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Abstract. This attempt predicts the hydromagnetic flow of a tangent hyperbolic nanofluid originated
by a non-linear impermeable stretching surface. The considered nanofluid model takes into account the
Brownian diffusion and thermophoresis characteristics. An incompressible liquid is electrically conducted
in the presence of a non-uniformly applied magnetic field. Heat and mass transfer phenomena posses flux
conditions. Mathematical formulation is developed by utilizing the boundary layer approach. A system of
ordinary differential equations is obtained by employing adequate variables. Convergence for obtained series
solutions is checked and explicitly verified through tables and plots. Effects of numerous pertinent variables
on velocity, temperature and concentration fields are addressed. Computations for surface drag coefficient,
heat transfer rate and mass transfer rate are presented and inspected for the influence of involved variables.
Temperature is found to enhance for a higher magnetic variable. Present and previous outcomes in limiting
sense are also compared.

1 Introduction

Investigation of non-Newtonian materials has relevance to many important applications. Especially such materials
have remarkable involvement in oil reservoir engineering, geophysics, bioengineering, nuclear and chemical industries,
cosmetic processes, polymer solution and many others. Few examples of non-Newtonian liquids include ketchup,
slurries, certain oils and polymer solutions, paint, paper pulp, mud, shampoos and apple sauce. Clearly all non-
Newtonian materials, because of their versatile behavior, cannot be predicted by a unique constitutive relationship.
This concept distinguishes non-Newtonian and viscous liquids. Thus numerous models of non-Newtonian liquids are
established in the literature to visualize the dynamics of such materials. For instance, the tangent hyperbolic liquid
is a model capable to explore shear thinning characteristics, i.e., its viscosity drops by an increment in shear rate.
Peristalsis of hyperbolic tangent fluid in a non-uniform channel is studied by Abbas et al. [1]. Heat transfer flow of a
hyperbolic tangent fluid flowing by a stretching cylinder is investigated by Naseer et al. [2]. Gaffar et al. [3] inspected
the flow of a tangent hyperbolic liquid in the presence of hydrodynamic and thermal slip condition. Effect of melting
heat transfer and magnetic field stagnation point flow of tangent hyperbolic liquid is examined by Hayat et al. [4].
Hayat et al. [5] studied the effects of non-linear thermal radiation and chemical reaction in the stagnation point flow
of a tangent hyperbolic nanoliquid.

Development of high-energy storage technologies has been the new topic of the engineers, modelers, mathematicians
and computer scientists for the past few years, because of its promising demands in various industrial and technological
sectors. Heat transfer can be latently changed by varying boundary conditions, flow geometry or by upgrading the
thermal conductivity of the liquid. It is a crucial challenge for researchers to enhance the heat transfer characteristics of
traditional liquids like oil, ethylene glycol and water (which have low thermal conductivity). During the past few years,
a new technology has been established to enhance the thermal performance. Modern technology gives new opportunities
to process and produce material with average crystal size below 50 nm. In view of all this, the first attempt made by
Choi [6] in this direction is to pronounce the thermal conductivity of traditional liquids inserting nanosized metallic
particles. The mixture thus obtained is named nanofluid. Commonly used nanomaterials are made up of metals, e.g.,
copper, gold, silver, etc., metallic oxides, e.g., iron oxide, zinc oxide, aluminium oxide, etc., nitrides and carbides,
e.g., AlN, SiN, SiC, TiC, etc. Nanoparticles can also have different shapes, e.g., spherical nanoparticles, disk-like
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nanoparticles, rod-like nanoparticles (nanotubes), etc. In industry, nanofluids are used as coolants in the automobiles,
in IT appliances and in nuclear reactors. The compilation and storage of energy through solar and geothermal means
also makes use of nanofluids at the microscale level. Moreover, heat exchangers, chemical industry, processing industry,
food processing, automotive, etc., have tremendous applications of the newly developed nanotechnology. Subject to
such wide applications, several investigations have been carried out to analyze different aspects of nanofluids. Some of
these investigations can be found in refs. [7–17]. Furthermore, magneto-nanofluids play a remarkable role in non-linear
optical materials, tunable optical fiber filters, optical switches, magnetic resonance imaging (MRI), optical grating,
blockage removal in the arteries, drug delivery, cancer therapy, hyperthermia, blood pump machines, magnetotherapy,
arterial flows, etc. Some valuable reports in this way can be viewed in refs. [18–22] and several studies therein.

