,0).

ij=1

) + lower-order terms.

By putting » =1 and s = 2 a simple computation shows that

9? Zn: il (_ 82911 a2921 32912 3291‘1

@912 - et 0x20zt Ozl + 0ztox! + 0z20zx!

) + lower-order terms.

therefore, 331", G5, (0,0)§:€; = —4g'?%, if g'* > 0 then —2¢' < m. So FHGF is not strictly hyperbolic.

ij

2.1 Short-time existence

Theorem 1. Let M be a compact Finsler manifold with reduced Berwald metric Fy(x,y), then there exist a constant
e > 0 and a smooth one-parameter family of reduced Berwald metrics F(xz,y,t), t € [0,¢), such that F(z,y,t) is a
solution of the initial value problem

2
%F2($7yat) = _2F2RZC($7y7t)
oF , (13)
F(x7y70):F07 E(z,y,O):Fo(m,y)

where FO(x,y) is a C function on TMy, such that FO(x,\y) = AF°(x,y) for all A > 0. Moreover, the solution
F(z,y,t) is unique.

9*F?
dytoys

Remark 1. We use g;;(z,y) = 3 (z,y) and we rewrite (13) as

2
?gij (SC, y7t) = - (FZRZ’C)yiyj ($7yat)

0
= —2Rz’cij, (14)
where F is a Finsler metric. So, if go and g(z,t) are Riemannian metrics on a compact manifold M, Fy(z,y) =
\/90ij(®)y'yd and Fy(z,y) = \/gi;(t,2)y'y’ are Finsler metrics, then FHGF is the same as the hyperbolic geometric

flow on the Riemannian manifold (M, g). Therefore the Finsler hyperbolic geometric flow is the natural extension of
the hyperbolic geometric flow.

We now follow the strategy of proving short-time existence and uniqueness for Finsler hyperbolic geometric flow.
Suppose the reduced Berwald metric g;;(x,y,t) is a solution of the Finslerian hyperbolic geometric flow (14) and
s : M — M is a family of diffeomorphism of M. Let g;;(x,y,t) = {§;j(x,y,t) be the pull-back metrics. We now
want to find the evolution equations for the metrics g;;(z,y,t), and denote by z(z,t) = ¢ (x) = (2! (z,t), ..., 2"(z,1))

in local coordinates. Then B0 5.
2% 0z° |
gij(x,y,t) = %@gaﬁ(%yi) (15)

and

g ( t)—g 0 ( t)aﬁaizﬂ
atgl] x,vY, - ot 9Gap\Z, Y, (’*)xl a,ibj

_%%QA (( t) t>+A ( t)g 8287%3
= Ot gad oIV GBS Y iy \ 9 9 )
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Lemma 1. The second-order time derivative of g;; is

9? . 022028 0%Gap 02 02° 027 027
g0 @) = “2Res G0 5 55 ¥ 508 ot 907 01 BE
282§a5 02 928 927 0 (A 92" 8220‘> o ( 920 322"“)

9001 0o 9ai 0r 0w \ " 0ui o7 ) " 5wd \ 7 i o

{8§a5820825 0 (825A )_ 0 <8z5A )} 9%

027 Ozt Oxd Ot @gﬁv Oxd %gm ot?

)0 (aw) 02" (agaﬁ | 4o M)

dri \ ot ) oxi \ 9t ' 027 Ot
200 (22 (B0 00
Ox' Oxd \ Ot 027 0Ot ot
g (50) 2 (22,
Ozt \ Ot ) dxi \ Ot
Proof. Tt follows easily that: R R , R
ol tt) = GG
and
62Qalg 82ga5 0z" 82’/\ GQQQIB 0z7 62ga@ 8%,3 822’7
o GO0 = 5o o ot T lamar ot T o oz o
So, from (15) we have
2 a 9.8 324 2 o B
St = S ST e + 3 () S
0z 0 [9%2°\ . 9 (0z%\ 0z° djup
D7 02 (mz) Jas T 255 (8t> o dt

o0 0 (0 iy, 0 (92 0 (927
0z 0w \ ot ) dt 0w \ ot ) ow \ ot )T
The proof follows from the fact that the reduced Berwald metric g;;(x,y) is a solution of FHGF.

