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Abstract. Under investigation in this paper is a generalized (3+1)-dimensional varible-coefficient nonlinear-
wave equation, which has been presented for nonlinear waves in liquid with gas bubbles. The bilinear form,
Bäcklund transformation, Lax pair and infinitely-many conservation laws are obtained via the binary
Bell polynomials. One-, two- and three-soliton solutions are generated by virtue of the Hirota method.
Travelling-wave solutions are derived with the aid of the polynomial expansion method. The one-periodic
wave solutions are constructed by the Hirota-Riemann method. Discussions among the soliton, periodic-
and travelling-wave solutions are presented: I) the soliton velocities are related to the variable coefficients,
while the soliton amplitudes are unaffected; II) the interaction between the solitons is elastic; III) there
are three cases of the travelling-wave solutions, i.e., the triangle-type periodical, bell-type and soliton-type
travelling-wave solutions, while we notice that bell-type travelling-wave solutions can be converted into
one-soliton solutions via taking suitable parameters; IV) the one-periodic waves approach to the solitary
waves under some conditions and can be viewed as a superposition of overlapping solitary waves, placed
one period apart.

1 Introduction

As encountered in some branches of science and engineering, such as fluid mechanics, condensed matter physics,
particle physics, elastic mechanics and plasma physics [1–8], nonlinear evolution equations (NLEEs) have been used
to describe some nonlinear physical phenomena and the propagation characteristics of waves [9–12]. As the exact
solutions of the NLEEs can provide much physical information and more insight into the physical aspects of the
problems [13–16], it is significant to derive the exact solutions of NLEEs, e.g., soliton [17–20], travelling-wave [21]
and periodic-wave solutions [22]. Accordingly, Bell-polynomial manipulation [23,24], Hirota bilinear method [25–28],
Bäcklund transformation (BT) [29,30], polynomial expansion method [31] and Hirota-Riemann method [32–37] were
proposed.

In the field of the liquid with gas bubbles, bubble-liquid mixture equations have been developed to describe the
propagation of weakly nonlinear waves [38,39]. As the real nonlinear waves in a liquid with gas bubbles are multi-
dimensional, a liquid with gas bubbles in the 3D case should be take consideration. Motived by that, a generalized
(3 + 1)-dimensional nonlinear-wave equation [40]

[4ut + 4uux + uxxx − 4ux]x + 3(uyy + uzz) = 0, (1)

has been proposed, where u is the wave-amplitude function of the scaled spatial coordinates x, y, z and temporal
coordinate t, the subscripts x, y, z and t represent the partial derivatives.

The variable-coefficient NLEEs can describe real phenomena in the inhomogeneities of media and non-uniformities
of boundaries and provide us with more properties than their constant-coefficient counterparts in some realistic physical
situations [41–43]. For example, in the context of ocean waves, the temporal variability of the coefficients may be
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caused by the pressure dependence of thermal expansion coefficient of seawater coupled with the large-scale meridional
variation of the oceanic temperature-salinity relation, topography of the continental shelf, changing hydrography from
deep to shallow water and other dynamical conditions [44–46]. In this paper, we will investigate the generalization of
eq. (1) with variable coefficients as

[ut + α(t)uux + β(t)uxxx + γ(t)ux]x + δ(t)uyy + �(t)uzz = 0, (2)

where α(t), β(t), γ(t), δ(t) and �(t) are all the real functions of t. Another constant-coefficient special case of eq. (2)
has been seen [47], and another variable-coefficient version of eq. (2) has been presented [48].

This article will be organised as follows. In sect. 2, concepts and formulas about the binary Bell polynomial approach
will be introduced, and the bilinear form, Bäcklund transformations, Lax pair and infinitely-many conservation laws
of eq. (2) will also be obtained. The soliton, travelling-wave and periodic-wave solutions will be derived in sects. 3, 4
and 5, respectively. In sect. 6, the discussions about the soliton, travelling-wave and periodic-wave solutions will be
presented analytically and graphically. Conclusions will be given in sect. 7.

2 Bilinear form, Bäcklund transformations, Lax pair and infinitely-many conservation laws of
eq. (2)

In this section, Bilinear form, Bäcklund transformations, Lax pair and infinitely-many conservation laws of eq. (2) are
obtained via the binary Bell polynomials.

2.1 Multi-dimensional Bell polynomials

Multi-dimensional Bell polynomials are defined as follows [47]:

Yn1x1,...,nrxr
(f) ≡ Yn1,...,nr

(fl1x1 , . . . , flrxr
) = e−f∂n1

x1
· · · ∂nr

xr
ef , (3)

where f = f(x1, x2, · · · , xn) be a C∞ function, fl1x1,...,lrxr
= ∂l1

x1
· · · ∂lr

xr
(0 ≤ li ≤ ni, i = 1, 2, . . . , r). Taking n = 1,

the Bell polynomials is given by

Ynx(f) ≡ Yn(f1, . . . , fn) =
∑ n!

s1! · · · sn!(1!)s1 · · · (n!)sn
fs1
1 · · · fsn

n , n =
n∑

k=1

ksk. (4)

The multi-dimensional binary Bell polynomials can be defined as follows:

Yn1x1,...,nrxr
(v, w) = Yn1,...,nr

(f)|fl1x1,...,lrxr
=

{
vl1x1,...,lrxr

, l1 + · · · + lr is odd,

wl1x1,...,lrxr
, l1 + · · · + lr is even.

(5)

For example,

Yx(v, w) = vx, Y2x(v, w) = v2
x + w2x,

Y3x(v, w) = v3x + 3vxw2x + v3
x, Yx,t(v, w) = vxvt + wxt, · · · (6)

The link between the Y -polynomials and the Hirota bilinear operator can be given through the identity

Yn1x1,...,nrxr

(
v = ln

F

G
, w = lnFG

)
=

1
FG

Dn1
x1

· · ·Dnr
xr

F · G, (7)

where F and G are both the functions of x and t. Taking F = G, the identity (7) becomes

1
F 2

Dn1
x1

· · ·Dnr
xr

F · F = Y (0, q = 2 ln F ) =

{
0, n1 + · · · + nr is odd,

Pn1x1,...,nrxr
(q), n1 + · · · + nr is even.

