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Abstract. The concept of thermo-elasticity proposed by Green and Naghdi is employed to study the plane
harmonic waves through a piezo-electric thermo-elastic medium. An analytical technique of normal modes
is adopted to find the exact solution of the problem. The theoretical results obtained are represented
graphically for the particular material. It is found that energy dissipation reduces the amplitude of waves
propagating through the medium. The results fully agree with physical interpretation of the problem.

1 Introduction

Piezo-electric materials are used to transduce electrical and mechanical energy. Wave propagation is one of the most
realistic models of piezo-electric and elastic solids, which have been extensively used in many engineering and industrial
applications, such as sensors, actuators, intelligent structures, radio, and computer technology and ultrasonic.

The models of heat propagation were proposed by Green and Naghdi [1–3], where the type-II considered undamped
thermo-elastic waves in an elastic material, model which is also named as the theory of thermo-elasticity with no energy
dissipation. The type-III model includes the type-I and type-II ones as special cases. The uniqueness of the solution to
the governing equations of the Green-Naghdi (GN) type-II model is presented in [4]. Chandrasekharaiah [5] analyzed
the one-dimensional problem related to thermal waves in the context of the Green-Naghdi model, using the Laplace
transform method. Othman and Song [6] extended the work and examined the influence of the magnetic field on the
reflected waves generated in a rotating medium in the context of thermo-elasticity of type II. Recently, some authors
discussed different type of problems [7–11].

Aoudi [12] studied the problem of a piezo-electric material with temperature-dependent elastic properties. In his
article, he used the heat conduction equation by Lord and Shulman [13], while the problem is assumed to be one-
dimensional. Recently, Fatemah [14] and Othman et al. [15] studied the problems related to the piezo-electric material
in the context of different heat theories. The analysis on the piezo-electric material in the context of Green-Naghdi
equations has never been done before. This work aims to analyze the response of the piezo-electric material during
the small deformation in the medium. Deformation in the medium produces heat that propagates through it and, to
study the conduction of heat waves, we have considered the GN theory. The harmonic wave solution is used to obtain
the analytical response of each wave propagating through the medium.

2 Basic equations

The basic equations for the selected material were presented in [12], while Hook’s law for the piezo-electric material is
represented by

σij = Cijklεkl − eijkEk − βijT. (1)

The equation of motion can be represented as
σij,j = ρüi. (2)
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The piezo-electric material has no free charge, because of the Gauss’s equations and electric field relations,

Di,i = 0 (3)
Di = ejikεjk+ ∈ij Ej + piT, (4)

where Ei = −ϕ,i is the electric field and Di is the electric displacement. The heat conduction equation proposed by
Green and Naghdi [3] is

Kij Ṫ,ij + K∗
ijT,ji = ρceT̈ + T◦[βij üi,j − piϕ̇,i], (5)

where T is the temperature of the medium above the reference temperature T0, ui, σil, eil, βil and eilk are the com-
ponents of displacement vector, stress tensor, strain tensor, coupling constant and piezo-electric moduli, respectively,
mass density and dielectric moduli are represented by ρ and Di, the specific heat is CE , K∗ and K are the thermal
conductivity and the material characteristic, respectively. The constitutive relations are

σxx = C11εxx + C13εzz − e31Ez − β1T,

σzz = C13εxx + C33εzz − e33Ez − β3T,

σzx = 2C44εzx − e15Ex,

Dx = e15(u,z + w,x)+ ∈11 Ex,

Dz = e31u,x + e33w,z+ ∈33 Ez + p3T.

3 Formulation

The half-space x3 ≥ 0, with x3 pointing vertically into the medium, is chosen for analysis of the plane waves through
the medium. The Cartesian coordinate system is selected to show the mathematical representation of the problem.
The plane strain is represented as

T (x, z, t), �u = (x, z, t) = (u, 0, w), and ϕ = (x, z, t).

