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Abstract. The present study addresses the magnetohydrodynamic (MHD) flow of a third-grade fluid over
a nonlinear stretched surface with variable thickness. The heat transfer phenomenon is discussed through
melting. The system of nonlinear ordinary differential equations is attained by considering proper transfor-
mations. Convergent series solutions of velocity and temperature are developed. Fluid flow, temperature,
skin friction coefficient and Nusselt number are examined through graphs for different parameters. It is
noted that velocity and temperature decrease with decreasing the wall thickness parameter. It is also re-
vealed that the temperature distribution enhances for increasing values of the Prandtl number. Here the
velocity field reduces for increasing values of the melting parameter.

1 Introduction

In industrial and engineering applications the fluid flow by a stretching sheet has obtained great importance. It has
many applications in the manufacture of foods, liquid films in condensation process, rubber sheets, aerodynamic extrac-
tion of polymer and paper production etc. For these processes the level of the final product is based on the kinematics of
the stretching and cooling rate. Experience of heat transfer in the stretched flow of a ferromagnetic liquid is described
by Majeed et al. [1]. The impact of hydromagnetic and heat transfer in a micropolar fluid flow by a stretching surface
is described by Mahmood et al. [2]. Rashidi et al. [3] interpreted the boundary layer nanofluid flow with effective
Prandtl number. Hayat et al. [4] discussed the stretched flow of a non-Newtonian fluid with magnetohydrodynamic
and nanoparticles effects. Khan et al. [5] discussed buoyancy and radiative impacts in the stretched nanofluid flow.
Chandrasekar and Kasiviswanathan [6] analyzed the nanofluid flow with heat and mass transfer over a stretching sheet.
Chen et al. [7] investigated the time-dependent Maxwell fluid flow bounded by a stretching sheet. Abbas et al. [8]
examined slip flow by a stretching cylinder. Rashidi et al. [9] demonstrated radiative flow of nanofluid past a stretching
channel. The stretched flow of water-based nanofluid in the presence of heat transfer is presented by Nadeem et al. [10].

Applications of non-Newtonian fluids in technology and industry (like oil recovery, polymer, food processing and
nourishment preparing etc.) cannot be neglected. The constitutive relationship of the stress and rate of the strain is
very complex in a non-Newtonian fluid. In the second-grade fluid only normal stress features are predicted. On the
other hand, the third-grade fluid evaluates both the normal stresses and the shear thickening/thinning phenomena.
Wang et al. [11] presented the impact of electromagnetohydrodynamic flow of the third-grade fluid between two parallel
plates. Hayat et al. [12] demonstrated the behavior of heat transfer and magnetic field in a third-grade fluid flow over
a stretching surface. Nadeem et al. [13] analyzed the mass transfer phenomenon in a third-grade fluid flow. Hussain
et al. [14] illustrated the influences of viscous dissipation and hydromagnetics in the flow of a third-grade fluid. A
third-grade fluid flow comprising magnetohydrodynamics in the stretched sheet is described by Rashidi et al. [15].
The mass transfer in a third-grade fluid along the vertical channel is discussed by Farooq et al. [16]. Abbasbandy and
Hayat [17] focused on a time-dependent stretched flow of a third-grade fluid saturating the porous medium. Keimanesh
et al. [18] investigated the third-grade fluid flow between two parallel plates.

Magnetohydrodynamic is a branch of fluid dynamics just to investigate the fluid motion in the presence of a
magnetic field. MHD has many applications in flow meters, pumps, accelerators, MHD generators, blood pumping,
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hyperthermia and cancer therapy inspection. Moreover the properties of magnetohydrodynamics are significant in
cancer treatment, nuclear fuels treatment and blood pump machine. Gireesha et al. [19] studied the stagnation point
flow of a nanofluid with magnetohydrodynamics. MHD viscoelastic flow with the Cattaneo-Christov heat flux model
is illustrated by Li et al. [20]. MHD nanofluid flow with Hall effects over a permeable sheet is explored by Makinde
et al. [21]. Sheikh and Abbas [22] investigated the MHD flow of a viscoelastic fluid and heat transfer through heat
generation/absorption. The MHD non-Newtonian fluid flow over a stretching surface is illustrated by Rashidi et al. [15].
The MHD radiative flow of Jeffery fluid by an exponentially stretching sheet is inspected by Hayat et al. [23]. Some
of the investigations related to the MHD can be seen in refs. [24–30].