(8)

For example,

P2x(q) = q2x, P4x(q) = q4x + 3q2
2x,

P6x(q) = q6x + 15q2xq4x + 15q3
2x, Px,t(q) = qxt, · · · . (9)
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The binary Bell polynomials Yn1x1,...,nrxr
(v, w) can be separated into P-polynomials and Y -polynomials

1
FG

Dn1
x1

· · ·Dnr
xr

F · G = Yn1x1,...,nrxr
(v, w)|v=ln F

G ,w=ln FG =

∑

n1+···+nr=even

n1∑

l1=0

· · ·
nr∑

lr=0

r∏

i=0

(
ni

li

)
pl1x1,...,lrxr

(q)Y(n1−l1)x1,...,(nr−lr)xr
(v). (10)

The key property of the multi-dimensional Bell polynomials,

Yn1x1,...,nrxr
(v)|v=ln ψ = ψn1x1,...,nrxr

/ψ, (11)

implies that the binary Bell polynomials Yn1x1,...,nrxr
(v, w) can still be linearized by means of the Hopf-Cole transfor-

mation v = lnψ, that is, ψ = F/G.

2.2 Bilinear form of eq. (2)

In order to obtain the linearizable representation of eq. (2), we introduce

u = cq2x, (12)

where c is a real nonzero constant. Substituting expression (12) into eq. (2) and integrating once with respect to x,
we get

E(q) = qx,t +
1
2
cα(t)q2

2x + β(t)q4x + γ(t)q2x + δ(t)q2y + �(t)q2z = 0. (13)

Setting c = 6, α(t) = β(t) and using (9), we can obtain the connection between eq. (13) and the P-polynomials, as

E(q) = Px,t(q) + β(t)P4x(q) + γ(t)P2x(q) + δ(t)P2y(q) + �(t)P2z(q) = 0. (14)

Finally, through property (8) and setting q(x, y, z, t) = 2 ln f(x, y, z, t), eq. (14) gives the bilinear form of eq. (2) as
follows:

[DxDt + β(t)D4
x + γ(t)D2

x + δ(t)D2
y + �(t)D2

z ]f · f = 0, (15)

2.3 Bäcklund transformations of eq. (2)

In order to seek the Bäcklund transformations of eq. (2), we suppose q̃ = 2 ln f̃ be another solution of eq. (14), then

E(q̃) − E(q) = [Px,t(q̃) + β(t)P4x(q̃) + γ(t)P2x(q̃) + δ(t)P2y(q̃) + �(t)P2z(q̃)]
− [Px,t(q) + β(t)P4x(q) + γ(t)P2x(q) + δ(t)P2y(q) + �(t)P2z(q)] = 0. (16)

Those conditions can be regarded as an ansatz for a bilinear Bäcklund transformation and may produce the required
transformation under the appropriate additional constraints. To find such constraints, we introduce some new auxiliary
variables

W = ln(ff̃), V = ln
f̃

f
, q̃ = 2 ln f̃ = W + V, q = 2 ln f = W − V, (17)

then rewrite the condition (16) as

E(q̃) − E(q) = [Px,t(W + V ) − Px,t(W − V )] + β(t)[P4x(W + V ) − P4x(W − V )]
+ γ(t)[P2x(W + V ) − P2x(W − V )] + δ(t)[P2y(W + V ) − P2y(W − V )]
+ �(t)[P2z(W + V ) − P2z(W − V )]

= 2Vx,t + 2β(t)(V4x + 6W2xV2x) + 2γ(t)V2x + 2δ(t)V2y + 2�(t)V2z = 0. (18)

For the sake of expressing eq. (18) as Y -polynomials, we choose

Y2x(V,W ) + 	Yz(V,W ) = λ,

3	2β(t) = �(t), (19)
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in which 	 is an undetermined constant, and λ is an arbitrary parameter. On account of eq. (19), eq. (18) can be
rewritten as

∂x{Yt(V,W ) + β(t)Y3x(V,W ) + [3λβ(t) + γ(t)]Yx(V,W ) − 3	β(t)Yx,z(V,W )} + ∂y[δ(t)Yy(V,W )] = 0. (20)

With the aid of formula (10), eq. (7) can be transformed into a bilinear form as follows:

(D2
x + 	Dz − λ)f · g = 0,

{∂x[Dt + β(t)D3
x + (3λβ(t) + γ(t))Dx − 3	β(t)DxDz] + ∂y[δ(t)Dy]}f · g = 0, (21)

where 	2 = �(t)
3β(t) , then g is another solution of eq. (15). The system (21) is called a Bäcklund transformation of the

generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation (2).

2.4 Lax pair and infinitely-many conservation laws of eq. (2)

With the help of (11) and the Cole-Hopf transformation V = lnψ, (10) read as follows:

Yx(V,W ) =
ψx

ψ
,

Yy(V,W ) =
ψy

ψ
,

Yz(V,W ) =
ψz

ψ
,

Yt(V,W ) =
ψt

ψ
,

Y2x(V,W ) = q2x +
ψ2x

ψ
,

Y3x(V,W ) =
ψ3x

ψ
+

3q2xψx

ψ
,

Y2x,y(V,W ) =
q2xψy

ψ
+

2qx,yψx

ψ
+

ψ2x,y

ψ
. (22)

Via formula (22), eqs. (19) and (20) can be linearized into the following Lax system:

ψ2x + 	ψz + (u2x − λ)ψ = 0,

∂x{ψx + β(t)(ψ3x + 3u2xψx) + [3λβ(t) + γ(t)]ψx − 3	β(t)(ux,tψ + ψx,t)} + ∂y[δ(t)ψy] = 0. (23)

In order to derive infinitely-many conservation laws of eq. (2), we shall decompose (19) and (20) into the x-, y-
and z-derivative as follows:

V 2
x + W2x + 	Vz − λ = 0,

∂x{β(t)(V3x + 3VxW2x + V 3
x ) + [3λβ(t) + γ(t)]Vx − 3	β(t)VxVz}

+ ∂y[δ(t)Vy] + ∂z[−3	λβ(t) + 3	β(t)V 2
x + �(t)Vz] + ∂t(Vx) = 0. (24)