The above basic equations become

C11u,xx + C44u,zz + (C13 + C44)w,xz + (e31 + e15)ϕ,xz − β1T,x = ρü, (6)

(C44 + C13)u,xz + C44w,xx + C33w,zz + e15ϕ,xx + e33ϕ,zz − β3T,z = ρẅ, (7)

K1Ṫ,xx + K3Ṫ,zz + K∗
1T,xx + K∗

3T,zz − ρceT̈ = T0[β11ü,x + β33ẅ,z − p3ϕ̇,z], (8)

∵ Di,i = 0 (9)

∴ (e15 + e31)u,xz + e15w,xx + e33w,zz− ∈11 ϕ,xx− ∈33 ϕ,zz + p3T,z = 0, (10)

non-dimensionalizing the governing equation with the help of following variables:

(x′, z′) =
ω∗

vp
(x, z), (u′, w′) =

ρω∗vp

β1T0
(u,w), T ′ =

T

T0
,

σ′
ij =

σij

β1T0
, ϕ′ = εpϕ, t′ = ω∗t,

D′
i =

Di

β1T0
, (11)

where ω∗ = cec11
K11

, εp = ω∗e33
vpβ1T0

, β1 = (c11 + c12)α1 + c13α3, β3 = 2c13α1 + c33α3.

The system of equations in non-dimensional form (removing prime for simplicity) is

u,xx + δ1u,zz + δ2w,xz + δ3ϕ,xz + δ4T,x = δ5ü, (12)

δ2u,xz + δ1w,xx + δ6w,zz + δ7ϕ,xx + δ5ϕ,zz + δ8T,z = δ5ẅ, (13)

δ9u,xz + δ10w,xx + δ11w,zz + δ12ϕ,xx + δ13ϕ,zz + δ14T,z = 0, (14)

δ15Ṫ,xx + δ16Ṫ,zz + δ17T,zz + δ18T,zz − T̈ = [δ19u̇,x + δ20ẇ,z + δ21ϕ̇,z], (15)
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where

δ1 =
c44

c11
, δ2 =

(c13 + c44)
c11

, δ3 =
(e31 + e15)ρv2

p

c11e33
, δ4 =

−ρv2
p

c11
,

δ5 =
ρv2

p

c11
, δ6 =

c33

c11
, δ7 =

e15ρv2
p

c11e33
, δ8 =

−β3ρv2
p

c11β1
,

δ9 =
(e15 + e31)

c11
, δ10 =

e15

c11
, δ11 =

e33

c11
, δ12 =

− ∈11 ρv2
p

e33c11
,

δ13 =
− ∈33 ρv2

p

e33c11
, δ14 =

p3ρv2
p

c11β1
, δ15 =

K1ω
∗

ρcev2
p

, δ16 =
K3ω

∗

ρcev2
p

,

δ17 =
K∗

1

ρcev2
p

, δ18 =
K∗

3

ρcev2
p

, δ19 =
β2

1T0

ρ2cev2
p

, δ20 =
β1β3T0

ρ2cev2
p

,

δ21 = − p3β1T0

ρceω∗e33
.

4 Harmonic solution

Time harmonic wave solution is selected for each variable to analyze the harmonic behavior of waves propagating
through the medium,

[u,w, ϕ, T ](x, z, t) = [u∗, w∗, ϕ∗, T ∗](z)eia(x−ct). (16)

with D = d
dz , c = ω

a , the frequency ω, the wave number a, and the amplitudes u∗, w∗, ϕ∗ and T ∗, the equations
become

(D2 + A1)u∗ + A2Dw∗ + A3Dϕ∗ + A4T
∗ = 0, (17)

A5Du∗ + (D2 + A6)w∗ + (A7 + A8D2)ϕ∗ + A9DT ∗ = 0, (18)

A10Du∗ + (A11 + D2)w∗ + (A12 + A13D2)ϕ∗ + A14DT ∗ = 0, (19)

