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Abstract. In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous acceler-
ating stretching surface in the presence of the velocity slip and temperature jump effects are investigated
numerically. A new effective collocation method based on rational Bernstein functions is applied to solve
the governing system of nonlinear ordinary differential equations. This method solves the problem on the
semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented
method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical
and tabular results are presented to investigate the influence of the unsteadiness parameter A, Prandtl
number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity
and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and
efficiency of the novel proposed computational procedure. Comparisons of present results are made with
those obtained by previous works and show excellent agreement.

Nomenclature

Bi,n(x) Bernstein polynomial of degree n Pr Prandtl number
Bi,n(x) Orthogonal Bernstein polynomial of order n A Unsteadiness parameter
B̄i,n(x) Orthonormal Bernstein polynomial of order n fw Velocity ratio parameter
Bnf(t) Bernstein function of order n Cf Skin friction coefficient
t Time (s) Nux Local Nusselt number
x, y Cartesian coordinates along the surface qw Local heat flux form the sheet (W m−2)

and normal to it, respectively (m) k Thermal conductivity (W m−1 K)
uw(x, t) Sheet stretching velocity (m s−1) Rex Local Reynolds number
u, v Velocity component in the x- and

y-directions (m s−1)
Greek symbols

a, c Constants (s−1) ν Kinematic viscosity (m2 s−1)
b Constant (K m−1) α Thermal diffusivity (m2 s−1)
vw(x, t) Sheet stretching mass transfer (m s−2) γ Dimensionless velocity slip parameter
T Temperature of the fluid (K) ϕ Dimensionless thermal slip parameter
L1 Velocity slip factor (m−1 s) τw Skin fraction (Pa)
M1 Thermal slip factor (m) μ Dynamic viscosity (kg m−1 s−1)
Tw Wall temperature (K) ρ Fluid density (kg m−3)
T∞ Ambient temperature (K)
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1 Introduction

The boundary layer flow past a stretching plate was first dealt with Crane [1], who solved analytically the steady two-
dimensional flow past a linearly stretching plate. This phenomenon has many important applications in engineering
processes, such as manufacture of foods, glass fibre and paper production, drawing of plastic films and wires, crystal
growing, polymer extrusion and liquid films in condensation process. Several of research papers on a stretching sheet
have been published by considering different parameters like viscous dissipation, radiation effect, magnetic field, suc-
tion/injection, slip effect and heat generation/absorption with various types of fluids like viscoelastic fluid, micropolar
fluid and nanofluid. Gupta et al. [2] extended the problem of fluid flow past a stretching surface, in case of moving
boundary flow, to a permeable surface that important in extrusion processes. Ishak et al. [3] studied the unsteady
laminar boundary layer flow over a continuously stretching permeable surface. Abolbashari et al. [4] used homotopy
analysis method (HAM) to study the entropy analysis in an unsteady magnetohydrodynamic (MHD) nanofluid regime
adjacent to an accelerating stretching permeable surface. Rashidi et al. [5] proposed the homotopy simulation of
nanofluid dynamics from a nonlinearly stretching isothermal permeable sheet with transpiration. Freidoonimehra et
al. [6] investigated the transient MHD laminar free convection flow of nanofluid past a permeable stretching vertical
surface.

In fluid dynamics, the no-slip boundary condition happens when liquid adheres to a solid boundary. It is noticed
that, the behavior of fluids with micro-scale dimensions varies from the traditional fluid flow and depends to the
slip flow regime. So, the no-slip condition is inadequate when the fluid is particulate, such as suspensions, emulsions,
foams and polymer. Also, the fluid flow in many applications of micro/nano systems like micro-valve, hard disk drive,
micro-nozzles, micro-pump and micro-electro-mechanical systems (MEMS) is in slip regime, which is specified by slip
boundary condition. Although the no-slip boundary condition is known as the main appearance of the Navier-Stoke’s
theory, the slip flow motion still obeys the Navier-Stoke’s equations but with slip velocity and temperature conditions.
Maxwell [7] introduced the slip velocity for rarefied gases flowing over a solid surface. Thompson proposed a second-
order slip model, based on Maxwell’s first-order slip model. The many investigators reported that Thompson’s model
cannot estimate the flow in high Knudsen number (Kn). Beskok et al. [8] presented an improved second-order slip
condition. For more details, see [9, 10].