By introducing a new potential function,
η = (q̃x − qx)/2, (25)

there follows, from relations (17), that

Vx = η, Vy = ∂−1
x (ηy), Vz = ∂−1

x (ηz), Wx = qx + η. (26)

Substituting (26) into (24), we decompose (18) into a Riccati-type equation

q2x + ηx + η2 + 	∂−1
x ηz − λ = 0, (27)

which is a new potential equation with respect to q and a divergence-type equation

∂x[β(t)η2x + 6λβ(t)η − 2β(t)η3 − 6	β(t)η∂−1
x ηz + γ(t)η] + ∂y[δ(t)∂−1

x ηy]

+ ∂z[−3	λβ(t) + 3	β(t)η2 + �(t)∂−1
x ηz] + ηt = 0, (28)
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Letting λ = ε2 and making use of transformation η = η̃ + ε, eqs. (27) and (28) can be rewritten as

q2x + η̃x + η̃2 + 2η̃ε + 	∂−1
x η̃z = 0, (29)

∂x[β(t)η̃2x + 4β(t)ε3 − 2β(t)η̃3 − 6β(t)εη̃2 − 6	β(t)η̃∂−1
x η̃z − 6	β(t)ε∂−1

x η̃z

+ γ(t)(η̃ + ε)] + ∂y[δ(t)∂−1
x η̃y] + ∂z[3	β(t)η̃2 + 6	β(t)εη̃ + �(t)∂−1

x η̃z] + η̃t = 0. (30)

By inserting the expansion,

η̃ =
∞∑

n=1

Jn(q, qx, . . .)ε−n, (31)

into eq. (29) and equating the coefficients for the same powers of ε, we can get

q2x +
∞∑

n=1

Jn,xε−n + 	∂−1
x

∞∑

n=1

Jn,zε
−n + 2J1 + 2

∞∑

n=1

Jn+1ε
−n +

∞∑

n=1

(
n−1∑

n=1

JiJn−iε
−n

)
= 0, (32)

then we can explicitly derive the recursion relationship of the conserved densities J as follows:

J1 = −1
2
q2x = − 1

12
u,

J2 =
1
4
q3x +

1
4
	qx,z =

1
24

(ux + 	∂−1
x uz),

...

Jn+1 = −1
2

(
Jn,x + 	∂−1

x Jn,z +
n−1∑

i=1

JiJn−i

)
, (n = 2, 3, · · · ). (33)

In addition, substituting expansion (31) into (30), we have

∂x

[
β(t)

∞∑

n=1

Jn,2xε−n + 4β(t)ε3 − 2β(t)
∞∑

n=1

(
∑

k1+k2+k3=n

Jk1Jk2Jk3ε
−n

)

− 6β(t)ε
∞∑

n=1

(
n−1∑

i=1

JiJn−iε
−n

)
− 6	β(t)

( ∞∑

n=1

Jnε−n

)
∂−1

x

( ∞∑

n=1

Jn,zε
−n

)

− 6	β(t)ε∂−1
x

( ∞∑

n=1

Jn,zε
−n

)
+ γ(t)

(
ε +

∞∑

n=1

Jnε−n

)]
+ ∂y

[
δ(t)∂−1

x

( ∞∑

n=1

Jn,yε−n

)]

+ ∂z

{
3	β(t)

[ ∞∑

n=1

(
n−1∑

i=1

JiJn−iε
−n

)
+ 2

(
J1 +

∞∑

n=1

Jn+1ε
−n

)]
+ �(t)

(
∂−1

x

∞∑

n=1

Jn,zε
−n

)}

+
∞∑

n=1

Jn,tε
−n = 0. (34)

While the first fluxes Xn’s are given by

X1 = β(t)J1,2x + γ(t)J1 − 6β(t)J 2
1 − 6β(t)	∂−1

x J2,z,

X2 = β(t)J2,2x + γ(t)J2 − 12β(t)J1J2 − 6β(t)	∂−1
x J3,z − 6β(t)	J1∂

−1
x J1,z,

... (35)

Xn = β(t)

(
Jn,2x − 6

n∑

i=1

JiJn−i+1 − 2
∑

k1+k2+k3=n

Jk1Jk2Jk3

)

− 6β(t)	

(
∂−1

x Jn+1,z +
n∑

k=1

Jk∂−1
x Jn−k,y

)
+ γ(t)Jn, (n = 3, 4, · · · ), (36)
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the second fluxes An’s are given by

A1 = δ(t)∂−1
x J1,y = − 1

12
δ(t)∂−1

x uy,

A2 = δ(t)∂−1
x J2,y =

1
24

δ(t)(uy + 	∂−1
2x uy,z),

...

An+1 = δ(t)∂−1
x Jn,y, (n = 2, 3, · · · ), (37)

where ∂−1
2x means integrating with respect to x twice, and the third fluxes Zn’s are given by

Z1 = 6β(t)	J2 + �(t)∂−1
x J1,z,

Z2 = 3β(t)	J 2
1 + 6β(t)	J3 + �(t)∂−1

x J2,z,

...

Zn+1 = 3β(t)	
n−1∑

i=1

JiJn−i + 6β(t)	Jn+1 + �(t)∂−1
x Jn,z (n = 2, 3, · · · ). (38)

The conversed densities J and three fluxes X ,A ,Z provide us the infinitely-many conservation laws

Jn,t + Xn,x + An,y + Zn,z = 0, (n = 1, 2, . . .). (39)

3 Soliton solutions of eq. (2)

Soliton solutions of eq. (2) can be derived by expanding f(x, y, z, t) as

f(x, y, z, t) = 1 + εf1(x, y, z, t) + ε2f2(x, y, z, t) + ε3f3(x, y, z, t) + . . . , (40)

where fv(x, y, z, t)’s (v = 1, 2, 3, . . .) are the real functions of x, y, z and t.

3.1 One-soliton solutions

Truncating expressions (40) as
f(x, y, z, t) = 1 + εf1(x, y, z, t), (41)

setting ε = 1 and substituting expression (41) into eq. (15), we obtain the one-soliton solutions for eq. (2) as

u = 12(ln f)2x =
12k2

1e
θ1

(1 + eθ1)2
, (42)

with

ω1(t) =
∫ −k4

1β(t) − k2
1γ(t) − l21δ(t) − p2

1�(t)
k1

dt,

θ1 = k1x + l1y + p1z + ω1(t) + η1, (43)

where k1, l1, p1 and η1 are all complex constants.

