
DOI 10.1140/epjp/i2017-11527-4

Regular Article

Eur. Phys. J. Plus (2017) 132: 259 THE EUROPEAN
PHYSICAL JOURNAL PLUS

Solitons and other solutions to nonlinear Schrödinger equation
with fourth-order dispersion and dual power law nonlinearity
using several different techniques

Elsayed M.E. Zayed1,a, Abdul-Ghani Al-Nowehy2,b, and Mona E.M. Elshater1,c

1 Mathematics Department, Faculty of Sciences, Zagazig University, P. O. Box 44519, Zagazig, Egypt
2 Mathematics Department, Faculty of Education and Science, Taiz University, Taiz, Yemen

Received: 17 March 2017
Published online: 13 June 2017 – c© Società Italiana di Fisica / Springer-Verlag 2017

Abstract. The (G′/G)-expansion method, the improved Sub-ODE method, the extended auxiliary equation
method, the new mapping method and the Jacobi elliptic function method are applied in this paper for
finding many new exact solutions including Jacobi elliptic solutions, solitary solutions, singular solitary
solutions, trigonometric function solutions and other solutions to the nonlinear Schrödinger equation with
fourth-order dispersion and dual power law nonlinearity whose balance number is not positive integer.
The used methods present a wider applicability for handling the nonlinear partial differential equations.
A comparison of our new results with the well-known results is made. Also, we compare our results with
each other yielding from these five integration tools.

1 Introduction

The exact solutions of nonlinear partial differential equations (PDEs) are very important in studying the nonlinear
physical phenomena. These phenomena appear in various scientific and engineering fields, such as fluid mechanics,
plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and geochemistry.
These exact solutions can be found using many powerful methods, such as the inverse scattering method [1], the
tanh function method [2–5], the Hirota bilinear transform method [6], the truncated Painlevé expansion method [7–
10], the Bäcklund transform method [11,12], the exp-function method [13–17], the Jacobi elliptic function expan-
sion method [18–20], the generalized Riccati equation method [21–23], the (G′/G)-expansion method [24–34], the
(G′/G, 1/G)-expansion method [35–37], the Sub-ODE method [38,39], the extended auxiliary equation method [40,
41], the improved Sub-ODE method [42], the new mapping method [43], the soliton ansatz method [44–50], and so on.

The objective of this paper is to employ the (G′/G)-expansion method, the improved Sub-ODE method, the ex-
tended auxiliary equation method, the new mapping method and the Jacobi elliptic function method to construct many
exact solutions including Jacobi elliptic solutions, solitons and other solutions of the following nonlinear Schrödinger
equation with fourth-order dispersion and dual power law nonlinearity [44,51–53]:

iqt + aqxx − bqxxxx + c
(
|q|2m + k1|q|4m

)
q = 0, i =

√
−1, (1)

which describes the propagation of optical pulse in a medium, and q(x, t) is the slowly varying envelope of the
electromagnetic field, where a, b, c are real numbers. If b = 0, eq. (1) reduces to the nonlinear Schrödinger equation
with dual power law nonlinearity. In addition if m = 1, eq. (1) reduces to parabolic law nonlinearity, which has been
discussed in [54] using two direct algebraic methods. The coefficient of a represents the group velocity dispersion
(GVD), while the coefficient of c represents the self-phase modulation (SPM) with dual power law nonlinearity. The
constant k1 binds the two nonlinear terms and the exponent m governs the power law. Also, the coefficients of b are
the fourth-order dispersion terms. Equation (1) has been discussed in [44] using the soliton ansatz method and in [53]
using two methods which are different from the five methods used in this paper. Also, eq. (1) has been solved in [50]
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in the special case m = 1, k1 = 0 using the soliton ansatz method. To our knowledge, eq. (1) has not been discussed
elsewhere using the five mathematical methods mentioned above.

This paper is organized as follows: in sect. 2, we apply our proposed five methods to solve eq. (1). In sect. 3, we
present some graphical representations for some solutions of eq. (1). In sect. 4, conclusions are obtained.

2 Applications

It is to be noted that eq. (1) is not integrable by the classical method of inverse scattering transform since it will fail
the Painlevé test of integrability [55]. It is, however, still possible to obtain a closed 1-soliton solution to eq. (1) given
by the following phase-amplitude format:

q(x, t) = φ(ξ)eiQ(x,t), (2)

where φ(ξ) is the amplitude portion which is a real function of ξ, while Q(x, t) is the phase portion of the soliton. It
is assumed that ξ and Q(x, t) are given by

ξ = x − υt, (3)

and
Q(x, t) = −kx + ωt + θ, (4)

where υ, k, ω, θ are constants, such that υ is the velocity of the soliton, k is the frequency of the soliton, ω is the wave
number and θ is a phase constant.