Despite many studies on a stretching sheet, the researches on the boundary layer flow over a stretching sheet is
limited to some fluids flow with traditional no-slip flow boundary condition and a little attention was given to stretching
sheet with slip boundary condition. Andersson [11] investigated slip flow past a stretching surface. He considered a
closed form solution of a full Navier-Stoke’s equations for a MHD flow over a stretching sheet. Wang [12] presented
the exact solution of a full Navier-Stoke’s equations base of Anderson’s solution for the flow due to a stretching sheet
with partial slip. Fang et al. [13] suggested slip magnetohydrodynamic viscous flow over a permeable shrinking sheet.
Hayat et al. [14] analyzed MHD flow and heat transfer over permeable stretching sheet with slip conditions. Jafari et
al. [15] presented the second law of thermodynamics over a stretching permeable surface in the presence of the uniform
vertical magnetic field in the slip nanofluid regime. Abolbashari et al. [16] provided analytical modeling of entropy
generation for Casson nanofluid flow induced by a stretching surface in the presence of velocity slip and convective
surface boundary conditions.

Currently, Nawaz et al. [17] have studied the Joules heating effects on stagnation point flow of Newtonian and
non-Newtonian fluids over a stretching cylinder by means of genetic algorithm (GA). The effect of thermal radiation
and heat transfer on the flow of ferromagnetic fluid on a stretching sheet is investigated in [18]. In [19], the unsteady
boundary layer flow ferromagnetic fluid and heat transfer past a stretching surface with the influence of magnetic dipole
are considered and solved numerically by employing shooting based RKF-45 method. The Falkner-Skan boundary layer
steady flow over a flat stretching sheet was analyzed by Maqbool et al. [20]. A theoretical study of the problem of the
peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct under the effects of Hall and ion slip was established
by Ellahi et al. [21]. Ellahi and Hussain [22] have studied the closed-form solutions of peristaltic flow of Jeffery fluid
under the simultaneous effects of magnetohydrodynamics (MHD) and partial slip conditions in a rectangular duct.

Bernstein polynomials have important applications in computer graphics and have been applied for approximations
of functions in many areas of mathematics and other fields such as smoothing in statistics and constructing Bézier
curves [23–25]. These polynomials were first used by Sergei Natanovich Bernstein in a constructive proof for the
Stone-Weierstrass approximation theorem. Bernstein polynomials have been applied to solve various kinds of ordinary
and partial differential equations, integral equations and integro-differential equations defined in engineering and
science [26–39]. Recently, Heydari et al. [25] applied the Gram-Schmidt orthogonalization process to find orthogonal
Bernstein polynomials for the solution of heat transfer of a micropolar fluid through a porous medium with radiation.

The aim of the present work is study an unsteady flow past a permeable stretching sheet in the presence of
the velocity slip and temperature jump effects. The governing nonlinear ordinary differential equations are solved
numerically by using a new collocation method based on rational Bernstein polynomials. Motivated by this fact,
present work analyzes the effects of the unsteadiness parameter, Prandtl number, suction parameter, velocity slip
parameter and thermal slip parameter on the fluid velocity and temperature distribution profiles.
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Fig. 1. Physical model and coordinate system.

This paper is organized as follows: In sect. 2, the mathematical formulation of an unsteady flow past a porous
accelerating stretching surface in the presence of the velocity slip and temperature jump effects is presented. In sect. 3,
we give some preliminaries and drive some tools for developing our method. A collocation method for solving the
governing equations based on rational Bernstein functions is proposed in sect. 4. The results and discussion for the all
values of the relevant parameters are presented in sect. 5. Finally, in sect. 6, some conclusions are provided.