3.2 Two-soliton solutions

Truncating expressions (40) as

f(x, y, z, t) = 1 + εf1(x, y, z, t) + ε2f2(x, y, z, t), (44)
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substituting expression (44) into eq. (15) and setting ε = 1, we can get the two-soliton solutions for eq. (2) as

u =
12[k2

1e
θ1(1 + eθ2)(1 + A12e

θ2) + 2k1k2(A12 − 1)eθ1+θ2 + k2
2e

θ2(1 + eθ1)(1 + A12e
θ1)]

(1 + eθ1 + eθ2 + A12eθ1+θ2)2
, (45)

where

ωi(t) =
∫ −k4

i β(t) + k2
i (−γ(t)) − l2i δ(t) − p2

i �(t)
ki

dt (i = 1, 2),

θi = kix + liy + piz + ωi(t) + ηi (i = 1, 2),

A12 = 1 + 12k3
1k

3
2β(t)/[−3k2

2k
4
1β(t) − 6k3

2k
3
1β(t) − 3k4

2k
2
1β(t) + k2

1l
2
2δ(t)

− 2k2k1l1l2δ(t) + k2
2l

2
1δ(t) + �(t) (k1p2 − k2p1)

2], (46)

with ki, li, pi and ηi are all the complex constants.

3.3 Three-soliton solutions

Truncating expressions (40) as

f(x, y, z, t) = 1 + εf1(x, y, z, t) + ε2f2(x, y, z, t) + ε3f3(x, y, z, t), (47)

substituting expression (47) into eq. (15) and setting ε = 1, we can derive the three-soliton solutions for eq. (2) as

u = 12((A12e
θ1+θ2 + A123e

θ1+θ2+θ3 + A13e
θ1+θ3 + A23e

θ2+θ3 + eθ1 + eθ2 + eθ3 + 1)

× (A12e
θ1+θ2(k1 + k2)2 + A123e

θ1+θ2+θ3(k1 + k2 + k3)2 + A13e
θ1+θ3(k1 + k3)2

+ A23e
θ2+θ3(k2 + k3)2 + eθ1k2

1 + eθ2k2
2 + eθ3k2

3) − (A12e
θ1+θ2(k1 + k2)

+ A123e
θ1+θ2+θ3(k1 + k2 + k3) + A13e

θ1+θ3(k1 + k3) + A23e
θ2+θ3(k2 + k3) + eθ1k1 + eθ2k2

+ eθ3k3)2)/(A12e
θ1+θ2 + A123e

θ1+θ2+θ3 + A13e
θ1+θ3 + A23e

θ2+θ3 + eθ1 + eθ2 + eθ3 + 1)2, (48)

where

ωi(t) =
∫ −k4

i β(t) + k2
i (−γ(t)) − l2i δ(t) − ϑ2

i �(t)
ki

dt (i = 1, 2, 3),

θi = kix + liy + piz + ωi(t) + ηi (i = 1, 2, 3),

Aij = 1 + 12k3
i k3

j β(t)/[−3k2
j k4

i β(t) − 6k3
j k3

i β(t) − 3k4
j k2

i β(t) + k2
i l2j δ(t)

− 2kjkililjδ(t) + k2
j l2i δ(t) + �(t) (kipj − kjpi)

2], (i = 1, 2; j = 2, 3.) (49)

A123 = [3k2k3((−A12 + A13 + A23)k2 + (A12 − A13 + A23)k3)β(t)k4
1

− 6k2k3((A12 + A13 + A23)k2
2 − 2(A12 + A13 − A23)k3k2

+ (A12 + A13 + A23)k2
3)β(t)k3

1 − (3(A12 − A13 − A23)k3β(t)k4
2

− 12(A12 − A13 + A23)k2
3β(t)k3

2 + 12(A12 − A13 − A23)k3
3β(t)k2

2

− (A12 − A13 + A23)(3β(t)k4
3 − l23δ(t) − p2

3�(t))k2

− (A12 − A13 − A23)k3(�(t)p2
2 + l22δ(t)))k

2
1 + (3(A12 + A13 − A23)k2

3β(t)k4
2

− 6(A12 + A12 + A23)k3
3β(t)k3

2 + (A12 + A13 − A23)(3β(t)k4
3 − l23δ(t) − p2

3�(t))k2
2

+ 2k3(((−A12 + A13 + A23)l1l2 + ((A12 − A13 + A23)l1 + (A12 + A13 − A23)l2)l3)δ(t)
+ ((−A12 + A13 + A23)p1p2 + ((A12 − A13 + A23)p1 + (A12 + A13 − A23)p2)p3)�(t))k2

− (A12 + A13 − A23)k2
3(�(t)p2

2 + l22δ(t)))k1 + k2k3((A12 − A13 − A23)k2

− (A12 − A13 + A23)k3)(�(t)p2
1 + l21δ(t))]/[3k2k3(k2 + k3)β(t)k4

1

+ 6k2k3(k2 + k3)2β(t)k3
1 + (3k3β(t)k4

2 + 12k2
3β(t)k3

2 + 12k3
3β(t)k2

2

+ (3β(t)k4
3 − l23δ(t) − p2

3�(t))k2 − k3(�(t)p2
2 + l22δ(t)))k

2
1 + (3k2

3β(t)k4
2 + 6k3

3β(t)k3
2

+ (3β(t)k4
3 − l23δ(t) − p2

3�(t))k2
2 + 2k3((l1l2 + (l1 + l2)l3)δ(t)

+ (p1p2 + (p1 + p2)p3)�(t))k2 − k2
3(�(t)22 + l22δ(t)))k1 − k2k3(k2 + k3)(�(t)p2

1 + l21δ(t))], (50)

with ki, li, pi and ηi as complex constants.
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4 Travelling-wave solutions of eq. (2)

In this section, with the aid of the polynomial expansion method, we would like to construct the travelling wave
solutions of eq. (2).