The phenomenon of melting heat transfer has promising applications in engineering processes. In the developed
technological processes melting plays a prominent role. Melting heat transfer is useful in thawing of frozen ground,
casting of manufacturing process, heat transportation melting of permafrost, magma solidification, cyrstal growth,
optimal utilization of energy and preparation of semiconductors material. Epstein and Cho [31] discussed melting heat
transfer in a flow by a flat plate. Ahmad and Pop [32] presented the boundary layer flow of a viscous fluid with porous
medium and melting phenomenon. Awais et al. [33] discussed the melting heat transfer in the flow of a Burgers fluid.
The Williamson nanofluid flow over a non-linear stretching sheet with melting heat transfer is demonstrated by Hayat
et al. [34]. The fluid flow in a porous medium through melting process has been discussed by Kameswaran et al. [35].
Krishnamurthy et al. [36] presented effects of melting and radiation in flow by a stretching sheet. Wang et al. [37]
examined the process of solidification and melting along a vertical shell with thermophysical properties. Heat transfer
analysis through melting and Joule heating in a nanofluid flow has been discussed by Hayat et al. [38].

In this paper we study the behavior of the MHD flow of a third-grade fluid over a variable-thickness moving surface.
The stretching velocity is considered nonlinear. We also considered the heat transfer phenomenon through the melting
process. To attain the convergent series solution we use the homotopy analysis method [39–44]. The various parameters
involved in velocity and temperature are explored through plots. The skin friction coefficient and surface heat transfer
rate are also examined.

2 Formulation

We explored the two-dimensional flow of the third-grade fluid over a non-linear stretching sheet with variable thickness.
Heat transfer is examined through the melting process. The thickness of the sheet is y = B(x + b)

1−n
2 . We take Tm,

the melting temperature, and T∞, the ambient temperature, such that T∞ > Tm.
The basic equations are

div V = 0, (1)

ρ
dV
dt

= div T + J × B, (2)

ρcp
∂T

∂t
+ (V · ∇)T = −div q, (3)

in which V denotes the velocity field, ρ the density of fluid, J the current density, T the Cauchy stress tensor, B the
total magnetic field, cp the specific heat and T the temperature of the fluid.

The constitutive relation of the stress tensor for a third-grade fluid is

T = −pI + μA1 + α1A2 + α2A2
1 + β3(trA2

1)A1, (4)

where

A1 = gradV + (gradV)T , (5)

A2 =
dA1

dt
+ A1L + LT A1, L = gradV. (6)

Also the heat flux is
q = −k grad T, (7)

where μ denotes the dynamic viscosity, I the identity tensor, α1, α2, β3 the material constants and k the thermal
conductivity.

Velocity field is defined by
V = [u(x, y), v(x, y), 0], (8)

in which u(x, y) and v(x, y) are components of velocity field V.



Eur. Phys. J. Plus (2017) 132: 265 Page 3 of 12

The boundary layer equations are

∂u

∂x
+

∂v
∂y

= 0, (9)

u
∂u

∂x
+ v

∂u

∂y
=ν

∂2u

∂y2
+

α1

ρ

(
u

∂3u

∂x∂y2
+

∂u

∂x

∂2u

∂y2
+ 3

∂u

∂y

∂2u

∂x∂y
+ v

∂3u

∂y3

)
+

2α2

ρ

∂u

∂y

∂2u

∂x∂y
+

6β3

ρ

((
∂u

∂y

)2
∂2u

∂y2

)
− σB2

0u

ρ
,

(10)

ρCp

(
u

∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
. (11)

The corresponding boundary conditions are

u = u(x, y) = U0(x + b)m, v = 0, T = Tm at y = B(x + b)
1−n

2 , (12)
u → 0, v → 0, T → T∞ as y → ∞ (13)

and

k

(
∂T

∂y

)
y=B(x+b)

1−n
2

= ρ [λ + Cs(Tm − T0)] v
(
x, y = B(x + b)

1−n
2

)
. (14)

Here ν denotes the kinematic viscosity of the fluid, σ the electrical conductivity and B0 the strength of the magnetic
field. The shape parameter n is used to control the type of the motion, the behavior of the boundary layer and the
shape of the surface. We have three cases for wall thickness parameter n. For n = 1 the surface is flat. For n < 1
the wall thickness parameter increases whereas the wall thickness parameter decreases for n > 1. As this parameter
controls the type of motion so n = 0 represents the linear motion, n < 1 the deceleration motion and n > 1 accelerated
motion.