2 Problem statement and mathematical modelling

Consider a two-dimensional laminar flow of an incompressible viscous fluid over an accelerating stretching permeable
surface in the presence of the velocity slip and temperature jump effects. The geometry and coordinate systems of
the problem are shown in fig. 1. The flow motion is assumed to be in the x- and y-directions, which are taken along
and perpendicular to the plate, respectively. Also, the flow is confined over the region of y > 0. We assume that the
unsteady fluid and heat flows start at time t = 0 and for time t < 0 they are steady. Moreover, the sheet is being
stretched with the velocity uw(x, t) along the x-axis as

uw(x, t) =
ax

1 − ct
, (1)

where a > 0 and c ≥ 0 are constants with ct < 1, and both have dimension (time)−1. Further, vw(t) is the velocity of
the mass transfer perpendicular to the stretching surface that defines as below:

vw(t) =
v0√

1 − ct
. (2)

Under these assumptions, by using the boundary layer approximations, the governing equations for mass, momentum
and temperature can be written in the usual notations as [40]

∂u

∂x
+

∂v

∂y
= 0, (3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (5)

where u and v are the velocity components of the fluid along the x- and y-directions, respectively, α is the thermal
diffusivity, T is the temperature of the fluid and ν is the kinematic viscosity.

The corresponding boundary conditions with partial slip for the velocity and the temperature are given by

u = uw(x, t) + L1ν
∂u

∂y
, v = v0(t), T = Tw(x, t) + M1

∂T

∂y
, at y = 0, (6)

u → 0, T → T∞, as y → ∞, (7)
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where M1 = M
√

1 − ct is the thermal slip factor and L1 = L
√

1 − ct is the velocity slip factor, M and L are the initial
values of thermal and velocity slip factors, respectively, T∞ is the ambient temperature and Tw(x, t) is the temperature
of the wall. The temperature function Tw(x, t) not only has a linear variation with x but also has an inverse square
law for its decrease with time in the following form:

Tw(x, t) = T∞ +
bx

(1 − ct)2
, (8)

where b is a constant, with b < 0 and b > 0 corresponding to the opposing and assisting flows, respectively, and b = 0
is for the forced convection limit.

According to Freidoonimehr et al. [40], we introduce the following dimensionless functions f(η) and θ(η), and the
similarity variable η:

η =
(

a

ν(1 − ct)

)1/2

y, ψ =
(

νa

1 − ct

)1/2

xf(η), θ(η) =
T − T∞
Tw − T∞

, (9)

where ψ(x, y, t) is a stream function defined as

u =
∂ψ

∂y
=

ax

1 − ct
f ′(η), (10)

v = −∂ψ

∂x
= −

(
νa

1 − ct

)1/2

f(η), (11)

which identically satisfies the mass conservation equation (3). Substituting the above similarity transformations
into (4)–(7), we obtain the following system of nonlinear ordinary differential equations:

f ′′′(η) − f ′(η)2 + f(η)f ′′(η) − A

(
f ′(η) +

1
2
ηf ′′(η)

)
= 0, (12)

1
Pr

θ′′(η) +

∣∣∣∣∣
f(η) θ(η)

f ′(η) θ′(η)

∣∣∣∣∣ − A

(
2θ(η) +

1
2
ηθ′(η)

)
= 0, (13)

with the boundary conditions

f(η) = fw, f ′(η) = 1 + γf ′′(η), θ(η) = 1 + φθ′(η), at η = 0, (14)

f ′(η) → 0, θ(η) → 0, as η → ∞, (15)

where A = c/a is the unsteadiness parameter, Pr = ν/α is the Prandtl number, fw = −v0/
√

νa is the velocity ratio
parameter, φ = M

√
a/ν is the dimensionless thermal slip parameter and γ = L

√
aν is the dimensionless velocity slip

parameter.
The physical quantities of interest in this study, are skin friction coefficient Cf and local Nusselt number Nux,

which are defined as
Cf =

τw

ρu2
w/2

, Nux =
xqw

k(Tw − T∞)
, (16)

where τw is the skin fraction and qw is the heat transfer from the sheet and are given by

τw = μ
∂u

∂y

∣∣∣∣
y=0

, qw = −k
∂T

∂y

∣∣∣∣
y=0

. (17)

Here, μ is the dynamic viscosity and k is the thermal conductivity. Using (9) and substituting (17) into (16), we have

1
2
CfRe1/2

x = f ′′(0), Nux/Re1/2
x = −θ′(0), (18)

where Rex = uwx/ν is the local Reynolds number.

