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Abstract. The Faddeev-Watson-Lovelace equations, which are typically used for solving three-particle
scattering problems, are based on the assumption of target having one active electron while the other
electrons remain passive during the collision process. So, in the case of protons scattering from helium
or helium-like targets, in which there are two bound-state electrons, the passive electron has a static role
in the collision channel to be studied. In this work, we intend to assign a dynamic role to all the target
electrons, as they are physically active in the collision. By including an active role for the second electron
in proton-helium–like collisions, a new form of the Faddeev-Watson-Lovelace integral equations is needed,
in which there is no disconnected kernel. We consider the operators and the wave functions associated with
the electrons to obey the Pauli exclusion principle, as the electrons are indistinguishable. In addition, a
quasi-three-particle collision is assumed in the initial channel, where the electronic cloud is represented as
a single identity in the collision.

1 Introduction

Many different methods are available in the literature to study the electron capture or charge transfer cross sections [1–
13] for the collision of an atom by an ion. This process, in its simplest case, is a three-particle one. However, in general,
calculating the charge transfer cross section is a many-particle problem as the target is, at least, a two-particle system.
A number of methods have been devised to calculate the single electron capture cross section, including the continuum
distorted-wave (CDW) theory [5], the strong potential Born (SPB) approach [4,14], the distorted-wave Born (DWB)
method [7], a target continuum distorted-wave (TCDW) theory [8,15], the boundary-corrected first- and second-order
Born (B1B and B2B) approximations [9,16], and the impulse approximation [10], which was originally applied to
three-particle scattering problems but has now been extended to four-particle scattering problems [17–20].

The perturbative methods based on the Lippmann-Schwinger equation, LS, are devised for the quantum treatment
of the charge transfer cross section. The Lippmann-Schwinger integral equation includes a disconnected kernel, resulting
in an ambiguity in the solution for a scattering process. Faddeev [1] solved this problem by rearranging the expanded
terms in the LS equations. His approach to expanding the LS equation made the formalism by Watson [3] and
Lovelace [2] suitable to calculate physical scattering amplitudes, for processes such as a direct collision, breakup and
rearrangement processes. This method, known as Faddeev-Watson-Lovelace (FWL) formalism, is a fully quantum
mechanical one, where two-particle transition matrices are implemented for the expansion [1–3]. Another, common,
expansion is the Born approximation. Here each term of the Faddeev expansion contains an infinite number of terms
in a Born series describing a physical sub-reaction involved in the actual scattering process, and in principle giving
a full understanding for any reaction. For the electron capture process, Thomas [21] proposed a double scattering
mechanism which classically corresponds to a single term in the Faddeev three-particle expansion. Other possible
double-scattering mechanisms were considered by Shakeshaft [22] and Briggs [23], which described other terms in the
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Table 1. Interactions for the two-body channels of a three-particle interaction.

σ Arrangement I(σ) E(σ)

1 P + (TC) (TC) (PC), (PT )

2 T + (PC) (PC) (TC), (PT )

3 C + (PT ) (PT ) (TC), (PC)

second-order FWL terms of the electron transfer process. Although there are limitations in applying the fully quantum-
mechanical three-particle Faddeev formalism in an atomic collision system, it is in fact widely applied to calculate the
electron capture cross section for fast proton or positron scattering from atoms [6,24–26] or molecules [27,28]. There
is some pioneering work on the development of a Faddeev-type formalism to the four-particle scattering case [29–34].
However, the four-particle single charge exchange problem is typically still simplified and treated by the three-particle
FWL integral equations [25,26,35]. Usually, an active electron model is devised to study the charge transfer process
between the bare ions and a target comprising more than one electron, which is actually a many-particle problem of
more than three particles. This model converts from a many-body problem to a three-particle one by assuming there is
only one active electron in the target, and that the rest of the target or projectile can be represented as particles. The
spin of the electrons is neglected in these types of calculations, where the electrons are assumed to be distinguishable.