The flow generated by the stretching of a sheet is useful in many engineering and industrial processes. Consideration
of liquid films, melt spinning procedures, aerodynamics, plastic sheets extrusion, production of glass fibre, the drying
and cooling of textiles and paper, water pipes, irrigation channels, sewer pipes, blood vessels, food stuffs, slurries,
cooling of electronic chips or metallic sheets, hot rolling, etc., are mentioned in this direction. Several engineers and
scientists have discussed different issues related to flow by linear stretching. However, in the industrial and technological
process, the stretching of the surface is not linear. For instance, in plastic and rubber industries the stretching process
is non-linear. In particular, the non-linear stretching of surface plays a remarkable role in the polymer extrusion
procedure. In view of such facts some attempts [23–28] have been made.

The prime objective of this communication is to explore the non-linear stretched magnetohydrodynamic flow of a
tangent hyperbolic fluid with nanoparticles. The impacts of thermophoresis and Brownian motion are also described.
Prescribed heat flux (PHF) and prescribed concentration flux (PCF) conditions are considered [29–32]. We here prefer
to utilize nanoparticles in the two-dimensional non-linear stretched flow of a tangent hyperbolic liquid. A non-uniform
magnetic field conducts the liquid. Boundary layer concept and assumption of weaker magnetic Reynolds number are
imposed. The resulting non-linear problem is computed through the homotopic technique [33–40]. The discussion of
plots and numerical computations are performed and analyzed. Surface drag coefficient and local Nusselt and Sherwood
numbers are further discussed.

2 Problem statement

We explore the 2D flow of a tangent hyperbolic nanofluid. The sheet is continuously stretched with the non-linear
velocity uw = axm (where a is a dimensional constant). A non-uniform magnetic field is implemented in the transverse
direction perpendicular to the sheet. The magnetic Reynold number is selected small. The x- and y-axes are taken in the
horizontal (along the stretched surface) and vertical directions, respectively. Brownian diffusion and thermophoresis
effects are encountered with prescribed heat and mass flux conditions. The governing expressions for the tangent
hyperbolic nanofluid can be expressed as
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The relevant conditions are

u = uw(x) = axm, v = 0, −k

(
∂T

∂y

)
= qw, −DB

(
∂C

∂y

)
= jw at y = 0, (5)

u → 0, v → 0, T → T∞, C → C∞ as y → ∞. (6)

Here u and v express the liquid velocity parallel to the x- and y-directions, respectively, m the velocity power index,
μ the dynamic viscosity, ν the kinematic viscosity, ρ stands for density, αf = k

(ρc)f
thermal diffusivity, k indicates

thermal conductivity, λ the time-dependent material parameter, τ the ratio of the heat capacity of fluid of the
nanoparticles material to the effective heat capacity of the base fluid, DB denotes the Brownian diffusion coefficient,
C the nanoparticles concentration, DT the thermophoretic diffusion, qw the heat flux, jw the mass flux, Tw and T∞
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are the sheet and ambient liquid temperatures and C∞ the ambient fluid concentration. With the aid of the following
variables,
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the incompressibility condition is trivially satisfied and eqs. (2)–(6) are reduced to
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Here n designates the power-law index, We presents the Weissenberg number, Pr expresses the Prandtl number, Nb

indicates the Brownian motion variable, Le is the Lewis number, Nt signifies the thermophoresis parameter and prime
indicates derivative via η. These quantities are expressed as follows:
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The surface drag coefficient is expressed as follows:
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In non-dimensional form we have
√

ReCf =
[
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The surface heat and mass transfer rates in dimensionless form can be put into the definitions

(Re)−0.5Nux =
1

θ(0)
, (Re)−0.5Shx =

1
φ(0)

, (16)

where the local Reynolds number is denoted by Rex = uwx/ν.