A15u
∗ + A16Dw∗ + A17Dϕ∗ + (D2 + A18)T ∗ = 0, (20)

where

A1 = − (a2 − a2c2δ5)
δ1

, A2 =
iaδ2

δ1
, A3 =

A2δ3

δ2
, A4 =

A2δ4

δ2
,

A5 =
iaδ2

δ6
, A6 = − (a2δ1 − a2c2δ5)

δ6
, A7 = −a2δ7

δ6
,

A8 =
δ5

δ6
, A9 =

δ8

δ6
, A10 =

iaδ9

δ11
, A11 = −a2δ10

δ11
,

A12 = −a2δ12

δ11
, A13 =

δ13

δ11
, A14 =

δ14

δ11
, A15 =

iaδ19

δ18 + iacδ16
(iac),

A16 =
δ20

δ18 + iacδ16
(iac), A17 =

δ21

δ18 + iacδ16
(iac),

A18 = − (a2δ17 − ia3cδ15 − a2c2)
δ18 + iacδ16

.

The non-trivial solution of eqs. (17)–(20) gives the following differential equation:(
D10 −

∐
1

D8 +
∐
2

D6 −
∐
3

D4 +
∐
4

D2 −
∐
5

)
{u∗, w∗, ϕ∗, T ∗} (z) = 0, (21)
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where ∐
1

= −η2

η1
,

∐
2

=
η3

η1
,

∐
3

= −η4

η1
,

∐
4

=
η5

η1
,

∐
5

= −η6

η1

Λ1 = A1 + A18, Λ2 = A4A15 − A1A18, Λ3 = A4A16 − A2A18,

Λ4 = A17A4 − A3A18, Λ5 = A4A5 − A1A9, Λ6 = A4 − A2A9,

Λ7 = A4A16, Λ8 = A4A7, Λ9 = A4A8 − A9A3 Λ10 = A4A10 − A1A14,

Λ11 = A4 − A2A14, Λ12 = A4A11, Λ13 = A13A4 − A3A14

Λ14 = A4A12, Λ15 = −Λ11A9 + Λ6A14, Λ16 = −A9Λ12 + Λ5Λ11 − Λ6Λ10 + Λ7A14,

Λ17 = Λ5Λ12 − Λ10Λ7, Λ18 = −Λ6Λ13 + Λ9Λ11,

Λ19 = −Λ6Λ14 − Λ7Λ13 + Λ9Λ12 + Λ8Λ11 Λ20 = −Λ7Λ14 + Λ8Λ12,

Λ21 = Λ11 + A14A2, Λ22 = Λ12 + Λ1Λ11 − A2Λ10 − Λ3A14,

Λ23 = −Λ1Λ12 + Λ2Λ11 − Λ3Λ10, Λ24 = Λ2Λ12, Λ25 = Λ13A2 − A3Λ11,

Λ26 = −Λ13Λ3 + A2Λ14 − A3Λ12 + Λ4Λ11, Λ27 = −Λ3Λ14 + Λ4Λ12.

η1 = Λ15Λ25 + Λ18Λ21, η2 = Λ15Λ26 + Λ16Λ25 + Λ18Λ22 + Λ19Λ21,

η3 = Λ15Λ17 + Λ16Λ26 + Λ17Λ25 − Λ18Λ23 + Λ19Λ22 + Λ20Λ21,

η4 = Λ16Λ27 + Λ17Λ26 − Λ18Λ24 − Λ19Λ23 + Λ20Λ22, η5 = Λ17Λ27 − Λ19Λ24 − Λ20Λ23,

η6 = −Λ20Λ24.