2 Fully spin-dependent collisions

For a fully quantum mechanical model based on a LS formalism, such as the four-particle FWL equation, it is
not acceptable to neglect the spin of the electrons. Here, we devise a four-particle FWL formalism, as introduced
previously [34], for a single charge transfer process in the collision of a bare ion (such as the proton) and a helium-like
atom but, now, without neglecting the spin of the electron. We symbolize the interaction as

H+ + He(1s2) → H(1s) + He+(1s) (1)

or
P + (T + e1 + e2) → (P + eP ) + (T + eT ), (2)

where P , T and e are the projectile, the target nucleus and the electrons, respectively. Further note that the electrons
on the right-hand side of the above have different indices as compared to those on the left-hand side of the reaction.
This is due to the fact that electrons are not distinguishable. eT and eP refer to the electron that remains bound to
the target and the electron transferred to the projectile, respectively, while 1 and 2 in e1 and e2 are just labels for the
electrons of the target in the initial channel.

We additionally note here, that, we are adopting the terminology used by Sloan [34]. Sloan makes correct use of
the particle and body interactions, where a body may include more than one particle. In a four-particle scattering
process, Sloan thus distinguishes four different sets of channels. The first set includes two-body channels of type 1+3,
which denotes that one particle is free. There are four channels of this sort, which are labeled by the free particles.
We note that in this scheme there are two different two-particle interactions, called internal and external. Internal
two-particle interactions are the types between the particles of the bound system, while the external two-particle
interactions are those between the free particle and each particle of the bound system. The second set of channels
contains three two-body channels of type 2+2, such as an atomic hydrogen-hydrogen interaction. We note that there
are seven two-body channels in total. The third set of channels is composed of six three-body channels of type 2+1+1,
in which a single pair is bound, while the other two are free, and this set is labeled by the bound pair. An example of
type 2+1+1, is the final channel for the ionization of a helium atom by a proton. Finally, there is a four-free-particle
channel. Thus, in this scheme, there are fourteen channels available in a general four-body problem. We note that,
for each particular channel σ, there are external, E(σ), and internal, I(σ), two-particle interactions. Those internal
and external two-particle interactions are shown in tables 1 and 2 for the three-particle and four-particle interactions,
respectively.

According to Sloan [34], a full four-particle T -matrix can be decomposed in the Faddeev manner as

T =
∑

i,j

Tji, (3)

where i and j are the initial and final channel labels, respectively, and

Tji = δjiVj + VjGVi (4)
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Table 2. The seven two-body channels and their internal interactions for a four-particle interaction.

σ Arrangement I(σ) E(σ)

1 P + (TeP eT ) (TeP ), (TeT ), (eP eT ) (PeP ), (PeT ), (PT )

2 T + (PeP eT ) (PeP ), (PeT ), (eP eT ) (TeP ), (TeT ), (PT )

3 eP + (PTeT ) (PT ), (PeT ), (TeT ) (PeP ), (TeP ), (eP eT )

4 eT + (PTeP ) (PT ), (PeP ), (TeP ) (eP eT ), (PeT ), (TeT )

5 (eP eT ) + (PT ) (eP eT ), (PT ) (PeT ), (TeT ), (PeP ), (TeP )

6 (PeT ) + (TeP ) (PeT ), (TeP ) (PeP ), (TeT ), (eP eT ), (PT )

7 (PeP ) + (TeT ) (PeP ), (TeT ) (PeT ), (TeP ), (eP eT ), (PT )

satisfies the Faddeev equations exactly, similarly to the three-particle case, as

Tji = δjitj +
∑

k �=j

tjG0Tki, (5)

where tj is the two-body T -matrix. Furthermore, G and G0 are the Green’s operators defined, respectively, as

G = (E − H0 − V + iε)−1 (6a)

and
G0 = (E − H0 + iε)−1

, (6b)

corresponding to the four-particle kinetic operator H0, the total four-particle energy E, and the total potential operator
V =

∑
i Vi-where the sum is over all six pairs in the four-particle system. However, in accordance with the three-

particle case, the iterated kernel of the Faddeev equations still contains disconnected pieces corresponding with internal
scattering interactions in various two-body channels. By introducing Mσ =