3 Series expressions

The initial estimates and operators regarding homotopic procedures are:

f0(η) = 1 − e−η, θ0(η) = e−η, φ0(η) = e−η, (17)

L̄1 = f ′′′ − f ′, L̄2 = θ′′ − θ, L̄3 = φ′′ − φ, (18)

L̄1 [c∗∗1 + c∗∗2 eη + c∗∗3 e−η] = 0,

L̄2 [c∗∗4 eη + c∗∗5 e−η] = 0,

L̄3 [c∗∗6 eη + c∗∗7 e−η] = 0,

⎫⎪⎪⎬
⎪⎪⎭

, (19)

in which c∗∗i (i = 1–7) designates the constants.
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The statements of zero-th order are
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Here p̆ designates the embedding variable, (h̄f , h̄θ and h̄φ) the auxiliary variables and (Nf , Nθ and Nφ) the non-linear
operators. Now p̆ = 0 and p̆ = 1 lead to

f̂(η; 0) = f0(η), θ̂(η, 0) = θ0(η), φ̂(η, 0) = φ0(η),

f̂(η; 1) = f(η), θ̂(η, 1) = θ(η), φ̂(η, 1) = φ(η). (27)

When p̆ moves from 0 towards 1 then (f̂(η; p̆), θ̂(η, p̆) and φ̂(η, p̆)) change from the initial estimations (f0(η), θ0(η)
and φ0(η)) to expressions (f(η), θ(η) and φ(η)), respectively. Considering
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and (h̄f , h̄θ and h̄φ), in such a fashion that eqs. (28)–(30) converge for p̆ = 1, then we have
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Fig. 1. The h̄-curves for f(η), θ(η) and φ(η).
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The general solutions for the governing equations are expressed as follows:

fm(η) = f∗
m(η) + c∗∗1 + c∗∗2 eη + c∗∗3 e−η, (42)

θm(η) = θ∗m(η) + c∗∗4 eη + c∗∗5 e−η, (43)

φm(η) = φ∗
m(η) + c∗∗6 eη + c∗∗7 e−η, (44)

where special solutions are presented by f∗
m(η), θ∗m(η) and φ∗

m(η).

4 Convergence analysis

It is a well-known fact that the convergence of (31)–(33) strongly depends upon the auxiliary parameters h̄f , h̄θ and
h̄φ. The region of convergence and rate of estimations for the functions f , θ and φ can be adjusted and controlled via
these auxiliary variables. To determine the acceptable ranges of these variables, we interpreted h̄-curves at the 19-th
order of deformations (see fig. 1). Figure 1 shows that the acceptable ranges of h̄f , h̄θ and h̄φ are −1.6 ≤ h̄f ≤ −0.6,
−1.7 ≤ h̄θ ≤ −0.5 and −1.6 ≤ h̄φ ≤ −0.6. Furthermore, the presented series solutions are convergent in all zones of η,
when h̄f = −1.0 and h̄θ = −1.0 = h̄φ. Table 1 is drawn to show how many order of estimations are adequate for the
convergent solutions. This table clearly demonstrates that the 25th and the 50th orders of estimations are adequate
for the convergence of f , θ and φ.
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Table 1. Homotopic convergence solutions when M = n = 0.2 = Nb, Nt = 0.3, We = 0.5, Pr = 1.2, Le = 1.0, m = 1.3.

Order of estimations −f ′′(0) −θ′′(0) φ′′(0)

1 1.3013 0.1000 0.4500

5 1.4528 0.4302 0.6702

10 1.4741 0.5275 0.8006

15 1.4775 0.5625 0.8475

25 1.4784 0.5872 0.8813

35 1.4784 0.5949 0.8924

45 1.4784 0.5978 0.8966

50 1.4784 0.5985 89776

55 1.4784 0.5985 89776

M = 0.0, 0.5, 0.8, 1.0

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

η

f'
(η

)

Nt = 0.3, n = 0.2 = Nb , We = 0.5, m = 1.3, Pr = 1.2, Le = 1.0

Fig. 2. Variation of f ′(η) via M .

