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Abstract. The concept of thermo-elasticity proposed by Green and Naghdi is employed to study the plane
harmonic waves through a piezo-electric thermo-elastic medium. An analytical technique of normal modes
is adopted to find the exact solution of the problem. The theoretical results obtained are represented
graphically for the particular material. It is found that energy dissipation reduces the amplitude of waves
propagating through the medium. The results fully agree with physical interpretation of the problem.

1 Introduction

Piezo-electric materials are used to transduce electrical and mechanical energy. Wave propagation is one of the most
realistic models of piezo-electric and elastic solids, which have been extensively used in many engineering and industrial
applications, such as sensors, actuators, intelligent structures, radio, and computer technology and ultrasonic.

The models of heat propagation were proposed by Green and Naghdi [1-3], where the type-II considered undamped
thermo-elastic waves in an elastic material, model which is also named as the theory of thermo-elasticity with no energy
dissipation. The type-III model includes the type-I and type-II ones as special cases. The uniqueness of the solution to
the governing equations of the Green-Naghdi (GN) type-II model is presented in [4]. Chandrasekharaiah [5] analyzed
the one-dimensional problem related to thermal waves in the context of the Green-Naghdi model, using the Laplace
transform method. Othman and Song [6] extended the work and examined the influence of the magnetic field on the
reflected waves generated in a rotating medium in the context of thermo-elasticity of type II. Recently, some authors
discussed different type of problems [7-11].

Aoudi [12] studied the problem of a piezo-electric material with temperature-dependent elastic properties. In his
article, he used the heat conduction equation by Lord and Shulman [13], while the problem is assumed to be one-
dimensional. Recently, Fatemah [14] and Othman et al. [15] studied the problems related to the piezo-electric material
in the context of different heat theories. The analysis on the piezo-electric material in the context of Green-Naghdi
equations has never been done before. This work aims to analyze the response of the piezo-electric material during
the small deformation in the medium. Deformation in the medium produces heat that propagates through it and, to
study the conduction of heat waves, we have considered the GN theory. The harmonic wave solution is used to obtain
the analytical response of each wave propagating through the medium.

2 Basic equations

The basic equations for the selected material were presented in [12], while Hook’s law for the piezo-electric material is
represented by
0ij = Cijrierl — €ije By — BijT. (1)
The equation of motion can be represented as
Jij?j = pu7 (2)
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The piezo-electric material has no free charge, because of the Gauss’s equations and electric field relations,

D;; =0 (3)

D, = €jikE ikt €4 Ej + pi T, (4)

where E; = —¢ ; is the electric field and D; is the electric displacement. The heat conduction equation proposed by
Green and Naghdi [3] is

KijTij + KT ji = peeT + To[Bijihi; — pi.al, (5)

where T is the temperature of the medium above the reference temperature Ty, u;, 04, €51, Bi and e; are the com-
ponents of displacement vector, stress tensor, strain tensor, coupling constant and piezo-electric moduli, respectively,
mass density and dielectric moduli are represented by p and D;, the specific heat is C'g, K* and K are the thermal
conductivity and the material characteristic, respectively. The constitutive relations are

Oze = C11620 + C1362. —e31 B, — 517,
0.2 = C1364s + C33€., — e33E, — (357,
Oz = 2044620 — e15E,,

Dy = e15(u. +w )+ €11 E,

D, = e3iu , + ezzw .+ €33 B, + p3T.

3 Formulation

The half-space x3 > 0, with x3 pointing vertically into the medium, is chosen for analysis of the plane waves through
the medium. The Cartesian coordinate system is selected to show the mathematical representation of the problem.
The plane strain is represented as

T(x,zt), U= (x,z2,t) = (u,0,w), and ¢ =(x,z1).
The above basic equations become
Ciitze + Caati . + (Cr3 + Cag)w oz + (€31 + €15)0 22 — b1 T = pi,
(Caa + C13)U g + Craw g + C33W 5, + €150 00 + €330,z — BT, = pb,
KTy + K3T oo + KTy + K31 — pecT = To[Brrii g, + Bazth. — p3p,2],
D; ;=0
co(e1s Fe31)Upz + €15W ap + €33W 22— €11 Poa— €33 P2z +P3T . =0, (10

non-dimensionalizing the governing equation with the help of following variables:

* * T
2,2 = —(x,2), u,w — P Y u,w), T =—,
# =L W)= ) .
; _ Oij ’r_ I x
Uij_ﬁlToa 90 _€p(p7 U =w ta
D:
D= 2t 11
B1To (1)

* __ CeC _ wres: _ _
where W = G5 & = Lt 01 = (c11 + cr2)on + cizas, B3 = 2c13a1 + cz303.