Substituting (2) into eq. (1) and separating the real and imaginary parts, we get

Re : −
(
ω + ak2 + bk4

)
φ +

(
a + 6bk2

)
φ′′ − bφ′′′′ + c

(
φ2m+1 + k1φ

4m+1
)

= 0, (5)

Im : −
(
υ + 2ak + 4bk3

)
φ′ + 4bkφ′′′ = 0. (6)

Differentiating (6) and substituting the resulting equation in (5), we have the nonlinear ODE:

a1φ
′′ + b1φ + c1

(
φ2m+1 + k1φ

4m+1
)

= 0, (7)

where a1, b1 and c1 are given by

a1 = 2ak + 20bk3 − υ,

b1 = −4k
(
ω + ak2 + bk4

)
,

c1 = 4kc. (8)

2.1 On solving eq. (1) using the (G′/G)-expansion method

According to the (G′/G)-expansion method [31–34], we assume that eq. (7) has the formal solution:

φ(ξ) = A

[
G′(ξ)
G(ξ)

]N

, (9)

where A is a constant to be determined and G(ξ) satisfied the ODE:

G′′(ξ) + λG′(ξ) + μG(ξ) = 0, (10)

where λ and μ are constants. The power N in eq. (9) can be determined by balancing φ′′ with φ4m+1 in eq. (7) to get
N = 1

2m .
Substituting (9) along with eq. (10) into eq. (7), collecting all the coefficients of power (G′/G) and setting them

to zero, we have the following algebraic equations:

(G′/G)
1

2m : a1

(
λ2 + 2μ

)
+ 4m2b1 = 0, (11)

(G′/G)
1

2m−1 : a1λμ(1 − m) = 0, (12)

(G′/G)
1

2m +1 : a1λ(1 + m) + 2m2c1A
2m = 0, (13)

(G′/G)
1

2m−2 : a1μ
2(1 − 2m) = 0, (14)

(G′/G)
1

2m +2 : a1(1 + 2m) + 4m2c1k1A
4m = 0. (15)
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On solving eqs. (11)–(15), we have the results

μ = 0, λ2 =
−4m2b1

a1
, A2m =

(1 + 2m)
2λk1(1 + m)

, k1 =
c1(1 + 2m)
4b1(1 + m)2

, (16)

where a1b1 < 0, λk1 > 0 and k1 �= 0.
Now, eq. (1) has the new exact solution

q(x, t) =
{
−(1 + 2m)
2k1(1 + m)

[
A1e

−λξ

A0 + A1e−λξ

]} 1
2m

exp [i (−kx + ωt + θ)] , (17)

where A0, A1 are arbitrary constants. From (8) and (16), we deduce that ω and υ are given by

ω = −ak2 − bk4 − c(1 + 2m)
4k1(1 + m)2

and υ = 2ak + 20bk3 +
4kcm2(1 + 2m)
λ2k1(1 + m)2

. (18)

In particular, if A0 = A1 = 1, then we have the solitary wave solution of eq. (1) in the form

q(x, t) =

{
−(1 + 2m)
4k1(1 + m)

[

1 ± tanh

(

m

√
−b1

a1
ξ

)]} 1
2m

exp [i (−kx + ωt + θ)] , (19)

while, if A0 = 1, A1 = −1, then we have the singular solitary wave solution of eq. (1) in the form

q(x, t) =

{
−(1 + 2m)
4k1(1 + m)

[

1 ± coth

(

m

√
−b1

a1
ξ

)]} 1
2m

exp [i (−kx + ωt + θ)] , (20)

where k1 < 0 and a1b1 < 0.
Note that the solutions (17), (19) and (20) of eq. (1) are all new and not found in [44]. Douvagai et al. [53] solved

eq. (7) using a different technique and found the exact solutions of eq. (1) where some of them are equivalent to (19)
and (20). Finally, note that the above technique is not used in [44,53].

2.2 On solving eq. (1) using the improved Sub-ODE method

To this aim, we multiply eq. (7) by φ′(ξ) and integrate with respect to ξ with zero constant of integration, we get the
auxiliary equation:

φ′2 = Aφ2 + Bφ2m+2 + Cφ4m+2, m > 0. (21)

The coefficients A, B and C are given by

A =
−b1

a1
, B =

−c1

a1(m + 1)
, C =

−c1k1

a1(2m + 1)
, (22)

where a1 �= 0. It is well-known [42,56] that eq. (21) has many solutions. With the aid of these solutions eq. (1) has
the following new solutions:

1) If A > 0 and B2 − 4AC > 0, then we deduce that eq. (1) has the hyperbolic solutions

q(ξ) =

⎧
⎪⎨

⎪⎩
∓2b1(m + 1)

c1

⎛

⎜
⎝

sech
[
2m

√
−b1
a1

(ξ + ξ0)
]

√
1 − 4b1k1(m+1)2

c1(2m+1) ± sech
[
2m

√
−b1
a1

(ξ + ξ0)
]

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

1
2m

exp [i (−kx + ωt + θ)] , (23)

provided that a1b1 < 0, 4b1k1(m+1)2

c1(2m+1) < 1 and b1c1 < 0 (or b1c1 > 0).
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2) If A > 0 and B2 − 4AC < 0, then we deduce that eq. (1) has the hyperbolic solutions

q(ξ) =

⎧
⎪⎨

⎪⎩
∓2b1(m + 1)

c1

⎛

⎜
⎝

csch
[
2m

√
−b1
a1

(ξ + ξ0)
]

√
4b1k1(m+1)2

c1(2m+1) − 1 ± csch
[
2m

√
−b1
a1

(ξ + ξ0)
]

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

1
2m

exp [i (−kx + ωt + θ)] , (24)

provided that a1b1 < 0, 4b1k1(m+1)2

c1(2m+1) > 1 and b1c1 < 0 (or b1c1 > 0).
3) If A > 0, B2 − 4AC = 0 and B < 0, then we deduce that eq. (1) has the dark soliton solutions

q(ξ) =

{
−(2m + 1)
4k1(m + 1)

[

1 ± tanh

(

m

√
−b1

a1
(ξ + ξ0)

)]} 1
2m

exp [i (−kx + ωt + θ)] , (25)

and the singular soliton solutions

q(ξ) =

{
−(2m + 1)
4k1(m + 1)

[

1 ± coth

(

m

√
−b1

a1
(ξ + ξ0)

)]} 1
2m

exp [i (−kx + ωt + θ)] , (26)

provided that a1b1 < 0, k1 < 0, k1 = c1(2m+1)
4b1(m+1)2 and b1c1 < 0. It is easy to show that ω = c1(2m+1)

4k1(m+1)2 − (ak2 + bk4).
Note that the solutions (25) and (26) are equivalent to the solutions (19) and (20), respectively, if ξ0 = 0.
4) If A < 0 and B2 − 4AC > 0, then we deduce that eq. (1) has the trigonometric solutions

q(ξ) =

⎧
⎪⎨

⎪⎩
∓2b1(m + 1)

c1

⎛

⎜
⎝

sec
[
2m

√
b1
a1

(ξ + ξ0)
]

√
1 − 4b1k1(m+1)2

c1(2m+1) ± sec
[
2m

√
b1
a1

(ξ + ξ0)
]

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

1
2m

exp [i (−kx + ωt + θ)] , (27)

and

q(ξ) =

⎧
⎪⎨

⎪⎩
∓2b1(m + 1)

c1

⎛

⎜
⎝

csc
[
2m

√
b1
a1

(ξ + ξ0)
]

√
1 − 4b1k1(m+1)2

c1(2m+1) ± csc
[
2m

√
b1
a1

(ξ + ξ0)
]

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

1
2m

exp [i (−kx + ωt + θ)] , (28)

provided that a1b1 < 0, 4b1k1(m+1)2

c1(2m+1) < 1 and b1c1 < 0 (or b1c1 > 0).
5) If A = 0 and B �= 0, then we deduce that eq. (1) has the rational solution

q(ξ) =
[

−4a1(m + 1)(2m + 1)
c1m2(2m + 1)ξ2 + 4a1k1(m + 1)2

] 1
2m

exp [i (−kx + ωt + θ)] , (29)

where c1 �= 0 and b1 = 0. Thus, from (8), we have ω = −(ak2 + bk4).
Note that the exact solutions (23)–(29) of eq. (1) are all new and not found in [44,53] or elsewhere.

2.3 On solving eq. (1) when m = 1 using an extended auxiliary equation method

To this aim, we set m = 1 in eq. (7) and multiply the resulting equation by φ′(ξ) and integrate with respect to ξ, we
get the extended auxiliary equation

φ′2 = c0 + c2φ
2 + c4φ

4 + c6φ
6, (30)

where
c0 =

2ε1
a1

, c2 =
−b1

a1
, c4 =

−c1

2a1
, c6 =

−c1k1

3a1
, (31)

where a1 �= 0 and ε1 is the constant of integration. It is well known [40,41,57] that eq. (30) has many Jacobi elliptic
function solutions. With the aid of these solutions eq. (1) has the following Jacobi elliptic solutions:

1) If c0 = c3
4(M

2
1−1)