Transformations are considered as

η =

√
(m + 1)U0(x + b)n−1

2ν
y, ψ =

√
2

n + 1
νU0(x + b)n+1F (η), Θ(η) =

T − Tm

T∞ − Tm
,

u = U0(x + b)mF ′(η), v = −
√

(n + 1)νU0(x + b)n−1

2

[
F (η) + ηF ′(η)

n − 1
n + 1

]
, (15)

in which F denotes the dimensionless stream function and Θ the dimensionless temperature. The continuity equa-
tion (9) is automatically satisfied and eqs. (10)–(14) take the form

F ′′′ + FF ′′ − 2n

n + 1
F ′2 + ε1

[
(3n − 1)F ′F ′′′ + 2(n − 1)ηF ′′F ′′′ +

3(3n − 1)
2

F ′′2 − n + 1
2

FF ′′′′
]

+ ε2
[
(3n − 1)F ′′2 + (n − 1)ηF ′′F ′′′] + 6φRe1/2

x

n + 1
2

F ′′2F ′′′ − 2A

n + 1
F ′ = 0, (16)

1
Pr

Θ′′ + FΘ′ = 0, (17)

F ′(α) = 1, MΘ′(α) + Pr
[
F (α) +

n − 1
n + 1

α

]
, Θ(α) = 0, (18)

F ′(∞) → 0, Θ(∞) → 1. (19)

Here α = B
√

(n+1)U0
2ν is the wall thickness parameter.

Writing
f(ξ) = f(η − α) = F (η), (20)

and using eq. (20), eqs. (16)–(19) become

f ′′′ + ff ′′ − 2n

n + 1
f ′2 + ε1

[
(3n − 1)f ′f ′′′ + 2(n − 1)ηf ′′f ′′′ +

3(3n − 1)
2

f ′′2 − n + 1
2

ff ′′′′
]

+ ε2
[
(3n − 1)f ′′2 + (n − 1)ηf ′′f ′′′] + 6φRe1/2

x

n + 1
2

f ′′2f ′′′ − 2A

n + 1
f ′ = 0, (21)

1
Pr

θ′′ + fθ′ = 0, (22)
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where the boundary conditions are

f ′(0) = 1, Mθ′(0) + Pr
[
f(0) +

n − 1
n + 1

α

]
, θ(0) = 0,

f ′(∞) → 0, θ(∞) → 1, (23)

in which ε1 = α1U0
μ (x+b)n−1, ε2 = α2U0

μ (x+b)n−1 and φ = β3U0
μ (x+b)n−1 are the material parameters of a third-grade

fluid, Re1/2
x =

√
U0(x+b)n−1

ν the local Reynolds number, A = σB2
0

ρU0(x+b)n−1 the Hartman number, Pr = μCp

k the Prandtl

number and M = Cp(T∞−Tm)
λ+Cs(Tm−T0)

the melting parameter.

The mathematical formulation of the skin friction coefficient Cf and of the local Nusselt number Nux can be
written as

Cf =
τw

ρU2
w

, Nux =
(x + b)qw

k(T∞ − Tm)
, (24)

where

τw =

[
μ

∂u

∂y
+ α1

(
u

∂2u

∂x∂y
+ 2

∂u

∂x

∂u

∂y
+ v

∂2u

∂y2

)
+ 2β3

(
∂u

∂y

)3
]

y=B(x+b)
1−n

2

, (25)

qw = −k

(
∂T

∂y

)
y=B(x+b)

1−n
2

. (26)

The non-dimensionalised quantities of the skin friction coefficient Cf and of the local Nusselt number Nux become

Re1/2
x Cf =

[
f ′′(0)+ε1

(
7n − 1

2
f ′(0)f ′′(0)+α(n − 1)f ′′2(0)−n + 1

2
f(0)f ′′′(0)

)
+2φRe1/2

x

n + 1
2

f ′′3(0)
] √

n + 1
2

,

(27)

Re−1/2
x Nux = −θ′(0)

√
n + 1

2
. (28)

3 Homotopic solutions

Here we utilized the homotopy technique for the solution of non-linear differential equation. The homotopy technique is
used to obtain a convergent series solution for the non-linear system. We take the initial guesses for unknown function
and auxiliary operators in the form

f0(ξ) = α
1 − n

n + 1
+ (1 − e−ξ) − M

Pr
, θ0(ξ) = 1 − e−ξ, (29)

Lf = f ′′′ − f ′, Lθ = θ′′ − θ, (30)

Lf (c1 + c2e
ξ + c3e

−ξ) = 0, Lθ(c4e
ξ + c5e

−ξ) = 0, (31)

in which c1-c5 represent the constants.
The zeroth-order deformation problems are

(1 − p)Lf

[
f̂(ξ, p) − f0(ξ)