∑
j,i∈I(σ) Mσ

ji, for σ ranging over the seven
two-body channels, the disconnected kernel problem is solved. This follows as the Faddeev equations are satisfied by
Mσ

ji as

Mσ
ji = δjitj +

∑

k �=j

tjG0M
σ
ki, (7)

where i, j and k are the channel labels and members of I(σ). Sloan explained that the multi-scattering interpretation
of Mσ

ji is that it represents the sum of all internal multiple scattering in the two-body channels, σ, beginning with pair
i, while ending with pair j. The part of Mσ

ji that is connected with respect to the internal motion in channel σ is

M̄σ
ji = Mσ

ji − δjitj =
∑

k �=j

tjG0M
σ
ki for i, j and k ∈ I(σ), (8)

while the corresponding operator with no restriction on the first interaction is

M̄σ
j− =

∑

i∈I(σ)

M̄σ
ji, for j ∈ I(σ). (9a)

We note that the second order of M̄σ
ji is

M̄σ
ji = tjG0ti(1 − δji), for i and j ∈ I(σ). (9b)

Finally, as there are no δ functions in the kernel, after the single iteration, it was shown that Tji could be written as

Tji = δjitj +
∑

σ

M̄σ
ji +

∑

σ

∑

k∈E(σ)

M̄σ
j G0Tki, (10)

where the disconnected pieces problem in the iterated kernel is now solved. Therefore, the four-body FWL equations
for the post (+) and prior (−) forms are obtained as

U±
βα = (1 − δβα)

{
Vβ − Vβα

Vα − Vβα

}
+

∑

j∈E(β)

∑

i∈E(α)

Tji, (11)
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where α and β are the initial and final channels, respectively. Here, for single charge transfer, the α and β channels
refer to the interactions, within the two-body types of the form H+ + He and H + He+, respectively. Additionally, Vα

denotes external interactions in the α channel, while Vβα denotes the interactions that are external to both the α and
β channels.

Electrons are fermions of spin 1/2 and so they obey the Pauli exclusion principle as they are indistinguishable.
Substituting the electronic cloud identity for the two electrons in atomic helium, we denote the external interactions
E(α) in the initial channel as being (PC) and (PT ) for the projectile-electronic cloud and the projectile-nucleus
interaction, respectively. Here P , T and C stand for the projectile, the target’s nucleus and the target’s electronic
cloud, respectively. The relevant internal and external interactions for a three-particle interaction, which is assumed
in the initial channel, are tabulated in table 1.

For a single charge transfer process, the external interactions, E(β), in the final channel are given as (PT ), (PeP ),
(TeT ) and (eT eP ). Note that we have made no reference to this for electron 1 or 2 in order to implement their
indistinguishability. In addition the external interactions in the α channel, and those in both α and β channels, are
given by Vα = {VPT , VPC} and Vβα = {VPT }, respectively. Thus, making use of relation (11), the terms in the prior
form of the FWL transition operators are

U−
βα = VPC + TPeT ,PC + TTeP,PC + TeP eT ,PC + TPT,PC + TPeT ,PT + TTeP,PT + TeP eT ,PT + TPT,PT . (12)

In order to expand the FWL terms in relation (12), in terms of the two-body transition matrices, one needs to include
all (seven) internal interactions of the two-body channels represented by upper index, σ, which are tabulated in table 2.
It is apparent that not all the possible arrangements in table 2 could be described physically, and that they have only
mathematical significance which, in practice, contributes minutely in the calculated cross sections.

Making use of Sloan’s [34] definition for the particle and body interaction, we will include the electron spin in the
calculation only when the target has more than one electron. When a proton interacts with a helium atom, the initial
two-body interaction is a 1+3 channel. In our approach we will divide this two-body channel into two interactions.
The first represents the proton interaction with the helium nucleus (a particle-particle interaction), while the second
is the interaction of the proton with the electron cloud (a particle-body interaction instead of the two interactions of
a proton with each electron).