32c2
6M2

1
, c2 = c2

4(5M2
1−1)

16c6M2
1

, 0 < M1 < 1, c6 > 0, then we have

q(ξ) =

{
−3
8k1

[

1 ± sn

(

ξ

√
−3c1

16a1k1M2
1

)]} 1
2

exp [i (−kx + ωt + θ)] , (32)
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or

q(ξ) =

⎧
⎪⎨

⎪⎩

−3
8k1

⎡

⎢
⎣1 ± 1

M1 sn
(
ξ
√

−3c1
16a1k1M2

1

)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (33)

where k1 = 3c1(5M2
1−1)

64b1M2
1

< 0, ε1 = −9c1(M
2
1−1)

512k2
1M2

1
and a1c1 > 0.

If M1 = 1, then sn = tanh, and we have the same solutions (25) and (26) when m = 1, respectively.
2) If c0 = c3

4(1−M2
1 )

32c2
6

, c2 = c2
4(5−M2

1 )
16c6

, 0 < M1 < 1, c6 > 0, then we have

q(ξ) =
{
−3
8k1

[
1 ± M1 sn

(
ξ

√
−3c1

16a1k1

)]} 1
2

exp [i (−kx + ωt + θ)] , (34)

or

q(ξ) =

⎧
⎨

⎩
−3
8k1

⎡

⎣1 ± 1

sn
(
ξ
√

−3c1
16a1k1

)

⎤

⎦

⎫
⎬

⎭

1
2

exp [i (−kx + ωt + θ)] , (35)

where k1 = 3c1(5−M2
1 )

64b1
< 0, ε1 = −9c1(1−M2

1 )

512k2
1

and a1c1 > 0.
If M1 = 1, then sn = tanh, and we have the same solutions (25) and (26) when m = 1 respectively, while if M1 = 0,

then sn = sin, and we have the solution

q(ξ) =
(
−3
8k1

) 1
2

exp [i (−kx + ωt + θ)] , (36)

or the trigonometric solutions

q(ξ) =
{
−3
8k1

[
1 ± csc

(
ξ

√
−3c1

16a1k1

)]} 1
2

exp [i (−kx + ωt + θ)] , (37)

where k1 = 15c1
64b1

< 0, ε1 = −9c1
512k2

1
and a1c1 > 0.

3) If c0 = c3
4

32c2
6M2

1
, c2 = c2

4(4M2
1+1)

16c6M2
1

, 0 < M1 < 1, c6 < 0, then we have

q(ξ) =

{
−3
8k1

[

1 ± M1 cn

(

ξ

√
3c1

16a1k1M2
1

)]} 1
2

exp [i (−kx + ωt + θ)] , (38)

or

q(ξ) =

⎧
⎪⎨

⎪⎩

−3
8k1

⎡

⎢
⎣1 ±

√
1 − M2

1 sn
(
ξ
√

3c1
16a1k1M2

1

)

dn
(
ξ
√

3c1
16a1k1M2

1

)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (39)

where k1 = 3c1(4M2
1+1)

64b1M2
1

< 0, ε1 = −9c1
512k2

1M2
1

and a1c1 < 0.
If M1 = 1, then cn = sech, and we have the bright soliton solutions

q(ξ) =
{
−3
8k1

[
1 ± sech

(
ξ

√
3c1

16a1k1

)]} 1
2

exp [i (−kx + ωt + θ)] , (40)

and the same solution (36), where k1 = 15c1
64b1

< 0, ε1 = −9c1
512k2

1
and a1c1 < 0.

4) If c0 = c3
4M2

1
32c2

6(M
2
1−1)

, c2 = c2
4(5M2

1−4)

16c6(M2
1−1)

, 0 < M1 < 1, c6 < 0, then we have

q(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

−3
8k1

⎡

⎢
⎢
⎣1 ±

dn
(

ξ
√

3c1

16a1k1(1−M2
1 )

)

√
1 − M2

1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (41)
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or

q(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

−3
8k1

⎡

⎢
⎢
⎣1 ± 1

dn
(

ξ
√

3c1

16a1k1(1−M2
1 )

)

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (42)

where k1 = 3c1(5M2
1−4)

64b1(M2
1−1)

< 0, ε1 = −9c1M2
1

512k2
1(M2

1−1)
and a1c1 < 0.

If M1 = 0, then dn = 1, and we have the solution

q(ξ) =
(
−3
4k1

) 1
2

exp [i (−kx + ωt + θ)] , (43)

where k1 = 3c1
16b1

< 0, ε1 = 0.