4.1 Polynomial-expansion method

For a given (3 + 1)-dimensional NLEE

F (u, ux, uy, uz, ut, uxx, uyy, uzz, utt, uxy, uxz, uyz, uxt, uyt, uzt, · · · ) = 0, (51)

we seek its travelling-wave solutions in the following form [49]:

u(x, y, z, t) = U(ξ), ξ = kx + ly + pz + ω(t), (52)

where ω(t) is a function of t, and k, l, p are all free constants.
Substituting eq. (52) into eq. (51), eq. (51) can be converted into a nonlinear ordinary differential equation (ODE)

F

(
U,

dU

dξ
,
d2U

dξ2
,
d3U

dξ3
, · · ·

)
= 0. (53)

We assume the solutions of eq. (53) have the following form:

U(ξ) = a0(t) +
n∑

i=1

ai(t)Z(ξ)i +
n∑

i=1

bi(t)Z(ξ)−i, (54)

with
dZ

dξ
= Z2 + AZ + B, (55)

where ai(t), bi(t) (i = 1, 2, · · · , n) are functions of t, and A,B are free constants. The constant parameter n is a
positive integer determined by the equilibrium of the nonlinear terms and the highest-order linear term of eq. (53).

Accordingly, eq. (55) have several types of solutions as
1) when A = 0, B = 0,

Z(ξ) = −1
ξ

; (56)

2) when A �= 0, B = 0,

Z(ξ) =
A

C0e−Aξ − 1
, (57)

where C0 is an integrating constant;
3) when A = 0, B > 0,

Z(ξ) =

{√
B tan(

√
Bξ),

−
√

B cot(
√

Bξ);
(58)

4) when A = 0, B < 0,

Z(ξ) =

{
−
√
−B tanh(

√
−Bξ),

√
−B coth(

√
−Bξ);

(59)

5) when A �= 0, B �= 0,

Z(ξ) =
θ1 − C1θ2e

(θ1−θ2)ξ

1 − C1e(θ1−θ2)ξ
, (60)

with

θ1 =
−A +

√
A2 − 4B

2
, θ2 =

−A −
√

A2 − 4B

2
, (61)

where C1 is an integrating constant.
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4.2 Travelling-wave solutions

According to the travelling-wave transformation (52), eq. (2) can be rewrite as the following ODE form:

k4β(t)U (4) + [kω′(t) + k2γ(t) + l2δ(t) + p2�(t)]U ′′ + k2β(t)U ′2 + k2β(t)UU ′′ = 0. (62)

Based on the definition n of eq. (54), we derive that n = 2 in eq. (62). Then eq. (54) can be reduced to

U(ξ) = a0(t) + a1(t)Z(ξ) + a2(t)Z(ξ)2 +
b1(t)
Z(ξ)

+
b2(t)
Z(ξ)2

, (63)

substituting the expression (63) into eq. (62) and using eq. (55), algebraic equation of Z(ξ) can be derived. Then
equating the coefficients of the Z(ξ) power series at all levels to zero, we get the following results:

Case 1)

A �= 0, B = b1(t) = b2(t) = 0, a0(t) = −k2A2, a1(t) = −12k2A,

a2(t) = −12k2, ω(t) =
∫ −k2γ(t) − l2δ(t) − p2�(t)

k
dt. (64)

Case 2)

B �= 0, A = a1(t) = b1(t) = 0, a0(t) = −8k2B, a2(t) = −12k2,

b2(t) = −12k2B2, ω(t) =
∫ −k2γ(t) − l2δ(t) − p2�(t)

k
dt. (65)

Combing Case 1), Case 2) with eq. (56)–(60), we obtain the following three types of travelling-wave solutions of
eq. (2):

I) when A = 0, B > 0,
u1 = −8k2B − 12k2B cot2(

√
Bξ) − 12k2B tan2(

√
Bξ); (66)

II) when A �= 0, B = 0,

u2 = −k2A2 − 12k2A2(1 + Θ)
Θ2

, (67)

with
Θ = C0e

−Aξ − 1; (68)

III) when A = 0, B < 0,

u3 = −8k2B + 12k2B coth2(
√
−Bξ) + 12k2B tanh2(

√
−Bξ); (69)

where ξ = kx + ly + pz +
∫ −k2γ(t)−l2δ(t)−p2�(t)

k dt, k, l, p and C0 are all free constants.

5 Periodic-wave solutions of eq. (2)

In this section, with the help of the Hirota-Riemann method [47], we will construct the one-periodic wave solutions of
eq. (2).

5.1 Hirota-Riemann method for NLEEs

The multi-dimensional Riemann theta function is defined as follows:

ϑ(ξ, τ) =
∑

n∈ZN

eπi〈nτ,n〉+2πi〈ξ,n〉, (70)

where the integer value vector n = (n1, . . . , nN )T ∈ ZN and complex phase variables ξ = (ξ1, . . . , ξN )T ∈ CN .
Furthermore, for two vectors f = (f1, . . . , fN )T and g = (g1, . . . , gN )T , their inner product is defined by

〈f, g〉 = f1g1 + f2g2 + · · · + fNgN . (71)
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The equality of −iτ = −i(τij) is a positive definite and real-valued symmetric N × N matrix, which is called the
period matrix of the theta function. We consider the entries τij of the period matrix as free parameters of the theta
function (70). Equation (70) can converge to a real-valued function for an arbitrary vector ξ ∈ CN under the bilinear
conditions. The periodic-wave solutions can be constructed by an algebro-geometric method [47]. The matrix τ is
usually derived by a compact Riemann surface R of genus n ∈ N . In this paper, the real-valued theta function (70)
can be obtained through taking the matrix τ to be a pure imaginary matrix.

5.2 One-periodic wave solutions

To construct the one-periodic wave solutions of eq. (2), a more generalized form of the bilinear equation should be
introduced. Suppose that eq. (2) satisfies the asymptotic condition u → u0 when |ξ| → 0, we can find that the
periodic-wave solutions of eq. (2) follow the constraint

u = u0(t) + 12∂2
x ln ϑ(ξ, τ), (72)

where u0(t) is a function with respect to t of eq. (2), and phase variable ξ is of the form ξ = (ξ1, ξ2, . . . , ξN )T , ξi =
Kix + Liy + Piz + μi(t) + εi, (i = 1, 2, . . . , N).