Lemma 2. If we choose the normal coordinates (see [3]) around a fixed point p € M, i.e. 99k — () qt p, then

Oxd
DGap 02% 2P 9 [02° 9 (027 .
@gﬁv _@ @gm =0 Vz,k‘,'y:l,...,n.

027 Ozt dxk Izt
Proof. See [4], p. 6.
Using lemmas 1 and 2, then

329ij
ot?

(Iy Y, t) = _2Rij (Jf, Y, t)

N 0 axm 0%z +i '8,2“ 9%z~
9z \ I o0 o2 9z \I™ orm o2

0?Gap 02% 02° 027 922 029ap 027 92 0P

02702> Ozt Ox3 Ot Ot 0270t Ot Oxt Oxd
5.0 (aw) 028 (agaﬁ N Ojap M)

oxi \ ot ) dxi \ ot 027 Ot
2027 0 (9PN (Dis | Dias 0
Oxt Ox7 \ Ot ot 027 Ot

Lo, 0 (920 9 (9=
9055 \ ot ) oz \ ot )
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We define a time-dependent vector field on the slit tangent bundle 7'M, as
vk = gl (F — ot ) (16)
and define z(x,t) = ¢(z) by the following initial value problem:

0%2% 0% 1 fra 02P 927

- — )

a2 9k 9567 97 Bt
z%(z,0) = Z2%(x)

(17)
2(z,0) = =

(2,0) o
where I k and I’ Ojl are the connection coefficients corresponding to the reduced Berwald metrics g;;(x,y,t) and

gij(z,y, ) and Z%(z) (o« =1,2,...,n) are arbitrary C* smooth functions on the manifold M.
Using lemma 2, we get the following evolution equation for the pull-back metric:

929, B P
atQJ (.’L’,y,t) = _2Rij($7y7 ) a ZV + 8 J‘/i

02 <8x’“ ox! ) 9z 82P 927 §2>

1 9279 \ 0200287 ) 9z 027 ot ot
o O (0at dal N 020020 021
0270t \ 920 0289 | i 9xi ot

+28(W)M(8(WM )+ a5 (5 gen) )
ot \ ot ) 9z \ ot \9ze 0289 ) T 527 \ 920 9289 ) “ou
8 92P\ 9z [0 [90zF ot o (0zF dx 027
200 ( ot > Oz <8t <8z“ azﬁg“) o (aza 8zﬁgkl> ot >
x* Ox 0 [0z% o [02°
( a9z ﬂg’”) o ( at ) e (at)
)

- Oxt dxk 9z F n 9z 9%t 027
ozt gmg 92 027 Ok Ozt 920027

=

8 S
B i Ozt 9z 922 + 0z% 9%zt 027
oz \7" 02 027 Ok Ozl 922027 ) Oxs

= 72R1;j(117,y, ) alv + 8zj%+I(DZ’DtD$Z)’

Ox

«@ e 2 .
where glj(xayao) = g%(l',y), %91;(33’?]70) = k?](I7y), Dz = (aazt ) gzwz) and DtDwZ = (aawzzat) for (Oé,’L = 1727 ER an>'
o «@ «@ 2 ~
ALet A = (agt ,%i,,%), (a,i = 1,2,...,n), the nonlinear term I = I(\) = I(Dz,D;D,z) is smooth and
I(\) = O(|AJ?) holds.

k _ 02% 9z2° 92" 9%z :
Since Fﬂ = T S s Faﬁ + 820 BT T the initial value problem (17) can be written as

0222 . 9222 k 02¢
— Al i o F04 T
oz Y (axﬂaml ﬂaxk>

(18)
«@ _ « e — Za
20) = (), o (e,0) = 29(a)
We calculate —2R;;(x,y,t) + awV + aw V; using Ric, := (3 F?Ric),rys, where
i 2 i 920 i 9
FQRZC_QaG . 0°G ; 0°G 0G" 0G (19)

o0~V ooy T2 gy " oy oy

If g is a reduced Berwald metric, then

i_l il % 99k jok
G =179 (ank ol ) VY (20)
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where ig“(Q% — 88(];,’“) is independent of y. Using (19) and (20), then we have

oG 109" (g Ogik\ ejsk L sisk
<8xi )H 4 0x <25’x’“ pat ) (070 + %:0r)