By considering separately the proton-electron cloud interaction, this enables us to include the electron spin into the
formalism and guarantee the Pauli exclusion principle. Therefore, the two-body operators for the interaction between
a proton, P , and the electron cloud, C, will be

tPC =
1
2
(tPeP

+ tPeT
) (13)

and
VPC =

1
2
(VPeP

+ VPeT
), (14)

where rather than referring to the bound electrons as electron 1 and electron 2, we have used the notation eP and
eT to denote the electron transferred to the proton (projectile) and the electron left bonded with the helium atom
(target), respectively. Additionally, this enables us to formulate a proper connection between the initial channel and
the final channel. Making use of the definition

Tj,PC =
1
2
(Tj,PeP

+ Tj,PeT
), (15)

which corresponds with the Pauli exclusion principle, we can expand Tji, in relation with the two-body interaction
matrices, ti. Making use of the operator relations (14) and (15), the prior form of the FWL amplitude (12) is written as

U−
βα =

1
2

(VPeP
+ VPeT

) + TPeT ,PT + TTeP,PT + TeP eT ,PT + TPT,PT

+
1
2

(TTeP ,PeP
+ TTeP ,PeT

+ TPeT ,PeP
+ TPeT ,PeT

)

+
1
2

(TeP eT ,PeP
+ TeP eT ,PeT

+ TPT,PeP
+ TPT,PeT

) . (16)

Employing table 2, we can now expand all the terms of the prior form of the FWL transition operators of eq. (12).
The first term, TPeT ,PeT

, is found to be

TPeT ,PeT
= δPeT ,PeT

tPeT
+

∑

σ

M̄σ
PeT ,PeT

= tPeT
+ M̄

(2)
PeT ,PeT

+ M̄
(3)
PeT ,PeT

+ M̄
(6)
PeT ,PeT

= tPeT
, (17)
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for the final channel when charge exchange between the proton and atomic helium is to be considered. The next terms
to be found are

TTeP ,PeT
= δTeP ,PeT

tPeT
+

∑

σ

M̄σ
TeP ,PeT

= tTeP
G0 tPeT

, (18)

TPT,PeT
= δPT,PeT

tPeT
+

∑

σ

M̄σ
PT,PeT

= tPT G0tPeT
, (19)

TeP eT ,PeT
= δeP eT ,PeT

tPeT
+

∑

σ

M̄σ
eP eT ,PeT

= teP eT
G0 tPeT

, (20)

TPeT ,PeP
= δPeT ,PeP

tPeP
+

∑

σ

M̄σ
PeT ,PeP

= tPeT
G0 tPeP

, (21)

TTeP ,PeP
= δTeP ,PeP

tPeP
+

∑

σ

M̄σ
TeP ,PeP

= tTeP
G0 tPeP

, (22)

TPT,PeP
= δPT,PeP

tPeP
+

∑

σ

M̄σ
PT,PeP

= tPT G0 tPeP
, (23)

TeP eT ,PeP
= δeP eT ,PeP

tPeP
+

∑

σ

M̄σ
eP eT ,PeP

= teP eT
G0 tPeP

, (24)

TPeT ,PT = δPeT ,PT tPT +
∑

σ

M̄σ
PeT ,PT = tPeT

G0 tPT , (25)

TPeP ,PT = δTep,PT tPT +
∑

σ

M̄σ
Tep,PT = tTep

G0 tPT , (26)

TPT,PT = δPT,PT tPT +
∑

σ

M̄σ
PT,PT = tPT (27)

and
TeP eT ,PT = δeP eT ,PT tPT +

∑

σ

M̄σ
eP eT ,PT = teP eT

G0tPT . (28)

Therefore, the prior form of the FWL transition operators in terms of the two-particle transition matrices are

U−
βα =

1
2
(VPeP

+ VPeT
+ tPeT

) + tPT + tTeP
G0tPT + teP eT

G0tPT + tPeT
G0tPT

+
1
2
(tTeP

+ tPeT
+ teP eT

+ tPT )G0tPeP
+

1
2
(tTeP

+ teP eT
+ tPT )G0tPeT

, (29)

where the Pauli exclusion principle is applied in a four-particle interaction. Details for the derivation of eqs. (17)
to (28) are given in the Supplementary Material. Making use of the relation

tij = Vij + VijG0tij , (30)

the prior form of the FWL transition operators now takes the form

U−
βα =

1
2
(VPeP

+ VPeT
+ VPeT

) + VPT +
1
2
(tTeP

+ tPeT
+ teP eT

+ tPT )G0tPeP

+
1
2
(VPeT

+ tTeP
+ teP eT

+ tPT )G0 tPeT
+ (tTeP

+ teP eT
+ tPeT

+ VPT )G0tPT . (31)