Substituting the expression (72) into eq. (2), a new bilinear form can be obtained as follows:

[DxDt + β(t)D4
x + u0(t)β(t)D2

x + γ(t)D2
x + δ(t)D2

y + �(t)D2
z + c(t)]ϑ(ξ, τ) · ϑ(ξ, τ) = 0, (73)

where c(t) is a function with respect to t.
Setting (70) with N = 1, then (70) is reduced to the following form

ϑ(ξ, τ) =
+∞∑

n=−∞
eπin2τ+2πinξ, (74)

where ξ = Kx + Ly + Pz + μ(t) + ε, τ is a complex constant and meet the condition Im(τ) > 0. Substituting (74)
into (73), we have

B(Dx,Dy,Dz,Dt)ϑ(ξ, τ) · ϑ(ξ, τ) =
+∞∑

m=−∞

+∞∑

n=−∞
B(Dx,Dy,Dz,Dt)eπim2τ+2πimξ · eπin2τ+2πinξ

=
+∞∑

m=−∞

+∞∑

n=−∞
B(2iπ(n − m)K, 2iπ(n − m)L, 2iπ(n − m)P, 2iπ(n − m)μt)

eπi(m2+n2)τ+2πi(m+n)ξ m′=m+n=
+∞∑

m′=−∞
B̃(m′)e2πim′ξ, (75)

where

B̃(m′) =
+∞∑

n=−∞
B(2iπ(2n − m′)K, 2iπ(2n − m′)L, 2iπ(2n − m′)P, 2iπ(2n − m′)μt)eπi[n2+(n−m′)2]τ

n=n′+1=
+∞∑

n′=−∞
B(2iπ[2n′ − (m′ − 2)]K, 2iπ[2n′ − (m′ − 2)]L, 2iπ[2n′ − (m′ − 2)]P,

2iπ[2n′ − (m′ − 2)]μt)eπi[n′2+(n′−(m′−2))2]τ · e2πi(m′−1)τ =

B̃(m′ − 2)e2πi(m′−1)τ = · · · =

{
B̃(0)eπim′τ , m′ is even,

B̃(1)eπi(m′+1)τ , m′ is odd,
m′, n′ ∈ Z, (76)

from which we find that B̃(m′) for m′ ∈ Z are completely dominated by B̃(0) and B̃(1). If B̃(0) = B̃(1) = 0, then
it follows that B̃(m′) = 0, and thus (72) is an exact solution of the bilinear form (73), i.e., B(Dx,Dy,Dz,Dt)ϑ(ξ, τ) ·
ϑ(ξ, τ) = 0.
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Noticing the specific form of the bilinear form (73), the one-periodic wave solutions can be derived by

B̃(0) =
+∞∑

n=−∞
B(4nπiK, 4nπiL, 4nπiP, 4nπiμt)e2n2πiτ

=
+∞∑

n=−∞
[−16π2n2Kμt + 256β(t)π4n4K4 + 16u0(t)β(t)π2n2K2 − 16γ(t)π2n2K2

− 16δ(t)π2n2L2 − 16�(t)π2n2P 2 + c(t)]e2iπn2τ = 0, (77)

B̃(1) =
+∞∑

n=−∞
B(2iπ(2n − 1)K, 2iπ(2n − 1)L, 2iπ(2n − 1)P, 2iπ(2n − 1)μt)eπi(2n2−2n+1)τ

=
+∞∑

n=−∞
[−4π2(2n − 1)2Kμt + 16β(t)π4(2n − 1)4K4 + 4u0(t)β(t)π2(2n − 1)2K2

− 4γ(t)π2(2n − 1)2K2 − 4δ(t)π2(2n − 1)2L2 − 16�(t)π2(2n − 1)2P 2 + c(t)]

× eπi(2n2−2n+1)τ = 0. (78)

By introducing the following notations:

Λ = eπiτ ,

a11(t) = −
+∞∑

n=−∞
16π2n2KΛ2n2

, a12(t) =
+∞∑

n=−∞
Λ2n2

, (79)

a21(t) = −
+∞∑

n=−∞
4π2(2n − 1)2KΛ2n2−2n+1, a22(t) =

+∞∑

n=−∞
Λ2n2−2n+1,

bI(t) =
+∞∑

n=−∞
[−256β(t)π4n4K4 − 16u0(t)β(t)π2n2K2 + 16γ(t)π2n2K2

+ 16δ(t)π2n2L2 + 16�(t)π2n2P 2]Λ2n2
,

bII(t) =
+∞∑

n=−∞
[−16β(t)π4(2n − 1)4K4 − 4u0(t)β(t)π2(2n − 1)2K2 + 4γ(t)π2(2n − 1)2K2

+ 4δ(t)π2(2n − 1)2L2 + 4�(t)π2(2n − 1)2P 2]Λ2n2−2n+1,

eqs. (77) and (78) can be simplified to a linear system about the μt and c(t) as
(

a11(t) a12(t)
a21(t) a22(t)

) (
μt

c(t)

)
=

(
bI(t)
bII(t)

)
. (80)

Solving the eq. (80), the one-periodic wave solutions of eq. (2) can be derived as

u = u0(t) + 12∂2
x ln ϑ(ξ, τ), (81)

where u0(t) is a function with respect to t and the parameters K, L, P , τ and ε are arbitrary.

6 Discussion

In this section, we will discuss the properties of the solitary, periodic and travelling waves analytically and graphically.

6.1 Soliton solutions

From eq. (42), we notice that the amplitude of the one-soliton solutions is 12k2
1, which means the amplitude of the

one solitons is not related to the variable coefficients β(t), γ(t), δ(t) and �(t). Then, we will investigate the velocity of
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Fig. 1. One-soliton solutions via (42) with k1 = 3
2
, l1 = p1 = 1 and y = z = 0: (a) β(t) = γ(t) = δ(t) = �(t) = t;

(b) β(t) = γ(t) = δ(t) = �(t) = t2; (c) β(t) = γ(t) = δ(t) = �(t) = 4 cos 5t
2

.