The system of equations in non-dimensional form (removing prime for simplicity) is
U + 01U 22 + 02W 22 + 030 22 + 04T 5 = 51, (
02U 3z + 61W g0 + O6W 22 + 070 o + 050 22 + 08T, = 0510, (13
O9U,uz + 010W 2z + 011W 22 + 01290 20 + 0130 22 + 01471, = 0, (
015 4 + 6161 2z + 17T 2z + 618T 2o — T = [J190 5 + G20t 2 + 21 ], (
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where
(e31 + e15)pv2 —pv?
C44 (c13 + caa) 31 15)PUp Py
61 - 3 52 = ) 53 = 5 64 -
C11 C11 C11€33 C11
2 2 2
PYy C33 €150V, _/63pvp
55 - 5 66 = ) 07 = ) 0g =
c1 11 C11€33 cu B
2
(e15 + €31) €15 €33 — €11 pY,
dg = ) 0o = —, o =—, 012 =
C11 c11 c11 €33C11
— €33 pv> p3pv2 Kyw* Kaw*
Sig= ——L2 5=k ! E
13 — 14 — 5 5 PIR 16 — 2
€33C11 c11B eVp pcevy
Sim — K7 K3 BTy 5 B183To
17 — 9 18 — 2 19 2 2 20 B} 2
V2 peev? p2cev? p2cev?
p3B11y
021 = ”
pcew €33

4 Harmonic solution

Time harmonic wave solution is selected for each variable to analyze the harmonic behavior of waves propagating
through the medium,

[u,w, @, T)(z, z,t) = [u*,w*,go*,T*](z)ei“(””*Ct). (16)
with D = dd—z, c = “, the frequency w, the wave number a, and the amplitudes u*, w*, ¢* and T, the equations
become

(D% + Ay )u* 4 AsDw* + AsDp* + AT* =0, (17)
AsDu* + (D? + Ag)w* + (A7 + AgD?)¢* + AgDT* = 0, (18)
AyoDu* + (Agy + DHw* + (Arg + A13D?p* + A1, DT* =0, (19)
A15u* + A16Dw* + A17D(p* + (D2 + Als)T* = 0, (20)
where
(a2 - a2c265) ia(52 A2(53 A2(54
1 61 ) 2 61 ) 3 52 ) 4 52 )
1ady (261 — a®c?65) a7
Ay = —= Ag= ———"—— = Ap = ———
5 56 ) 6 56 ) 7 56 )
55 58 ia59 a 510
Ag = — Ag = — Ajg= — A =—
8 5 9 A 10 T 11 1t
a?é12 013 014 1adig
12 o1 B M Y7 51+ iachs ac),
020 . d21 .
A Ar = ——=2
16 (iac), 17 5re T iachis (iac),

- 518 + iacém

(a2617 — ia3cdys — ac?)
Aig = —

018 + iacdig

The non-trivial solution of eqs. (17)—(20) gives the following differential equation:

(Dm ~TIos+ ]I - [Io* + ][ 0* - H) {u, w*, ", T*} (2) = 0, (21)
1 2 3 4 5
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where
2 13 Na M5 6
]TI_ m’ ]5[_771’ ]g[_ m’ IZ[_m’ Ig[_ m
Ay = Ay + Ags, Ay = AgArs — A1 Ass, Az = AgA16 — AsAss,
Ay = A7 Ay — A3Ass, A5 = AyAs — A1 Ay, Ag = Ay — Az Ay,
A7 = Ay, Ag = A4Az, Ag = AyAg — AgAs A1 = AyArg — A1 Awy,
Ay = Ay — Az Ay, Ao = Ay, A1z = A13A4 — AzAyy
A1y = AgAso, Ay = —A11 Ag + Ag A, Mg = —AgAig + As Ay — AgAyg + A7 Awy,
A7 = A5y — Aoz, Ag = —Ag A1z + Ag Ay,
A9 = —Ag A1y — A7 Ay3 + AgAy2 + AgA1r Agg = —A7 A1y + Ag s,
Agy = Ayy + A14As, Agg = Ayg + A1 A1y — Az Ayo — A3Ang,
Aoz = — A1 A1g + A Ayy — A3y, Aoy = Az Ay, Ags = A13A5 — AzAqy,
Agg = —A13A3 + Ao A1y — Asyo + Ay Ary, Aoy = —A3A14 + AgAya.
n = AisAos + A1g Aoy, ne = A15 Ao + A1 Aas + A1g oo + A1g9 Aoy,
n3 = A5 17 + A Aag + A17 95 — A1g Aoz + ArgAaa + Azg Aoy,
N = Nie A7 + A7 Ao6 — A1g Aoy — A1g Aoz + AggAaa, ns = A7 Aoy — A1gAag — Ao Aas,
N6 = —Az0A24.

Equation (21), in factorized form, reads
5

> (D* =& ur(z) = 0.

n=1

The characteristic equation of (22) can be written as
(W =€)V =)\ = &) (W - DV - &) =0.

By using the boundary conditions z — co on the solution, we get

5
* M. e—&n?
u = E n€ s
n=1

5
<)O* = Z HlnMne_gnzv
n=1
5
w* = Z fl2n]\4ne_£"z7
n=1

5
T* = Z fl3nj\4n€_£nz7
n=1
where &2 represents the roots of eq. (23), and the constitutive equations become

5
* —&€nz
o § Hyp M, e 57,
n=1
5
* —&nz
P § Hyp M e 57,
n=1
5
* —&nz
P § Hegp M, e 57,
n=1
5
* —&nz
D =§ Hypp M,y e 57,
n=1

5
D: = Z HSnMne_Enzv
n=1

301

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(31)

(32)
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where
Hy — E N5+ E3 Mg + En i
" Mg + 2 A0 + Ao
oy — (—A1a&) + &ndro) — (€ i + Arg) Hin
" €2 A11 + Avo ’
1
Hap = 7= [As& Hn + AsénHzn = (6 + A1),

Hyp = (11 — &EnraHa — &rsHyy — Hag)

Hsn =14 — §ursHoy — §H1i — re Hsi,

Hgn = r7Ha — 188§n + 19 H3p,

Hry = —r10&n + r11Hop — 112 Hip,

Hgp = 113 — r1aénHop + 1156 Hip + 116 H3p,

Ciiia C13 €31 Cizia Cs3

r = ) y 2= -—45—, 13=—, Ta= ) y T's = 55—,
vpp vpp €33 vpp P
taes €15 taes €11 ta

9 = y Two=—">%, Tn=—%5—, T2= I e
€33 UppP UpP €33

5 Boundary conditions

The boundary conditions, assumed on the surface z = 0, are the following:

1) Mechanical boundary conditions.

A periodic force with magnitude f; is acting vertically into the medium,

0:2(x,0,t) = — fT expia(z — ct),
The tangential stress is assumed to be negligible
022(2,0,t) = 0.

2) Thermal boundary conditions.

Page 5 of 11

— B3 _ Cyia e Cuy
6= — = 8= 5
B vpp vpp
€31ia €3 S
—= 15=—— 6= -
v2p v2p’ ess B1
Ozs(x,0,t) = 0. (33)

(34)

Before any deformation, the medium is assumed to be in the state of equilibrium without any source of heat supply:

T=0.
3) The normal component of the electric field is assumed to be zero:
Iy
r_o
0z ’

(35)

where f{ is constant. Using eq. (24) in (26), we can obtain the following relations:

5
> HsnM, =—fi,
n=1

5
Z H4nMn = 07
nzl
> Hgu M, =0,
nzl
> Hs,M, =0,
n=1

5
n=1

(40)