5 Discussion and results

The main focus of the current section is to report the consequences of velocity f ′(η), temperature θ(η) and concentration
φ(η) distributions corresponding to distinct values of emerging variables, like magnetic parameter M , Prandtl number
Pr, velocity index m, Brownian motion parameter Nb, Weissenberg number We, power-law index n, thermophoresis
parameter Nt and Lewis number Le. For such analysis, figs. 2–17 are interpreted. Figure 2 displays variations in
velocity field for numerous values of magnetic variable M . We infer, from this figure, that a larger magnetic parameter
reduces the fluid velocity. Physically, the applied magnetic field has the characteristic of slowing down the liquid
and, consequently, reducing liquid velocity. Figure 3 shows the characteristics of the Weissenberg number We for
the velocity field f ′(η). It is observed that f ′(η) decreases when We is enhanced. Figure 4 provides the description
for results of velocity index m on velocity f ′(η). Clearly the fluid velocity diminishes by velocity index m. It is
due to the fact that an inflation in m reduces the stretching rate and ultimately it slows down fluid velocity and
reduces the momentum layer thickness. The effect of power-law index n on velocity field f ′(η) is displayed in fig. 5.
Here we declare that higher values of n lead to decaying in fluid velocity. Figure 6 shows the magnetic parameter
effect on the temperature field. Thermal layer decays by enhancing magnetic parameter. In fact, magnetic variable
relies on the Lorentz force. Higher M has strong Lorentz force which resists the fluid motion and thus makes the fluid
temperature increase. For M = 0, the flow is hydrodynamic whereas, for M > 0, it corresponds to a hydromagnetic case.



Eur. Phys. J. Plus (2017) 132: 112 Page 7 of 15

We = 0.0, 0.6, 1.0, 1.2

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

f'

Nt = 0.3, M = n = 0.2 = Nb, m = 1.3, Pr = 1.2, Le = 1.0

(η
)

η
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Fig. 5. Variation of f ′(η) via n.
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Fig. 6. Variation of θ(η) via M .
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Fig. 7. Variation of θ(η) via We.

Influence of Weissenberg number We on temperature θ(η) is analyzed in fig. 7. Fluid temperature is found to increase
via We. Weissenberg is the relaxation time of the liquid and the specific time process ratio. With the increment in We,
the relaxation time enhances, which puts forward more opposition to the liquid motion and, thus, it makes the fluid
temperature rise. Figure 8 exhibits the consequences of temperature θ(η) versus n. Here temperature is an increasing
function of n. Variations in the Prandtl number Pr on θ(η) is presented in fig. 9. Higher Pr fluid corresponds to lower
thermal diffusivity. Such difference in thermal diffusivity corresponds to decay in liquid temperature. Figure 10 shows
the effects of velocity index m on temperature field. Obviously, temperature profile θ(η) is enhanced by increasing
m. Higher values of m restrict the stretching rate due to which less number of hot particles moves from surface to
the ambient fluid thereby fluid temperature blows up. Figure 11 displays the effects of thermophoresis variable Nt

on θ(η). The more effective thermophoretic force permits nanoparticles of high thermal conductivity deeper into the
liquid, which results in an increase in the liquid temperature. In fig. 12, the temperature distribution enhances via
Brownian motion variable Nb. Increment in Nb enhances the collision between the particles, which produces more
heat and ultimately the temperature enhances. Impact of velocity index m on φ(η) is plotted in fig. 13. It is evident
that larger m suppresses the concentration of fluid. Variations in We give rise to liquid concentration (see fig. 14).
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Nt = 0.2, 0.3, 0.4, 0.5
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Fig. 11. Variation of θ(η) via Nt.

Nb = 0.2, 0.3, 0.4, 0.5
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Fig. 12. Variation of θ(η) via Nb.

m = 0.0, 0.3, 0.9, 1.9

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

Nt = 0.3, M = 0.2 = n = Nb, We = 0.5, Pr = 1.2, Le = 1.0

 (η
)

φ

η

Fig. 13. Variation of φ(η) via Nt.
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We = 0.0, 0.7, 1.3, 1.9

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

Nt = 0.3, M = 0.2 = n = Nb, m = 1.3, Pr = 1.2, Le = 1.0

 (η
)

φ

η

Fig. 14. Variation of φ(η) via We.