We call this method a quasi-four-particle treatment, because, in the initial channel, the electronic cloud was assumed to
be a single identity (particle), i.e. a three-particle system was assumed. However, in the final channel, each electron was
represented by a different electronic cloud and therefore, a four-particle system was taken into account. Nonetheless,
this classification of the particles does not affect the kernel of the equations and they are connected.

3 Results and conclusion

We now find the first-order FWL transition amplitude, which is similar to the first Born amplitude, as

AS
FWL =

〈
ψf

∣∣∣∣
1
2
VPeP

+ VPeT
+ VPT

∣∣∣∣ ψi

〉
, (32)

where the upper index S refers to the spin dependence of the operators. In order to simplify this first-order FWL
transition amplitude, we should define the wave functions both before and after the collision.
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Fig. 1. Jacobi coordinates used to define the wave functions for (a) the initial state and (b) the final state.

The wave functions in the initial and the final channel should be written according to the Pauli exclusion principle,
i.e. the wave functions should be eigen-functions of the exchange operator. Note that the final comparison between
the two treatments will be discussed once the transition amplitudes are simplified.

Applying the Pauli exclusion principle, the initial and the final asymptotic states in position space are

|ψi〉 = ψi(�r1, �r2, �Ri) = 〈�r1, �r2, �Ri|i〉 = φHe(�r1T , �r2T ) exp[i �Ki · �Ri]

= φH1s(�r1T )φH1s(�r2T ) exp[i �Ki · �Ri], (33)

and

|ψf 〉 = ψf (�r1, �r2, �Rf ) = 〈�r1, �r2, �Rf |f〉

=
1√
A

(1 ± P12)φHe+(�r2T )φH1s(�r1P ) exp[i �Kf1 · �Rf1 ], (34)

respectively, and 1√
A

is a normalization coefficient. Note that, in eq. (34), the plus and minus signs denote the singlet
and triplet states, respectively. ΦHe(�r1T , �r2T ), φHe+(�r ), φH1s(�r1P ) and φH1s(�r2T ) are, in turn, the wave functions for
the target atom, singly ionized helium, the hydrogenic wave function formed by the projectile after the collision and
the hydrogenic wave function used to define the target atom. The position vectors during the collision are defined by
the Jacobi coordinate as shown in fig 1.

Let us now define Ae1 , Ae2 and APT as

Ae1 =
1√
A
〈φHe+(�r2T )φH(�r1P ) exp(i �Kf1 · �Rf1)|VPe1 |φH1s(�r1T )φH1s(�r2T ) exp(i �Ki · �Ri)〉, (35)

Ae2 =
1√
A
〈φHe+(�r2T )φH(�r1P ) exp(i �Kf1 · �Rf1)|VPe2 |φH1s(�r1T )φH1s(�r2T ) exp(i �Ki · �Ri)〉 (36)

and
APT =

1√
A
〈φHe+(�r2T )φH(�r1P ) exp(i �Kf1 · �Rf1)|VPT |φH1s(�r1T )φH1s(�r2T ) exp(i �Ki · �Ri)〉, (37)

respectively, to make the coming equations tractable. Note that fig. 2 shows the angular dependence of the amplitudes
defined by eqs. (35) to (37). These amplitudes were calculated on a desktop computer and it is relatively straightforward
to combine and utilize them (see later) to calculate the cross sections for the scattering process in question. That, in
turn, could in principle be compared against relevant results from other theory or measurement.
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Fig. 2. The angular dependence of the transition amplitudes Ae1, Ae2 and APT , where the Pauli exclusion principle was applied
to the operators. The impact energy is 150 keV for open circles and 7.42 MeV for full circles. Atomic units are chosen.