5) If c0 = c3
4

32c2
6(1−M2

1 )
, c2 = c2

4(4M2
1−5)

16c6(M2
1−1)

, 0 < M1 < 1, c6 > 0, then we have

q(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

−3
8k1

⎡

⎢
⎢
⎣1 ± 1

cn
(

ξ
√

−3c1

16a1k1(1−M2
1 )

)

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (44)

or

q(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

−3
8k1

⎡

⎢
⎢
⎣1 ±

dn
(

ξ
√

−3c1

16a1k1(1−M2
1 )

)

√
1 − M2

1 sn
(

ξ
√

−3c1

16a1k1(1−M2
1 )

)

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (45)

where k1 = 3c1(4M2
1−5)

64b1(M2
1−1)

< 0, ε1 = −9c1
512k2

1(1−M2
1 )

and a1c1 > 0.
If M1 = 0, then dn = 1, cn = cos, sn = sin and we have the trigonometric solutions

q(ξ) =
{
−3
8k1

[
1 ± sec

(
ξ

√
−3c1

16a1k1

)]} 1
2

exp [i (−kx + ωt + θ)] , (46)

and the same solution (37), where k1 = 15c1
64b1

< 0, ε1 = −9c1
512k2

1
and a1c1 > 0.

6) If c0 = c3
4M2

1
32c2

6
, c2 = c2

4(M
2
1+4)

16c6
, 0 < M1 < 1, c6 < 0, then we have

q(ξ) =
{
−3
8k1

[
1 ± dn

(
ξ

√
3c1

16a1k1

)]} 1
2

exp [i (−kx + ωt + θ)] , (47)

or

q(ξ) =

⎧
⎨

⎩
−3
8k1

⎡

⎣1 ±
√

1 − M2
1

dn
(
ξ
√

3c1
16a1k1

)

⎤

⎦

⎫
⎬

⎭

1
2

exp [i (−kx + ωt + θ)] , (48)

where k1 = 3c1(M
2
1+4)

64b1
< 0, ε1 = −9c1M2

1
512k2

1
and a1c1 < 0.

If M1 = 1, then dn = sech, and we have the same solutions (40) and (36), respectively, while if M1 = 0, then we
have the same solution (43).

Note that our solutions (32)–(48) of eq. (1) are new and not found in [44,53] or elsewhere.

2.4 On solving eq. (1) when m = 1 using the new mapping method

To this aim, we follow sect. 2.3, and rewrite eq. (30) in the form

φ′2 = r + pφ2 +
q

2
φ4 +

s

3
φ6, (49)
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where
r =

2ε2
a1

, p =
−b1

a1
, q =

−c1

a1
, s =

−c1k1

a1
, (50)

where a1 �= 0 and ε2 is the constant of integration. It is well known [43,58] that eq. (49) has many exact solutions.
With the aid of these solutions eq. (1) has the following exact solutions:

1) If p < 0, q > 0, s = 3q2

16p , r = 16p2

27q , then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−1
k1

⎡

⎢
⎣

tanh2
(
ε
√

b1
3a1

ξ
)

3 + tanh2
(
ε
√

b1
3a1

ξ
)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (51)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

−1
k1

⎡

⎢
⎣

coth2
(
ε
√

b1
3a1

ξ
)

3 + coth2
(
ε
√

b1
3a1

ξ
)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (52)

where a1b1 > 0, k1 = 3c1
16b1

< 0, ε2 = −b1
18k1

.

2) If p > 0, q < 0, s = 3q2

16p , r = 16p2

27q , then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

1
k1

⎡

⎢
⎣

tan2
(
ε
√

−b1
3a1

ξ
)

3 − tan2
(
ε
√

−b1
3a1

ξ
)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (53)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

1
k1

⎡

⎢
⎣

cot2
(
ε
√

−b1
3a1

ξ
)

3 − cot2
(
ε
√

−b1
3a1

ξ
)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (54)

where a1b1 < 0, k1 = 3c1
16b1

> 0, b1c1 > 0, ε2 = −b1
18k1

.

3) If p > 0, s = 3q2

16p , r = 0, then we have

q(ξ) =

{
−3
8k1

[

1 + tanh

(

ε

√
−b1

a1
ξ

)]} 1
2

exp [i (−kx + ωt + θ)] , (55)

and

q(ξ) =

{
−3
8k1

[

1 + coth

(

ε

√
−b1

a1
ξ

)]} 1
2

exp [i (−kx + ωt + θ)] , (56)

where a1b1 < 0 and k1 = 3c1
16b1

< 0, which are equivalent to (25) and (26) respectively, when m = 1, and ε2 = 0, while
ε = ±1.