1 il aQle 829jk ok ok
9" | 253 - - J J
+ 4g < Oxtoxk orior! (67"63 + 5357")

il a297“l 1 il 82grs 1 il aQQSl

1
59 O0xioxs 29 Oztox! 29 oxox™

+ lower-order terms

and

Gt 1 dg" 5 09it _ 9g;n
dxmoyt 4 0x™

ozk ozl
L dg;i 99k j. k k,
39 (2 Ax™dzk dxm Izt (0" +ory)

) (07y" + oFy7)

20x™ OzF 4 0x™ Ox!

Yl
4 Ox™AY" ) s |\ 20xm 0zF 4 0zm Ol
1 &gy L 5 85k 1 %g;1 1w 9%gie ;
=gl J =gl J m, k -kl J -kl J m, j
* <2g drmort 49 dzmor )V Y T\29 Gamoet T 17 damod )V Y e
Ly PPgu 1 5 &Pgis 1 4 Pga

19¢g7" dgj; 1 997! 6gjk> ok (1 g™ dg; 1 0gM 3gjk> my

29 Ozxrdxs 47 Oxrox! 29 Oxs0x”

_ lgjl 0%gjr lgkl Pga lgkl *gar
47 Qxsdzt 27 9zmdxk 47 Oxr I
1 g, 1,, 0%,
+ §gkl 83:593:;’“ - ngl 8xsg<3;l + lower-order terms
_ 4l 3293‘1

prepe + lower-order terms.
7 Ox

Lemma 3. If F' is a reduced Berwald metric, then 63?5,“ (G™)yrys has not any second deriwative term.

Proof. Direct calculating shows

m 1, (90g; dg; . .
(e = 3™ (G5 = T ) 610t + a3

4
]. 67’ as 87"8
29mz<gl+ sl 9)

oxs Oz’ ozl

SO

82Gi 1 ml <agrl agsl agrs) |: ik <]- agjt N ]-ag]m)

oxs + oz Oxl 20x™ 4 Oxt

+ gkt (1 Ogmt 1 agmk>:|

2 Ozk 4 Oxt

has not any second derivative term.
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892Gt

For a reduced Berwald metric, we have I}, =
’ Jk T 0yioy

Fuiogk > SO

0 0 ; k
@Vs = e (gskgjl(F]kz - Fojl))
=49 kgﬂ 0 sl
I 9xr \ Oy oyt
i 0 <1 km (agjm _ Og1 | Ogum

gsk9" 5 o5l 9pm + Dy )> + lower-order terms

1 &g; g1 *gi
= 29ek9km9ﬂ ( ol 5; T G (’;xT + i a:T + lower-order terms
= gl Pgjs 1 gy
Ox'dz™ 2 0x50x"

) + lower-order terms

) + lower-order terms.

Proof of theorem (1). By (14), (18), (19) and lemma 3, the second-order time derivative of g, is

0 0 8Gi ; 0*G" - 0*GY GG 0 0
—(F?Ric)yrys + —Vy + —V, = 267 ——— 4 — — —V,+ —V,
(ERic)yry + 55V + G0 ( o7 TV winy Doy | Oy 8y’> ot o
- 8 r : a s ; 82 rs
- _ il 'g l _gzl ‘gkl _|_gzl g £
Ox'dxs Oz dz" Oz Oz
1 9%ga 1 0°gi 1y &g
il 2 il A 1 7
+yg Oxs0x" tg a0zl 27 9zsoxr
1 2 1S 1 2 7
+ g 8?0”"98335 — 59” OiTgl - + lower-order terms
= g Pgrs + lower-order terms.
Ox'ox!
Thereby, the initial value problem (18) can be written as
azgrs a Irs
o5 (@ yst) = gM o + 1(D2, Dy Dyz) + H(g, Dag)
; (21)

0
7. 9rs (I7 Y, 0) = kgs (I’, y)