Nt = 0.1, 0.2, 0.3, 0.4
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Fig. 15. Variation of φ(η) via Nt.

Figure 15 shows the behavior of Nt on the concentration profile. Larger values of Nt blow up the concentration and
corresponding concentration layer thickness. Figure 16 displays the feature of Brownian motion variable Nb on φ(η).
It is concluded that an increase in Nb is responsible for a reduction in the fluid concentration. Figure 17 provides
Lewis number Le characteristics on concentration field. The concentration layer decays by enhancing Le. In fact, an
increment in the Lewis number Le yields a decay in coefficient of Brownian diffusion which finally results in a decrease
in concentration field. Figure 18 shows the effects of M on Nusselt number (Re)−0.5Nux via Pr. It is concluded that
surface heat transfer rate enhances for higher M and Pr. Figure 19 shows the variation of Nb on (Re)−0.5Nux via
Nt. It is observed that (Re)−0.5Nux increases for larger Nt while it reduces when Nb is enhanced. Figure 20 displays
the effects of the velocity index m on (Re)−0.5Shx via Le. Here enhancement in (Re)−0.5Shx is noted for higher
Le whereas it decreases for velocity index. Influence of magnetic parameter M on (Re)−0.5Shx via Lewis number is
depicted in fig. 21. Here the mass transfer rate is enhanced for M and Le. Table 1 is drawn to visualize the convergence
of −f ′′(0), −θ′′(0) and φ′′(0) at different orders of estimations. This table portrays that the 50th order of deformations
is adequate regarding the convergent analysis. It is also noted that we have to compute less number of approximations
for velocity in comparison to temperature and concentration. Numerical data of skin friction coefficient is prepared in
table 2. It is observed that surface drag coefficient enhances via M , We and m. Table 3 shows an excellent agreement
of skin friction coefficient in the absence of both Weissenberg number and power-law index [1, 41].
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Nb = 0.3, 0.4, 0.5, 0.7
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Fig. 16. Variation of φ(η) via Nb.

Le = 0.7, 0.9, 1.1 , 1.4

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

Nt = 0.3, M = 0.2 = n = Nb , We = 0.5, m = 1.3, Pr = 1.2

 (η
)

φ

η

Fig. 17. Variation of φ(η) via Le.
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x .



Eur. Phys. J. Plus (2017) 132: 112 Page 13 of 15

Nb = 0.0, 0.3, 0.6, 1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

Nt

N
u x

Re
x-1

/2
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Table 2. Computation showing (Re)1/2Cf for numerous values of M , n, m and We when Nb = 0.2, Nt = 0.3, Pr = 1.2,
Le = 1.0.

Parameters (constant values) Parameters −Re0.5 Cfx

We = 0.5, n = 0.2, m = 1.3 M 0.0 1.4191

0.2 1.4687

0.4 1.6166

n = 0.2, m = 1.3, M = 0.2 We 0.2 1.2936

0.4 1.4209

0.5 1.5305

We = 0.5, n = 0.2, M = 0.2 m 0.0 0.3213

1.0 1.0665

1.5 1.8610

We = 0.5, m = 1.3, M = 0.2 n 0.1 1.4376

0.2 1.5296

0.3 1.9936

Table 3. Comparison of surface drag coefficient for different techniques.

Present results when m = 1, We = n = 0 [1] [41]

M HAM Numerically Exact solution

0 1 1

0.3 −1.04403

0.5 −1.11803 −1.11803 −1.1180

0.8 −1.28062

1.0 −1.41588 −1.41421

6 Final results

Here we inspected the magnetohydrodynamic (MHD) flow of tangent hyperbolic nanoliquid over a non-linear stretched
sheet with prescribed heat and mass flux conditions. Significant observations of current analysis are given as follows:

– Influences of m and M on f ′(η) and θ(η) distributions are quite opposite.

– Temperature field is increasing function of Nt and Nb.

– Larger values of Nt give rise to concentration profile.

– Impact of We on θ(η) and φ(η) is opposite to that of f ′(η).

– Surface drag coefficient enhances via We, M and n.

– Heat transfer rate is an increasing function of magnetic parameter.
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