4) If p > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−6b1 sech2
(√

−b1
a1

ξ
)

3c1 − 4b1k1

[
1 + ε tanh

(√
−b1
a1

ξ
)]2

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (57)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

6b1 csch2
(√

−b1
a1

ξ
)

3c1 − 4b1k1

[
1 + ε coth

(√
−b1
a1

ξ
)]2

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (58)

where a1b1 < 0 and ε2 = 0, while ε = ±1.
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5) If p > 0, s > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−6b1 sech2
(√

−b1
a1

ξ
)

3c1 − 4ε
√

3c1b1k1 tanh
(√

−b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (59)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

6b1 csch2
(√

−b1
a1

ξ
)

3c1 − 4ε
√

3c1b1k1 coth
(√

−b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (60)

where a1b1 < 0, c1b1k1 > 0, ε2 = 0, ε = ±1.
6) If p < 0, s > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−6b1 sec2
(√

b1
a1

ξ
)

3c1 − 4ε
√
−3c1b1k1 tan

(√
b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (61)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

−6b1 csc2
(√

b1
a1

ξ
)

3c1 − 4ε
√
−3c1b1k1 cot

(√
b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (62)

where a1b1 > 0, c1b1k1 < 0, ε2 = 0, ε = ±1.
7) If p > 0, M = 9q2 − 48ps > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−12b1

ε
√

9c2
1 − 48b1c1k1 cosh

(
2
√

−b1
a1

ξ
)

+ 3c1

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (63)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

−12εb1 sech
(
2
√

−b1
a1

ξ
)

√
9c2

1 − 48b1c1k1 + 3εc1 sech
(
2
√

−b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (64)

where a1b1 < 0, 9c2
1 > 48b1c1k1, ε2 = 0, ε = ±1. We note that the solution (64) is equivalent to (23) if m = 1, ξ0 = 0.

8) If p > 0, q < 0, s < 0, M = 9q2 − 48ps > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−4b1 sech2
(
ε
√

−b1
a1

ξ
)

2c1

√
1 − 16b1k1

3c1
− c1

(√
1 − 16b1k1

3c1
− 1

)
sech2

(
ε
√

−b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (65)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

−4b1 csch2
(
ε
√

−b1
a1

ξ
)

2c1

√
1 − 16b1k1

3c1
+ c1

(√
1 − 16b1k1

3c1
+ 1

)
csch2

(
ε
√

−b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (66)

where a1b1 < 0, 16b1k1
3c1

< 1 and b1c1 < 0, ε2 = 0.
9) If p < 0, q > 0, s < 0, M > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

4b1 sec2
(
ε
√

b1
a1

ξ
)

2c1

√
1 − 16b1k1

3c1
− c1

(√
1 − 16b1k1

3c1
+ 1

)
sec2

(
ε
√

b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (67)
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and

q(ξ) =

⎧
⎪⎨

⎪⎩

−4b1 csc2
(
ε
√

b1
a1

ξ
)

2c1

√
1 − 16b1k1

3c1
− c1

(√
1 − 16b1k1

3c1
− 1

)
csc2

(
ε
√

b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (68)

where a1b1 > 0, 16b1k1
3c1

< 1, b1c1 < 0, ε2 = 0.
10) If p < 0, M > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−4b1

c1

[
ε
√

1 − 16b1k1
3c1

cos
(
2
√

b1
a1

ξ
)

+ 1
]

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (69)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

−4b1

c1

[
ε
√

1 − 16b1k1
3c1

sin
(
2
√

b1
a1

ξ
)

+ 1
]

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (70)

where a1b1 > 0, 16b1k1
3c1

< 1, b1c1 < 0, ε2 = 0.
11) If p < 0, M > 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−4εb1 sec
(
2
√

b1
a1

ξ
)

c1

√
1 − 16b1k1

3c1
+ εc1 sec

(
2
√

b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (71)

and

q(ξ) =

⎧
⎪⎨

⎪⎩

−4εb1 csc
(
2
√

b1
a1

ξ
)

c1

√
1 − 16b1k1

3c1
+ εc1 csc

(
2
√

b1
a1

ξ
)

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (72)

where a1b1 > 0, 16b1k1
3c1

< 1, b1c1 < 0, (or b1c1 > 0), ε2 = 0, ε = ±1.
Note that the solutions (71) and (72) are in agreement with (27) and (28), respectively, when m = 1 and ξ0 = 0.
12) If p > 0, M = 9q2 − 48ps < 0 and r = 0, then we have

q(ξ) =

⎧
⎪⎨

⎪⎩

−4b1

εc1

√
16b1k1

3c1
− 1 sinh

(
2
√

−b1
a1

ξ
)

+ c1

⎫
⎪⎬

⎪⎭

1
2

exp [i (−kx + ωt + θ)] , (73)

where a1b1 < 0, 16b1k1
3c1

> 1, b1c1 < 0, ε2 = 0, ε = ±1.
Note that the solutions (51)–(73) of eq. (1) are all new and not found in [44,53] or elsewhere.