Equation (21), in factorized form, reads
5∑

n=1

(D2 − ξ2
n)u∗(z) = 0. (22)

The characteristic equation of (22) can be written as

(λ2 − ξ2
1)(λ2 − ξ2

2)(λ2 − ξ2
3)(λ2 − ξ2

4)(λ2 − ξ2
5) = 0. (23)

By using the boundary conditions z → ∞ on the solution, we get

u∗ =
5∑

n=1

Mne−ξnz, (24)

ϕ∗ =
5∑

n=1

H1nMne−ξnz, (25)

w∗ =
5∑

n=1

H2nMne−ξnz, (26)

T ∗ =
5∑

n=1

H3nMne−ξnz, (27)

where ξ2
n represents the roots of eq. (23), and the constitutive equations become

σ∗
xx =

5∑
n=1

H4nMne−ξnz, (28)

σ∗
zz =

5∑
n=1

H5nMne−ξnz, (29)

σ∗
xz =

5∑
n=1

H6nMne−ξnz, (30)

D∗
x =

5∑
n=1

H7nMne−ξnz, (31)

D∗
z =

5∑
n=1

H8nMne−ξnz, (32)
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where

H1n =
ξ5
nΛ15 + ξ3

nΛ16 + ξnΛ17

ξ4
nΛ18 + ξ2

nΛ19 + Λ20
,

H2n =
(−A14ξ

3
n + ξnΛ10) − (ξ2

nΛ13 + Λ14)H1n

ξ2
nΛ11 + Λ12

,

H3n =
1

A4
[A3ξnH1n + A2ξnH2n − (ξ2

n + A1)],

H4n = (r1 − ξnr2H2i − ξir3H1i − H3i) ,

H5n = r4 − ξnr5H2i − ξnH1i − r6H3i,

H6n = r7H2i − r8ξn + r9H3n,

H7n = −r10ξn + r11H2n − r12H1n,

H8n = r13 − r14ξnH2n + r15ξnH1n + r16H3n,

r1 =
C11ia

v2
pρ

, r2 =
C13

v2
pρ

, r3 =
e31

e33
, r4 =

C13ia

v2
pρ

, r5 =
C33

v2
pρ

, r6 =
β3

β1
, r7 =

C44ia

v2
pρ

, r8 =
C44

v2
pρ

,

r9 =
iae15

e33
, r10 = − e15

v2
pρ

, r11 =
iae15

v2
pρ

, r12 =
∈11 ia

e33
, r13 =

e31ia

v2
pρ

, r14 =
e33

v2
pρ

, r15 =
∈33

e33
, r16 =

p3

β1
.

5 Boundary conditions

The boundary conditions, assumed on the surface z = 0, are the following:
1) Mechanical boundary conditions.

A periodic force with magnitude f∗
1 is acting vertically into the medium,

σzz(x, 0, t) = −f∗
1 exp ia(x − ct), σxx(x, 0, t) = 0. (33)

The tangential stress is assumed to be negligible

σxz(x, 0, t) = 0. (34)

2) Thermal boundary conditions.
Before any deformation, the medium is assumed to be in the state of equilibrium without any source of heat supply:

T = 0. (35)

3) The normal component of the electric field is assumed to be zero:

∂ϕ

∂z
= 0, (36)

where f∗
1 is constant. Using eq. (24) in (26), we can obtain the following relations:

5∑
n=1

H5nMn = −f1, (37)

5∑
n=1

H4nMn = 0, (38)

5∑
n=1

H6nMn = 0, (39)

5∑
n=1

H3nMn = 0, (40)

5∑
n=1

knH1nMn = 0; (41)
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Fig. 1. Temperature distribution function.

solving eqs. (37)–(41) for Mn (n = 1, . . . , 5), as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M1

M2

M3

M4

M5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H51 H52 H53 H54 H55

H41 H42 H43 H44 H45

H61 H62 H63 H64 H65

H31 H32 H33 H34 H35

ξ1H11 ξ2H12 ξ3H13 ξ4H14 ξ5H15

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎝

−f1

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (42)

6 Discussion

The numerical problem is solved for a particular material, cadmium selenide [7], and results are obtained and repre-
sented graphically:

c11 = 7.41 × 1010 Nm−2, c12 = 4.52 × 1010 Nm−2,

c13 = 3.93 × 1010 Nm−2, c33 = 8.36 × 1010 Nm−2,

c44 = 1.32 × 1010 Nm−2, T◦ = 298K,

ρ = 5504Kg m−3, e13 = −0.160Cm−2,

e33 = 0.347Cm−2, e15 = −0.138Cm−2,

β1 = 0.621 × 106 Nk−1 · m−2, β3 = 0.551 × 106 NK−1 · m−2,

p3 = −2.94 × 10−6 CK−1 · m−2, K1 = K3 = 9Wm−1 · K−1,

K∗
1 = K∗

3 = 0.9Wm−1 · K−1, ∈11= 8.26 × 10−11 C2N−1 · m−2,

∈33 = 9.03 × 10−11 C2N−1 · m−2, Ce = 260 J · Kg−1K−1.