Fig. 2. Two-soliton solutions via (45) with k1 = 3
2
, k2 = 2, l1 = l2 = 1 and p1 = p2 = 1, when β(t) = γ(t) = δ(t) = �(t) = t2:

(a) y = z = 0; (b) x = z = 0; (c) x = y = 0.

the one solitons by characteristic line equation of u(x, y, z, t) as

k1x + l1y + p1z + ω1(t) + η1 = C1, (82)

where C1 is a free real constant. Differentiating the eq. (82) with respect to t, we derive the velocity of the one
solitons as

Vx =
k4
1β(t) + k2

1γ(t) + l21δ(t) + p2
1�(t)

k2
1

,

Vy =
k4
1β(t) + k2

1γ(t) + l21δ(t) + p2
1�(t)

k1l1
,

Vz =
k4
1β(t) + k2

1γ(t) + l21δ(t) + p2
1�(t)

k1p1
. (83)

Hence, we find that the velocity of the one-soliton solutions is determined by the parameters k1, l1, p1 and the
variable coefficients β(t), γ(t), δ(t) and �(t).

Figures 1 present the propagation of the one soliton when the variable coefficients β(t), γ(t), δ(t) and �(t) are
of different types of functions. when β(t) = γ(t) = δ(t) = �(t) = t, a parabolic-shape one soliton is obtained, as
shown in fig. 1(a); when β(t) = γ(t) = δ(t) = �(t) = t2, a cubic-shape one soliton is obtained, as shown in fig. 1(b);
when β(t) = γ(t) = δ(t) = �(t) = 4 cos(5t

2 ), a periodic-shape one soliton is obtained, as shown in fig. 1(c). From which
we discover that β(t), γ(t), δ(t) and �(t) could influence the velocities of the solitons, but the amplitudes of the solitons
do not change during the propagation, it is consistent with analytical analysis above.

Figures 2 present the interaction between the two solitons when β(t) = γ(t) = δ(t) = �(t) = t2, there appear
two cubic-shape solitons. From which we find that the amplitudes of the two solitons remain unchanged after the
interaction, except for a phase shift. Figure 3 exhibit the three solitons when β(t) = γ(t) = δ(t) = �(t) = 1

2 cos(t),
there appear three periodic-shape solitons and propagate in the same direction all the way. From which we observe
that the characteristics of fig. 3 are similar to fig. 2, the soliton amplitudes remain unchanged after each interaction
which indicates the interaction among the three solitons is elastic.
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Fig. 3. Three-soliton solutions via (48) with k1 = 3
2
, k2 = 2, k3 = 1, l1 = l2 = l3 = 1 and p1 = p2 = p3 = 1, when

β(t) = γ(t) = δ(t) = �(t) = 1
2

cos t: (a) y = z = 0; (b) x = z = 0; (c) x = y = 0.

Fig. 4. Travelling-wave solutions with k = 2, l = 1, p = 3 and γ(t) = δ(t) = �(t) = t: (a) via (66) at B = 1; (b) via (67) at
A = C0 = −1; (c) via (69) at B = −1.

6.2 Travelling-wave solutions

Figure 4 exhibit three different travelling waves in the x-y plane of eq. (2), by taking certain parameters, namely,
the triangle-type periodical, bell-type, soliton-type travelling waves [49]. We notice that bell-type travelling-wave
solitons (67) can be converted into one-soliton solutions when A = C0 = −1, but there exist singular points in the
travelling-wave solutions (66) and (69).

6.3 One-periodic wave solutions

Figure 5 present the propagation of the one-periodic waves with constant coefficients, viewed as a superposition of
overlapping solitary waves, placed one period apart. Figures 6 and 7 show the propagation of one-periodic waves
when the variable coefficients β(t), γ(t), δ(t) and �(t) are selected as cubic and sine functions, respectively. When the
cubic function case, one-periodic waves with u-shape is obtained along the x-direction. When the sine function case,
one-periodic waves with wave-shape is derived along the x-direction. From which we find that variable coefficients
β(t), γ(t), δ(t) and �(t) can affect the structure of the one-periodic waves, but not influence the period characteristics
along the x-direction.
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Fig. 5. One-periodic wave solutions via (81) with u0(t) = 0, k = l = 1
8
, p = 1

6
, τ = i and ε = 0, when β(t) = γ(t) = δ(t) =

�(t) = 1: (a) perspective view of the wave when y = z = 0; (b) wave propagation pattern of the wave along the x-axis; (c) wave
propagation pattern of the wave along the t-axis.

Fig. 6. One-periodic wave solutions via (81) with u0(t) = 0, k = l = 1
8
, p = 1

6
, τ = i and ε = 0, when β(t) = γ(t) = δ(t) =

�(t) = t3: (a) perspective view of the wave when y = z = 0; (b) overhead view of the wave, with contour plot shown; (c) wave
propagation pattern of the wave along the x-axis.

Fig. 7. One-periodic wave solutions via (81) with u0(t) = 0, k = l = 1
8
, p = 1

6
, τ = i and ε = 0, when β(t) = γ(t) = δ(t) =

�(t) = 2 cos(4t): (a) perspective view of the wave when y = z = 0; (b) overhead view of the wave, with contour plot shown; (c)
wave propagation pattern of the wave along the x-axis.
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In this section, the relations between the one-periodic wave solutions (81) and the one-soliton solutions (42) of
eq. (2) will be discussed. Firstly, we expand a11, a12, a21, a22, bI(t), and bII(t) of eqs. (79) as

a11(t) = −32Kπ2(Λ2 + 4Λ8 + · · · + n2Λ2n2
+ · · · ),

a12(t) = 1 + 2(Λ2 + Λ8 + · · · + Λ2n2
+ · · · ),

a21(t) = −8Kπ2(Λ + 9Λ5 + · · · + (2n − 1)2Λ2n2−2n+1 + · · · ),

a22(t) = 2(Λ + Λ5 + · · · + Λ2n2−2n+1 + · · · ),
bI(t) = 2[−256β(t)K4π4 − 256u0(t)β(t)K4π4 + 16γ(t)K2π2 + 16δ(t)L2π2 + 16�(t)P 2π2]Λ2