2.5 On solving eq. (1) when m = 1 and k1 = 0 using the Jacobi elliptic equation

Biswas et al. [50] have solved eq. (1) in the special case m = 1 and k1 = 0, using the soliton ansatz method and
have obtained only 1-soliton solution. In this section, we obtain many exact solutions using the solutions of the Jacobi
elliptic equation.

Following sect. 2.4, and setting k1 = 0 in eq. (49), we have the Jacobi elliptic equation [59,60]:

φ′2(ξ) = r + pφ2(ξ) +
q

2
φ4(ξ), (74)

where r = 2ε2
a1

, p = −b1
a1

, q = −c1
a1

, a1 �= 0.
It is well known [19,20,59,60] that eq. (74) has the following solutions:
1) If p = 1, q = −2, r = 0, then φ(ξ) = sech(ξ). In this case, eq. (1) has the bright soliton solution

q(x, t) = sech (x − υt) exp [i (−kx + ωt + θ)] , (75)
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where
υ = 2k

(
a − c + 10bk2

)
, ω =

c

2
− ak2 − bk4, ε2 = 0.

2) If p = −2, q = 2, r = 1, then φ(ξ) = tanh(ξ). In this case, eq. (1) has the dark soliton solution

q(x, t) = tanh (x − υt) exp [i (−kx + ωt + θ)] , (76)

where
υ = 2k

(
a + c + 10bk2

)
, ω = c − ak2 − bk4, ε2 = −kc.

3) If p = −(M2
1 + 1), q = 2M2

1 , r = 1, 0 < M1 < 1, then φ(ξ) = sn(ξ). In this case, eq. (1) has the Jacobi elliptic
solution

q(x, t) = sn (x − υt) exp [i (−kx + ωt + θ)] , (77)

where

υ = 2k

(
a +

c

M2
1

+ 10bk2

)
, ω =

c(M2
1 + 1)

2M2
1

− ak2 − bk4, ε2 =
−kc

M2
1

.

If M1 = 1, then sn(ξ) = tanh(ξ), and we get the same dark soliton solution (76).
4) If p = −(M2

1 + 1), q = 2, r = M2
1 , 0 < M1 < 1, then φ(ξ) = ns(ξ). In this case, eq. (1) has the Jacobi elliptic

solution
q(x, t) = ns (x − υt) exp [i (−kx + ωt + θ)] , (78)

where

υ = 2k
(
a + c + 10bk2

)
, ω =

c
(
M2

1 + 1
)

2
− ak2 − bk4, ε2 = −kcM2

1 .

If M1 = 0, then ns(ξ) = csc(ξ), and we get the trigonometric solution

q(x, t) = csc (x − υt) exp [i (−kx + ωt + θ)] , (79)

where
υ = 2k

(
a + c + 10bk2

)
, ω =

c

2
− ak2 − bk4, ε2 = 0.

If M1 = 1, then ns(ξ) = coth(ξ), and we get the singular soliton solution

q(x, t) = coth (x − υt) exp [i (−kx + ωt + θ)] , (80)

where
υ = 2k

(
a + c + 10bk2

)
, ω = c − ak2 − bk4, ε2 = −kc.

5) If p = 2M2
1 − 1, q = −2M2

1 , r = 1 − M2
1 , 0 < M1 < 1, then φ(ξ) = cn(ξ). In this case, eq. (1) has the Jacobi

elliptic solution
q(x, t) = cn (x − υt) exp [i (−kx + ωt + θ)] , (81)

where

υ = 2k

(
a − c

M2
1

+ 10bk2

)
, ω =

c(2M2
1 − 1)

2M2
1

− ak2 − bk4, ε2 =
kc(1 − M2

1 )
M2

1

.

If M1 = 1, then cn(ξ) = sech(ξ), and we get the same bright soliton solution (75).
6) If p = 2M2

1 − 1, q = 2(1 − M2
1 ), r = −M2

1 , 0 < M1 < 1, then φ(ξ) = nc(ξ). In this case, eq. (1) has the Jacobi
elliptic solution:

q(x, t) = nc (x − υt) exp [i (−kx + ωt + θ)] , (82)

where

υ = 2k

(
a +

c

1 − M2
1

+ 10bk2

)
, ω =

−c(2M2
1 − 1)

2(1 − M2
1 )

− ak2 − bk4, ε2 =
kcM2

1

1 − M2
1

.