The computations were carried out for the non-dimensional form of the field variables against the vertical component
of distance during t = 0.1 and x = 1.5.

Figure 1 presents the curves for the non-dimensional temperature distribution function against vertical distance
for different Green-Naghdi theories, i.e. the type-II and type-III models. From graphical observation, it is found that
the absolute amplitude of the temperature distribution function in the context of GN-III is lower as compared to that
found in GN-II, indicating that the energy dissipation has a decreasing effect on the heat waves propagating along the
depth of the medium. Both curves converge to zero as the distance from surface z = 0 increases.



Eur. Phys. J. Plus (2017) 132: 301 Page 7 of 11

Fig. 2. Horizontal component of the normal stress distribution.

Fig. 3. Vertical component of normal stress distribution.

The graphical analysis of the horizontal component of the stress distribution function against the depth of the
medium is shown in fig. 2. It can be seen that the curves without energy dissipation have a higher amplitude for
the non-dimensional variable as compared to the curves with energy dissipation. Starting point for both curves is the
same, which satisfies the boundary condition. All curves converge to zero as the vertical distance from the surface
increases.

Figure 3 gives the graphical representation of the vertical component of the non-dimensional stress distribution
function. It is found that the dissipation has a decreasing effect on the absolute amplitude of the normal stress σzz.
From observation of the figure, it is seen that the greater is the distance from the surface of the medium the lower is
the effect of energy dissipation.

The horizontal component of the displacement distribution function is presented in fig. 4. The amplitude of waves
generated through the type-II theory presents higher curves as compared to those obtained for the type-III one.
Initially, the absolute amplitude increases at 0 ≤ z ≤ 1.7 and it decreases for z > 1.7. Finally, all curves converge to
zero.

The vertical component of the displacement distribution function (fig. 5) has different starting points and has a
very slow rate of convergence toward zero. Like the curves in the other figures, the amplitude value in the case of
energy dissipation is less than the amplitude in the case without energy dissipation.

Figures 6–11 show the 3D curves for each field variable. From these curves it is clear that the curves will propagate
harmonically along the horizontal component of the medium while they will damp out along the vertical component
of the distance from the surface of the medium.
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Fig. 4. Horizontal component of the displacement distribution function.

Fig. 5. Vertical component of the displacement distribution function.

Fig. 6. 3D temperature distribution.
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Fig. 7. 3D normal stress distribution.

Fig. 8. 3D displacement distribution function.

Fig. 9. 3D temperature distribution.
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Fig. 10. 3D normal stress distribution.

Fig. 11. 3D displacement distribution function.

7 Conclusion

By using the above analysis and graphical representations the following conclusions can be drawn:

1) The initial point for each curve is the same, satisfying the physical assumption related to the boundary condition
of the problem.

2) The amplitude of each curve in each figure converges to zero as the distance from the surface z = 0 increases,
satisfying the condition of the surface waves.

3) According to the physics of the problem, energy dissipation reduces the temperature of the medium, which, in
turn, reduces the intensity of internal energies. Graphically, the amplitudes of the waves have a decreasing effect
on energy dissipation. This fully agrees with the physics of the problem.

4) The effect of energy dissipation is directly proportional to the distance from the surface z = 0 of the medium. At
higher values of the vertical distance both curves move with the same and small amplitude.

5) From the set of 3D curves it is observed that the horizontal distance also plays a very important role in the
propagation of waves. In all cases the curves are of normal mode form so that their propagation abilities and
properties could be studied.
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