]
= ph̄fNf [f̂(ξ, p)], (32)

(1 − p)Lθ

[
θ̂(ξ, p) − θ0(ξ)

]
= ph̄θNθ[θ̂(ξ, p), f̂(ξ, p)], (33)
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where p is the embedding parameter varying from 0 to 1, h̄f and h̄θ denote the auxiliary parameters and Nf and Nθ

are

Nf

[
f̂(ξ, p)

]
=

∂3f̂(ξ, p)
∂ξ3

+ f̂(ξ, p)
∂2f̂(ξ, p)

∂ξ2
− 2n

n + 1

(
∂f̂(ξ, p)

∂ξ

)2

+ ε1

(
(3n − 1)

∂f̂(ξ, p)
∂ξ

∂3f̂(ξ, p)
∂ξ3

+ 2(n − 1)ξ

∂2f̂(ξ, p)
∂ξ2

∂3f̂(ξ, p)
∂ξ3

+
3(3n − 1)

2

(
∂2f̂(ξ, p)

∂ξ2

)2

− n + 1
2

f̂(ξ, p)
∂4f̂(ξ, p)

∂ξ4

)

+ ε2

⎛
⎝(3n − 1)

(
∂2f̂(ξ, p)

∂ξ2

)2

+ (n − 1)ξ
∂2f̂(ξ, p)

∂ξ2

∂3f̂(ξ, p)
∂ξ3

⎞
⎠ + 6φRe1/2

x

n + 1
2

(
∂2f̂(ξ, p)

∂ξ2

)2

∂3f̂(ξ, p)
∂ξ3

− 2A

n + 1
∂f̂(ξ, p)

∂ξ
, (34)

Nθ

[
θ̂(ξ, p), f̂(ξ, p)

]
=

1
Pr

∂2θ̂(ξ, p)
∂ξ2

+ f̂(ξ, p)
∂θ̂(ξ, p)

∂ξ
, (35)

with boundary conditions

f̂ ′(0, p) = 1,Mθ̂′(0, p) + Pr
[
f̂(0, p) +

n − 1
n + 1

α

]
= 0, f̂ ′(∞, p) = 0,

θ̂(0, p) = 0, θ̂(∞, p) = 1. (36)

The m-th–order equations are

Lf [fm(ξ) − χmfm−1(ξ)]= h̄fRf,m(ξ), (37)
Lθ [θm(ξ) − χmθm−1(ξ)]= h̄θRθ,m(ξ), (38)

χm =

{
0, m ≤ 1,

1, m > 1,
(39)

Rf,m(ξ)=f ′′′
m−1 +

m−1∑
k=0

[
fm−1−kf ′′

k − 2n

n + 1
f ′

m−1−kf ′
k

]

+ ε1

m−1∑
k=0

[
(3n−1)f ′

m−1−kf ′′′
k +2(n−1)ξf ′′

m−1−kf ′′′
k +

3(3n−1)
2

f ′′
m−1−kf ′′

k −
n+1

2
fm−1−kf iv

k

]

+ ε2

m−1∑
k=0

[
(3n − 1)f ′′

m−1−kf ′′
k + (n − 1)ξf ′′

m−1−kf ′′′
k

]
− 2A

n + 1
f ′

m−1

+
m−1∑
l=0

f ′′
m−1−l

⎛
⎝6φRe1/2

x

n + 1
2

l∑
j=0

f ′′
l−jf

′′′
j

⎞
⎠ , (40)

Rθ,m(ξ)=
1
Pr

θ′′m−1 +
m−1∑
l=0

[
θ′m−1−lfl

]
, (41)

with boundary conditions

f ′
m(0) = Mθ′m(0) + Pr fm(0) = f ′

m(∞) = θm(0) = θm(∞) = 0. (42)

The general solutions (fm, θm) including the special solutions (f∗
m, θ∗m) are defined by

fm(ξ) = f∗
m(ξ) + c1 + c2e

ξ + c3e
−ξ,

θm(ξ) = θ∗m(ξ) + c4e
ξ + c5e

−ξ. (43)
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Fig. 1. h̄-curve for f ′′(0) when M = 0.5, Pr = 1.9, A = 0.7, α = 0.1, ε1 = ε2 = φ = Re
1/2
x = 0.1 and n = 1.5.

Fig. 2. h̄-curve for θ′(0) when M = 0.5, Pr = 1.9, A = 0.7, α = 0.1, ε1 = ε2 = φ = Re
1/2
x = 0.1 and n = 1.5.