9rs(2,,0) = g% (x,7), o

where ¢ = (grs), D2g = (6"“)7 (rys,k = 1,2,...,n) and kY (x,y) is a bilinear form on M. Let i = (gys, %),
(rys,k =1,2,...,n). The nonhnear term H = H(ji) = H(g,D,g) in (21) is smooth and quadratic with respect to
D, g. We observe that (21) and (18) are clearly strictly hyperbolic systems. Since the manifold M is compact, it follows
from the standard theory of hyperbolic equations (see [5] and [6]) that the system united by

82 s 8 T8
o5 (0:0.0) = g 5 4 1(Dz, DuDs2) + H(g. Dg)
9%2% _ 0%2% _ ok Oio‘
o2 D1 Ik
5 (22)
g,«s(ﬁc,y,O) = g?s(%y), &grs(%yﬂ)) = kgs(xay)
0
2%(x,0) = (z9), 8t 2%(x,0) = Z2%(x)

is strictly hyperbolic and hence has a unique smooth solution for a short time.
Finally we prove the uniqueness result for FHGF. Suppose there are solutions §;(t) and go(¢) of FHGF, with

initial condition §1(0) = g2(0) and 691 +(0) = %(O). Taking ¢, : M — M as a family of diffeomorphisms of M,
corresponding to the solutions z® for (22) we produce solutions g1 () and ga(t) for (22). Since g¢1(¢) and go(t) are
solutions of the same initial value problem for a system of partial differential equations, by uniqueness of solutions of
the system (22), g1 (t) = go(t) for all ¢ in their common interval of existence, so g1 () = ¥; g1 (t) = ;7 ga(t) = Ga(t)
proving uniqueness for the FHGF.
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Equation (13) has a unique solution with the initial reduced Berwald metric gg, but it is not obvious whether
FHGF metrics remain reduced Berwald along the flow. We show the FHGF metrics evolve in the space of reduced
Berwald metrics, for this purpose we use [7] and check three coditions.

1

In reduced Berwald space we have G*(y) = §F;k (z)y'y*, where

i Lo <5ng _ 995k 99 _ O9i; Gr+ 5gngz~ ~ Ogw G;)

k9 oxk Ozt Oxd  Oyr oy" y”
and
Ricyj = % zlj - %;szykk - %%Fﬁc JFF;;‘FI:S —- I T
In the above equation any term is only in terms of x, therefore % = 0. Similarly % = 0. Since Aék is
independent of y, ,
aiyk (gtggij(x,y,t)> = —aiyk(Ricij(:ay,t)) =0, (23)

it implies that

and 52 9 52 9
pYel (aykgij(x,y,t)> =2 (angm(%y,t)) vt € [0,¢),
put

0 0
@gij(xa yvt) - Tnglk(xa yvt) = h(.’E, yvt) vVt € [075)7
so in t = 0, we have
0 0
ngj($7ya0> - @%k(%%@ =0,

therefore h(z,y,t) =0 for all t € [0,¢) and

0 0
Tykgij (xv Y, t) = @gzk(xv Y, t)

Since Ric;; is positively homogeneous of degree zero (that is, invariant under positive rescaling) we have
82
@gij(x,)\y,t) = —2Ric;j(x, \y,t) = —2Ric;j(x,y,t)

SO
2 2

0 0
@gij(ﬂfv\y’t) = @gij(ﬂf,y’t)-
Put
h;j(xayvt) = gij(mv Ayat) - gij(x7y7t) vt € [076)7

thus in t = 0, #/;;(z, y,t) = 0, by using initial conditions, we have
h/ij($7y,t) =0 Vte [0,5), AeER, A>0.

The third condition is obvious, FHGF metrics are smoothly dependent on z and nonzero y € T, M. Now we can
consider the Finsler Ricci flow in the space of reduced Berwald metrics.