(41)
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Fig. 1. Temperature distribution function.
solving egs. (37)—(41) for M,, (n=1,...,5), as follows:
M, Hs, Hsy Hss Hsi Hss \ —f
My Hy  Hypy Hys Hyy Hys 0
Ms; | = | Her Hea Hgzs Hes Hes 0 (42)
My Hsy  Hzy Hszz Hzy Hss 0
Ms §1H11 §oH1o §3H13 §aH14 E5Has 0

6 Discussion

The numerical problem is solved for a particular material, cadmium selenide [7], and results are obtained and repre-
sented graphically:

c11 = 7.41 x 101°Nm~—2, c12 = 4.52 x 101°Nm 2,
c13 = 3.93 x 10" Nm 2, 33 = 8.36 x 10 Nm 2,
caq = 1.32 x 10'°° Nm—2, T, = 298K,

p=5504Kgm™3, e13 = —0.160Cm™ 2,
e33 =0.347Cm ™2, e15 = —0.138 Cm 2,
B =0.621 x 10° Nk~ - m~2, Bs =0.551 x 10 NK~! . m~2,
p3=—2.94x107°CK~! . m2, Ki=K;3=9Wm™ ' K
Ki=K;=09Wm ' - K €11=8.26 x 107" C2N"1. m~2
€33 =9.03 x 10711 C2N"1 . m2, C.=260J -Kg 'K L

The computations were carried out for the non-dimensional form of the field variables against the vertical component
of distance during ¢ = 0.1 and x = 1.5.

Figure 1 presents the curves for the non-dimensional temperature distribution function against vertical distance
for different Green-Naghdi theories, i.e. the type-II and type-III models. From graphical observation, it is found that
the absolute amplitude of the temperature distribution function in the context of GN-III is lower as compared to that
found in GN-II, indicating that the energy dissipation has a decreasing effect on the heat waves propagating along the
depth of the medium. Both curves converge to zero as the distance from surface z = 0 increases.
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Fig. 3. Vertical component of normal stress distribution.

The graphical analysis of the horizontal component of the stress distribution function against the depth of the
medium is shown in fig. 2. It can be seen that the curves without energy dissipation have a higher amplitude for
the non-dimensional variable as compared to the curves with energy dissipation. Starting point for both curves is the
same, which satisfies the boundary condition. All curves converge to zero as the vertical distance from the surface
increases.

Figure 3 gives the graphical representation of the vertical component of the non-dimensional stress distribution
function. It is found that the dissipation has a decreasing effect on the absolute amplitude of the normal stress o, .
From observation of the figure, it is seen that the greater is the distance from the surface of the medium the lower is
the effect of energy dissipation.

The horizontal component of the displacement distribution function is presented in fig. 4. The amplitude of waves
generated through the type-II theory presents higher curves as compared to those obtained for the type-III one.
Initially, the absolute amplitude increases at 0 < z < 1.7 and it decreases for z > 1.7. Finally, all curves converge to
Zero.

The vertical component of the displacement distribution function (fig. 5) has different starting points and has a
very slow rate of convergence toward zero. Like the curves in the other figures, the amplitude value in the case of
energy dissipation is less than the amplitude in the case without energy dissipation.

Figures 6-11 show the 3D curves for each field variable. From these curves it is clear that the curves will propagate
harmonically along the horizontal component of the medium while they will damp out along the vertical component
of the distance from the surface of the medium.
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Fig. 11. 3D displacement distribution function.

7 Conclusion

By using the above analysis and graphical representations the following conclusions can be drawn:

1) The initial point for each curve is the same, satisfying the physical assumption related to the boundary condition
of the problem.

2) The amplitude of each curve in each figure converges to zero as the distance from the surface z = 0 increases,
satisfying the condition of the surface waves.

3) According to the physics of the problem, energy dissipation reduces the temperature of the medium, which, in
turn, reduces the intensity of internal energies. Graphically, the amplitudes of the waves have a decreasing effect
on energy dissipation. This fully agrees with the physics of the problem.

4) The effect of energy dissipation is directly proportional to the distance from the surface z = 0 of the medium. At
higher values of the vertical distance both curves move with the same and small amplitude.

5) From the set of 3D curves it is observed that the horizontal distance also plays a very important role in the
propagation of waves. In all cases the curves are of normal mode form so that their propagation abilities and
properties could be studied.
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