Now, the FWL transition amplitude, where the Pauli exclusion principle is applied to the operators and wave
functions, AS

FWL, is

AS
FWL =

1
2

{
3Ae1 + 3Ae2 + 4APT singlet
Ae2 − Ae1 triplet .

(38)

To derive eq. (38), it was assumed that eT was labeled as electron no. 1 although the result would be the same if eT

was labeled as electron 2. It was also made the correct assumption that P12VPT = VPT .
We next define the electronic, AS

e , and the nuclear, AS
n , interaction amplitudes which, respectively, are

AS
e =

1
2
AS

e

{
3Ae1 + 3Ae2 singlet
Ae2 − Ae1 triplet

(39)

and

AS
n = 2

{
APT singlet
0 triplet .

(40)

The results of the current calculations are plotted in fig. 2, at scattering angles of less than 0.8mrad and for 7.42MeV
(high-energy regime) and 150 keV (medium-energy regime) proton impact energies. The two terms, Ae1 and APT ,
decrease by four orders of magnitude for 7.42MeV proton impact energy as compared with those at 150 keV impact
energy, while the term Ae2 decreases by six orders of magnitude for similar conditions.

Making use of Sloan’s interpretation [34] of the four-particle interaction, but neglecting the Pauli exclusion principle
for the operators, the post form of FWL transition operators is

U−
βα = VPe1 + VPe2 + VPT + (tTe1 + tPe2 + te1e2 + tPT )G0tPe1

+ (VPe2 + tTe1 + te1e2 + tPT )G0tPe2 + (tPe2 + te2e1 + tTe1 + VPT )G0tPT , (41)

which is expressed in terms of the two particle transition matrices and the interaction potential. The difference between
relations (31) and (41) is a consequence of taking into account the Pauli exclusion principle for the operators, and
making the assumption that there is an electronic cloud both before and after the collision. However, the difference
between the operators of eqs. (31) and (41) is not the whole difference between the two treatments.

One can assume the electronic transition amplitude is to be calculated from the terms VPe1 + VPe2 . Therefore,
making use of the same wave functions for the initial and final states, the electronic transition amplitude for the first
two terms of eq. (41) takes the form

Ae = 〈ψf |VPe1 + VPe2 |ψi〉 = 2

{
Ae2 + Ae1 singlet
0 triplet ,

(42)

where the + and − signs are again for the singlet and triplet cases. The electronic amplitude, eq. (42), does not agree
with the result of eq. (38) showing the effect of Pauli exclusion principle being applied to the operators. Note that,
here, the spin of the electrons is taken into account for the wavefunctions in both cases.

We can finally calculate the first-order nuclear amplitude term for this case, taking into account the interactions
VPT , as

An = 〈ψf |VPT |ψi〉 = 2

{
APT singlet
0 triplet ,

(43)

and comparing it with the nuclear term, eq. (40), one concludes that the nuclear term does not change in this model.
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Finally, the total amplitude will be

AFWL = Ae + An = 2

{
Ae2 + Ae1 + APT singlet
0 triplet .

(44)

4 Concluding remarks

In this work, we demonstrated the importance of employing a full quantum treatment in scattering problems, such as
charge transfer reactions. A comparison between eqs. (38) and (44) is a consequence of applying the Pauli exclusion
principle to the operators. The results of the present calculation are given in fig. 2. The results shown are for two
impact energies of 7.42MeV and 150 keV, where the former is considered to be in the high-energy regime and the
latter in the medium-energy regime. The present work is mainly applicable in the high-energy regime, as the incoming
proton is assumed to be a plane wave. As one moves to lower energies, this assumption tends not to be so valid. The
Coulomb wave describes an incoming proton better for medium energies.

The differences presented here are just for the first-order terms in the LS expansion. This work will now proceed
by applying our method up to the second-order terms, and from there to calculate the cross sections to compare with
the existing theoretical and experimental results. By including the second-order terms we would expect to find more
accurate values for those cross sections.

The authors would like to acknowledge the support of the Research Department of the Graduate University for Advanced Tech-
nology, through their grant program. One of us (MJB), also thanks the Australian Research Council for some financial support.
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