Example 2. Suppose that M is a compact Finsler manifold and Fy # 0 is an Einstein Finsler metric which is reduced
Berwald with constant Ricci scalar, equivalently Ric(Fy) = AFg where ) is a constant. We assume that F; = u(t)Fy
is a solution for the Finsler hyperbolic geometry flow,

2
%FQ(x,y,t) = —2F*Ric(x,y,t)
oF (24)
F(z,y,0)=Fy,  —(2,94,0) = F°(z,y)

ot
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Equations (7) and (10) imply that Ric(F;) = Ric(Fp) and

. Ric(Fy) A
Ric(Fy) = = ;
F? (u(t))?
. i o - . . . 1.2 =)\ PUN i
therefore by substituting it in the Finsler hyperbolic geometric flow, we have u” + +u'® = =2 and this implies

w(t))? = Leg — At — )2, But w(0) = 1 and 28 2,9,0) = FO 50 ¢; = A+ 2 (F%2 and ¢y = = F°. Therefore
X ot F, XFo
0
F2(t) = F2[((1 + FO%)) — (At — L F0)2] is a solution for the hyperbolic geometric flow.
0 A\ o
0
If Fy = 0, then the hyperbolic geometric flow has a trivial solution.

3 Wave property of curvatures in a reduced Berwald space

The Finslerian hyperbolic geometric flow is an evolution equation on the reduced Berwald metric g;;(t, (x,y)). The
evolution for the metric implies a nonlinear wave equation for the Finsler curvature tensors. The goal in this section is
to work out the evolution equations for Finsler curvatures under the Finsler hyperbolic geometric flow. More precisely,
we will concentrate on obtaining the global forms of the evolutions under FHGF.

Remark 2. In this section we put %g’j = H% whereas h'™ = —gmkgijhkj.

Proposition 2. Let F' is a reduced Berwald metric and h;; = %gij, then we have

a) %gij — _(hikhi + hljh;' _ 29ikgleickl)7
b) S=I% = 0,H  9g + H * Oh — g * ORic.

Proof. As g% g; = 6; we find that 2g¢" = —g"*gi'(hy). In which case
0% im. kit il Im_jt ik s
@g” =—9"9" " hmeg’ "t — 9" ¢ hmeg" I — 9" g’ (ngz>
N I N s
— g~ g = g ().

Proposition 3. If Fy is a smooth one-parameter family of reduced Berwald metrics on a manifold M, then the curvature
tensor R}y, evolves by

2 .
%R;M = 0,0H % 0g + OH % Oh + 0g * ORic + 0,H % 0*g + H % 9°h
+ g% 0?Ric+ (0,H % 0g + H x Oh — g * ORic)(g * Jg)
+ (H x99+ g« 0h)(H * 0g + g = Oh),
where &g = H.
Proof. We compute
O i, 1O _OC +1 k+ 21 j
—_ A [ —— — >
a2 Ik T 3012 90y Oy J
N 1 672 aZGm 82Gi B gk - lk l
3\ o2 ayioy ) \oymay* )~ 3 T3
N 1/0% 902G 9*Gm 2, - L ;
Z = ) — —k — —k ——
3\ 02 aymayk ) \ayiogt ) 3 /T3
3\ otoyioy ) \otoymoy* ) 3 T3
=I1+1TI+1II.
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We have

ozk Oz oxI ox¢
10H™ ( ahjc 8hjk Ohye B 6hk]>

2 97! oxk 8x5 +2 oz Ox°

10%H (_0gj. Ogjk O9ke  Ogj
_ 2 Je J 2 c J
1 0210t ( * )

o [ 0 ) ) 1o
+ Wg ( 7 g Ricje + 3 8 —— Ricj, — 907 — Ricp. + 28:E0kaj>
10 dg; g g, O gkj
- 7Hz<, Je 7 c. _ 7
1o ( 020k 0a0w° | 2 0alowd 8xlaxc>
, 9%h; 0%h 0%hy, 0%hy;
*H’LC 2 Jec J 2 C' _ J
3 ( Oxtox*  Oxldxe + Oxtdxi 6‘z18x5>
4 gic _azRicjc 4 }82Ricjk B 0% Ric. 182Rickj
g ozxloxk 2 Oxloxc Oxtoxd 2 Oxloxc )

The second and third terms are

Il = 1 ic [ O9ke 4 e _ 99km laHmC 99ic | Ogic _ 9g;i
) 2 Ot

dxm Oz Oz Oxt  Oxi  Ozxc
8hjc 8th 8hjl> _ gmc (8R’L'Cjc + aRiClc _ 8Ri0jl):|

+H <8xl 0w T e or8 0w or

1 9gjc | Ogic  Ogij 1 Ohj. ~ Ohic  Ohyy
III = 7Hmc J © J — mc J € _ J
[2 (3a:l 0w e ) 727 oz T Ba7  Dar