If M1 = 0, then nc(ξ) = sec(ξ), and eq. (1) has the trigonometric solution

q(x, t) = sec (x − υt) exp [i (−kx + ωt + θ)] , (83)

where
υ = 2k

(
a + c + 10bk2

)
, ω =

c

2
− ak2 − bk4, ε2 = 0.
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Fig. 1. Plot solution |q(x, t)| of (32) with b1 = −1, c1 = 1, k1 = −3/64.

7) If p=2−M2
1 , q=2, r=1−M2

1 , 0 < M1 < 1, then φ(ξ)=cs(ξ). In this case, eq. (1) has the Jacobi elliptic solution

q(x, t) = cs (x − υt) exp [i (−kx + ωt + θ)] , (84)

where

υ = 2k
(
a + c + 10bk2

)
, ω =

−c(2 − M2
1 )

2
− ak2 − bk4, ε2 = −kc

(
1 − M2

1

)
.

If M1 = 0, then cs(ξ) = cot(ξ), and eq. (1) has the trigonometric solution

q(x, t) = cot (x − υt) exp [i (−kx + ωt + θ)] , (85)

where
υ = 2k

(
a + c + 10bk2

)
, ω = −c − ak2 − bk4, ε2 = −kc.

If M1 = 1, then cs(ξ) = csch(ξ), and eq. (1) has the singular soliton solution

q(x, t) = csch (x − υt) exp [i (−kx + ωt + θ)] , (86)

where
υ = 2k

(
a + c + 10bk2

)
, ω = − c

2
− ak2 − bk4, ε2 = 0.

Note that the solution (86) is equivalent to the solution (58) if we set k1 = 0 in (58).
8) If p=2−M2

1 , q=2(1−M2
1 ), r=1, 0<M1 <1, then φ(ξ)=sc(ξ). In this case, eq. (1) has the Jacobi elliptic solution

q(x, t) = sc (x − υt) exp [i (−kx + ωt + θ)] , (87)

where

υ = 2k

(
a +

c

1 − M2
1

+ 10bk2

)
, ω =

−c(2 − M2
1 )

2(1 − M2
1 )

− ak2 − bk4, ε2 =
−kc

1 − M2
1

.

If M1 = 0, then sc(ξ) = tan(ξ), and eq. (1) has the trigonometric solution

q(x, t) = tan (x − υt) exp [i (−kx + ωt + θ)] , (88)

where
υ = 2k

(
a + c + 10bk2

)
, ω = −c − ak2 − bk4, ε2 = −kc.

There are other Jacobi elliptic solutions which are omitted here for simplicity. Note that the solutions (75)–(88)
are new and not found in [44,50,53] or elsewhere.

3 Some graphical representations of some solutions

In this section, we present graphs of the Jacobi elliptic function solutions of the original equation (1). Let us now
examine figs. 1–4 as they illustrate some of our solutions obtained in this article. To this aim, we select some special
values of the parameters obtained, for example, in some of the Jacobi elliptic function solutions, (32), (38), (45)
and (47), of the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity (1) with
υ = a1 = 1, M1 = 1/2, −10 < x, t < 10, respectively. For the reader’s convenience the graphical representations of
these solutions are shown in figs. 1–4.
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Fig. 2. Plot solution |q(x, t)| of (38) with b1 = 1, c1 = −1, k1 = −3/8.

Fig. 3. Plot solution |q(x, t)| of (45) with b1 = −1, c1 = 1, k1 = −11/64.

Fig. 4. Plot solution |q(x, t)| of (47) with b1 = 1, c1 = −1, k1 = −51/256.
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4 Conclusions

Biswas et al. [44] have solved eq. (1) using the soliton ansatz method and found only the 1-soliton solution. Recently,
Douvagai et al. [53] have solved eq. (1) using two methods which are different from the five methods used in this
paper. Here, we used five different mathematical techniques namely, the (G′/G)-expansion method, the improved
Sub-ODE method, the extended auxiliary equation method, the new mapping method and the Jacobi elliptic method
for constructing many new exact solutions of the nonlinear Schrödinger equation with fourth-order dispersion and
dual power law nonlinearity (1). These exact solutions include Jacobi elliptic solutions, hyperbolic function solutions,
trigonometric function solutions and rational function solutions. The special case of eq. (1) when m = 1 and k1 = 0, has
been discussed in [50] using the soliton ansatz method where the 1-soliton solution has been found, while in sect. 2.5,
we have found many new solutions of this special case using the Jacobi elliptic equation (74). Comparing our results
in this paper with the well-known results of [44,50–53], we conclude that our results are new and not found elsewhere.
Finally, our results in this paper have been checked with the aid of the Maple by putting them back into the original
equation (1).
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11. M.R. Miura, Bäcklund Transformation (Springer, Berlin, 1978).
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