+ · · · + 2[−256β(t)K4π4n4 − 256u0(t)β(t)K4π4n4 + 16γ(t)K2π2n2

+ 16δ(t)L2π2n2 + 16�(t)P 2π2n2]Λ2n2
+ · · · ,

bII(t) = 2[−16β(t)K4π4 − 16u0(t)β(t)K4π4 + 4γ(t)K2π2 + 4δ(t)L2π2 + 4�(t)P 2π2]Λ + · · ·
+ 2[−16β(t)K4π4(2n − 1)4 − 16u0(t)β(t)K4π4(2n − 1)4 + 4γ(t)K2π2(2n − 1)2

+ 4δ(t)L2π2(2n − 1)2 + 4�(t)P 2π2(2n − 1)2]Λ2n2−2n+1 + · · · . (84)

Accordingly, we can rewrite the eq. (79) into power series as follows:
(

a11(t) a12(t)
a21(t) a22(t)

)
= A0(t) + A1(t)Λ + A2(t)Λ2 + · · · , (85)

(
μt(t)
c(t)

)
= X0(t) + X1(t)Λ + X2(t)Λ2 + · · · , (86)

(
bI(t)
bII(t)

)
= B0(t) + B1(t)Λ + B2(t)Λ2 + · · · , (87)

where

A0(t) =
(

0 1
0 0

)
, A1(t) =

(
0 0

−8Kπ2 2

)
, A2(t) =

(−32Kπ2 2
0 0

)
,

A3(t) = A4(t) = 0, A5(t) =
(

0 0
−72Kπ2 2

)
, · · · , B0(t) = 0, B3(t) = B4(t) = 0,

B1(t) =
(

0
2

(
−16π4K4β(t) − 16π4K4β(t)u0(t) + 4π2K2γ(t) + 4π2L2δ(t) + 4π2P 2�(t)

)
)

,

B2(t) =
(

2
(
−256π4K4β(t) − 256π4K4β(t)u0(t) + 16π2K2γ(t) + 16π2L2δ(t) + 16π2P 2�(t)

)

0

)
,

B5(t) =
(

0
2

(
−1296π4K4β(t) − 1296π4K4β(t)u0(t) + 36π2K2γ(t) + 36π2L2δ(t) + 36π2P 2�(t)

)
)

,

· · · . (88)

Then, we can derive

X0(t) =

⎛

⎜⎝
2B

[1]
0 (t) − B

[2]
1 (t)

8Kπ2

B
[1]
0 (t)

⎞

⎟⎠ , X1(t) =

⎛

⎜⎝
2B

[1]
1 (t) − [B2(t) − A2(t)X0(t)][2]

8Kπ2

B
[1]
1 (t)

⎞

⎟⎠ ,

Xn(t) =

⎛

⎜⎝
2[Bn+1(t) − Σn

j=2Aj(t)Xn−j(t)][1] − [Bn+1(t) − Σn+1
j=2 Aj(t)Xn−j+1(t)][2]

8Kπ2

[Bn+1(t) − Σn
j=2Aj(t)Xn−j(t)][1]

⎞

⎟⎠ , · · · , (89)

where n ≥ 2, n ∈ N , and Δκ (κ = 1, 2) denotes the κ-th elements of the two-dimensional vector Δ.
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From eq. (89), we have

X0(t) =
(

4K3π2β(t) − Kγ(t) − L2K−1δ(t) − P 2K−1�(t) + 4K3π2β(t)u0(t)
0

)
, X1(t) = 0,

X2(t) =

(
−8

(
−4π2K3β(t) (u0(t) + 1) + L2δ(t)K−1 + P 2�(t)K−1 + Kγ(t)

)

−32π2
(
−4π2K4β(t) (u0(t) + 1) + K2γ(t) + L2δ(t) + P 2�(t)

)
)

, · · · . (90)

Substituting eq. (90) into the system (86) and setting Λ −→ 0, we can obtain

c(t) −→ 0,

μ(t) −→
∫

4K3π2β(t) − Kγ(t) − L2K−1δ(t) − P 2K−1�(t) + 4K3π2β(t)u0(t)dt. (91)

By assuming

u0(t) = 0, K =
k1

2iπ
, L =

l1
2iπ

, P =
p1

2iπ
, ε =

η1 − iπτ

2iπ
, (92)

we have

2iπξ = 2iπ[
∫

4K3π2β(t) − Kγ(t) − L2K−1δ(t) − P 2K−1�(t) + 4K3π2β(t)u0(t)dt

Kx + Ly + Pz + ε] = k1x + l1y + p1z + ω1(t) + η1 − πiτ = θ1 − πiτ. (93)

Combining eq. (74) and (93), we further obtain

ϑ(ξ, τ) =
+∞∑

n=−∞
eπin2τ+2πinξ = 1 + (e2πiξ + e−2πiξ)Λ + · · · = 1 + eθ1 + e−θ1Λ2 + · · ·

Λ→0= 1 + eθ1 . (94)

Hence, according to the results of analysis, we conclude that the one-periodic wave solutions (81) approach to the
one-soliton solutions (42) when the amplitude Λ → 0.

7 Conclusions

In this paper, a generalized (3 + 1)-dimensional variable-coefficients nonlinear-wave equation, i.e., eq. (2), has been
investigated, which has been presented for nonlinear waves in liquid with gas bubbles. The bilinear form (15), Bäcklund
transformation (21), Lax pair (23) and infinitely-many conservation laws (39) are obtained via the binary Bell poly-
nomials. One-, two- and three-soliton solutions are generated by virtue of the bilinear form (15) and the Hirota
method, i.e. (42), (45)and (48). Travelling-wave solutions (66), (67) and (69) are derived with the aid of the poly-
nomial expansion method, and the one-periodic wave solutions (81) are constructed by the Hirota-Riemann method.
In addition, we find that the soliton velocities are related to the variable coefficients β(t), γ(t), δ(t) and �(t), but the
soliton amplitudes are independent to that, and the interactions between the solitons are elastic. We also notice that
the bell-type travelling-wave solitons (67) can be converted to one-soliton solutions (42) when A = C0 = −1, and that
the one-periodic waves (81) approach to the one-solitary waves when the amplitude Λ → 0 and can be viewed as a
superposition of overlapping solitary waves, placed one period apart.

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work was supported
by the National Natural Science Foundation of China (grant number 11272023); the Fundamental Research Funds for the
Central Universities under Grant No. 50100002016105010.
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