Table 1. Convergence of HAM solutions for various orders of approximations when M = 0.5, Pr = 1.9, A = 0.7, α = 0.1,

ε1 = ε2 = φ = Re
1/2
x = 0.1 and n = 1.5.

Order of approximations −f ′′(0) θ′(0)

1 0.9162 0.6237

3 0.9001 0.6267

5 0.8990 0.6231

7 0.8984 0.6206

8 0.8983 0.6203

9 0.8983 0.6198

20 0.8983 0.6198

30 0.8983 0.6198

40 0.8983 0.6198

45 0.8983 0.6198

4 Convergence analysis

Homotopic procedure is adopted to obtain the convergent series solutions. The region of convergence is parallel to
h̄-axis (see figs. 1 and 2). It is observed that the suitable range of parameter h̄f is [−1.5,−0.6] and h̄θ is [−1.5,−0.8].
The convergent series solution is obtained for h̄f = −0.6 and h̄θ = −1.3.

Table 1 illustrates the convergence of series solutions for basic equations. Here for the convergence of the velocity
the 8th order of approximation is enough, whereas the 9th order of approximation is sufficient for the temperature.
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Fig. 3. Impact of n on velocity.

Fig. 4. Impact of ε1 on velocity.

Fig. 5. Impact of ε2 on velocity.

5 Discussion

5.1 Dimensionless velocity profiles

Figure 3 illustrates the increasing behavior of n vs. velocity f ′(ξ). It is found that the thickness of the wall decreases
for larger values of n which increases the fluid velocity. Figures 4, 5 illustrate the variation of material parameters ε1
and ε2. It is seen that the velocity increases for increasing values of ε1 and ε2. The boundary layer thickness enhances
for increasing values of fluid parameters. The velocity increases. Figure 6 describes the variation of Hartman number
A on the velocity profile. Larger values of the Hartman number reduces the velocity. The influence of the melting
parameter M on velocity f ′(ξ) is illustrated in fig. 7. Here the velocity decreases for increasing values of M . Figures 8
and 9 shows the decreasing behavior of φ and Re1/2

x vs. velocity profile.
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Fig. 6. Impact of A on velocity.

Fig. 7. Impact of M on velocity.

Fig. 8. Impact of φ on velocity.

5.2 Dimensionless temperature profiles

Figure 10 exhibits the variation of melting parameter with θ(ξ). It is clear that large values of the melting parameter
correspond to lower temperature. Figure 11 analyzes the impact of Prandtl number on the temperature profile θ(ξ).
Here the temperature increases when Pr is enhanced. Temperature is a decreasing function of the wall thickness
parameter α (see fig. 12).
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Fig. 9. Impact of φ1 on velocity.

Fig. 10. Impact of M on θ(ξ).

Fig. 11. Impact of Pr on θ(ξ).

5.3 Skin friction coefficient

The impact of embedded variables on the skin friction coefficient Re1/2
x Cf is characterized in figs. 13-14. Figure 13

illustrates the reduction of the skin friction coefficient via ε1 and higher values of the shape parameter n. From fig. 14
it is seen that the skin friction coefficient decreases for increasing values of ε1. Figure 15 shows that for larger values
of ε2 the skin friction coefficient Re1/2

x Cf decreases.
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Fig. 12. Impact of α on θ(ξ).

Fig. 13. Impact of n on Re
1/2
x Cf .

Fig. 14. Impact of ε1 on Re
1/2
x Cf .

Fig. 15. Impact of ε2 on Re
1/2
x Cf .
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Fig. 16. Impact of n on Re
−1/2
x Nux.

Fig. 17. Impact of φ on Re
−1/2
x Nux.

Fig. 18. Impact of Pr on Re
−1/2
x Nux.

5.4 Nusselt number

Figure 16 depicts the decreasing behavior of n on the surface heat transfer rate Re−1/2
x Nux via Pr. The impact of

φ on the Nusselt number Re−1/2
x Nux via Pr is displayed in fig. 17. Here we noticed that surface heat transfer rate

Re−1/2
x Nux reduces for higher values of φ via Pr. Figure 18 depicts the decreasing behavior of Pr on the surface heat

transfer rate Re−1/2
x Nux.
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6 Main results

The stretched flow of a third-grade fluid with variable thickness and melting heat transfer is explored here. The main
observation of the given problem are summarized as follows:

– The velocity profile is a decreasing function of the melting parameter and the wall thickness parameter.
– The velocity is dominant for the shape parameter.
– Increasing values of the Hartman number reduce the velocity profile.
– Reduction in temperature distribution is observed for higher values of the melting parameter.
– Increasing values of Pr yield on an increase in the temperature.
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