1 . ngc Bgmc 8gkm 1. 8hkc ahmc 8hkm
7Hzc _ —tc _
x [2 (axm T ok oee ) 29 \Gam T o dzc )|’

we can rewrite the formula as
I =0,0H % dg + OH * Oh + g x ORic + O, H x 0°g + H x 9*h + g * 0*Ric
II = (0,H x99 + H x Oh — g * ORic)(g * 0g)
IIT = (H %09+ g * Oh)(H * 0g + g * Oh).

Proposition 4. Under the Finsler hyperbolic geometric flow, the evolution of the curvature tensor Rzk is given by

82

52 Bir = (0cH = (g)y + H + (9h)y — g+ (DRic)y)(g * dg)

+ (0 H % 8g + H % Oh — g x ORic)(g x (8g)y)
+ (H % dg + g * Oh)(H % (0g)y + g x (Oh)y).

a—QRi- B (828Gm) < 0%°Gt >+ (82 es > (8Gm)
otz Ik \ at2 ayk oymoy’ ot dymayi dy*
(DY (20
ot Oy™ oy’ ot oy*
=I1+11+1I1I.
10H™¢ Ogke  Ogip 99ac  OGak \ 4
[4 ot (<2axb a mc>yb+ (2637"’ a 6xc>y

Ohg.  Oh haec  Ohg
(05 - 5 )+ (05 - 5 )v)
T ox¢
1
2

Proof. We compute

We have

Ozb Oz

— g™ {( 0 chkc — 1 aRickb> yb + (iRicac —
x r
9 .
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the second term is

- ].an 8gjc 8gmc 8gjm ic 8hjc ahmc ah]m
”{2 ot <(‘3xm 921~ owe ) TH \Gem T 0w e

. o a
-9 <8x7nRZC]C + @chmc — a[I;CRZCJm)]

1 me agkc 8gkb b 8gac 89@1@ a
8 [49 ((2 o0~ oze )Y T\ Pouk  Gar )Y
and the third term is

_ 1 ic agjc a.gmc a,g]m 1 ic 6h]C 3hmc ahjnl
III_( a <8xm+ 000 e ) 29 \Gam T 0w T O

2

1 me agjc 6gjb b 8gac agaj a
{4H |:<285L'b 9z )V T 28xj oae )Y
1

49

e [(o0hse O3\ 4 (2 Ohae  Ohay) .
{(2 Darb 8xc)y + (2 0z oz )V [

I = (9:H * (0g)y + H « (0h)y — g * (ORic)y)(g = Og)
IT = (0yH % 0g + H %« Oh — g * ORic)(g * (0g9)y)
III = (H x9g + g« Oh)(H * (9g9)y + g * (Oh)y).

X
+

We can rewrite the formula as

4 Discussions

Hyperbolic partial differential equations have been used to describe the wave phenomena in nature. In this paper,
we introduced a new kind of hyperbolic geometric flows, the Finsler hyperbolic geometric flow, to illustrate the
wave character of the Finsler metrics, which also implies the wave property of the curvature. The FHGF possesses
very interesting geometric properties and dynamical behaviour. So far there is great success of elliptic and parabolic
equations applied to mathematics and physics, but by now very few results on the applications of hyperbolic PDEs are
known. We believe that the Finsler hyperbolic geometric flow is a new tool to study geometric problems and physical
application. In the future we will study several fundamental problems, for examples, solitons, stability, long-time
existence, formation of singularities, as well as the general Finsler case and the physical and geometrical applications.

We know that if we want to study the global properties of FHGF, then it is important to find curvature conditions
that are preserved under the evolution. How to develop such techniques? For instance, suppose M is compact Finsler

manifold and let F(t), t € [0,t) be a solution to FHGF on M and consider %Ric; can we claim that non-negative
isometric curvature is preserved?

The authors thank Doctor Shahroud Azami for his useful non-Riemannian reduced Berwald example.
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