3 Preliminaries and notations

In this section, we introduce some properties and mathematical preliminaries on Bernstein polynomials, orthogonal
Bernstein polynomials and rational Bernstein functions.
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3.1 Bernstein polynomials and their properties

Bernstein polynomials of the degree n are defined on the interval [a, b] as [30]

Bi,n(x) =
(

n

i

)
(x − a)i(b − x)n−i

(b − a)n
, 0 ≤ i ≤ n, (19)

where the binomial coefficients are calculated by
(
n
i

)
= n!

i!(n−i)! . These polynomials form a basis on [a, b] and there are
n + 1, n-th-degree polynomials. If i < 0 or i > n we set Bi,n(x) = 0. The properties of Bernstein polynomials have
been investigated by many authors, some of which are mentioned briefly here.

a) The positivity property :
For all i = 0, 1, . . . , n and all x in [a, b], we have Bi,n(x) ≥ 0.

b) The partition of unity property :
The binomial expansion of the right-hand side of the equality (b − a)n = ((x − a) + (b − x))n shows that the sum
of all Bernstein polynomials of the degree n is the constant 1, i.e.,

∑n
i=0 Bi,n(x) = 1.

c) Recurrence formula:
These polynomials can be generated by a recursive definition over the interval [a, b] as follows:

Bi,n(x) =
b − x

b − a
Bi,n−1(x) +

x − a

b − a
Bi−1,n−1(x). (20)

d) Derivative formula:
An explicit expression for the derivatives of Bernstein polynomials of any degree and any order in terms of Bernstein
polynomials on [0, 1], introduced by Doha et al. [33] is as follows:

dk

dxk
Bi,n(x) =

n!
(n − k)!

min{i,k}∑
j=max{0,i+k−n}

(−1)j+k

(
k

j

)
Bi−j,n−k(x). (21)

It can easily be shown that for Bernstein polynomials on [a, b] [25]

dk

dxk
Bi,n(x) =

1
(b − a)k

n!
(n − k)!

min{i,k}∑
j=max{0,i+k−n}

(−1)j+k

(
k

j

)
Bi−j,n−k(x). (22)

e) The product property :
The product of two Bernstein polynomials is also a Bernstein polynomial which is given by

Bi,j(x)Bk,m(x) =

(
j
i

)(
m
k

)
(
j+m
i+k

) Bi+k,j+m(x). (23)

f) The integral properties:
All Bernstein polynomials of the same order have the same definite integral over the interval [a, b], namely

∫ b

a

Bi,n(x)dx =
b − a

n + 1
. (24)

In addition, the definite integrals of the products of Bernstein polynomials can be found using (23) and (24), as
follows: ∫ b

a

Bk,n(x)Bi,n(x)dx =

(
n
k

)(
n
i

)
(2n + 1)

(
2n
k+i

) (b − a). (25)

One of the benefits of the Bernstein polynomial approximation of a continuous function f is that it approximates f
on [a, b] using only the values of f at xi = a + (b − a)i/n, i = 0, 1, . . . , n, that is,

f(x) � Bnf(x) =
n∑

i=0

f(xi)Bi,n(x).

The above approximation is preferred when the evaluation of f is difficult, expensive and time consuming.
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3.2 Orthogonal Bernstein polynomials

The explicit representation of the orthonormal Bernstein polynomials of n-th degree are defined on the interval [0, 1]
as follows [41]:

Bi,n(x) =
(√

2(n − i) + 1
)

(1 − x)n−i
i∑

j=0

(−1)j

(
2n + 1 − j

i − j

)(
i

j

)
xi−j . (26)

Moreover, using (19) on the interval [0, 1], (26) can be written in a simpler form in terms of the non-orthonormal
Bernstein basis functions as [41]

Bi,n(x) =
(√

2(n − i) + 1
) i∑

j=0

(−1)j

(
2n+1−j

i−j

)(
i
j

)
(
n−j
i−j

) Bi−j,n−j(x). (27)

By changing the variable x = (t − a)/(b − a), we will have the orthonormal Bernstein polynomials on the arbitrary
interval [a, b] as

Bi,n(t) =

(√
2(n − i) + 1

b − a

)
i∑

j=0

(−1)j

(
2n+1−j

i−j

)(
i
j

)
(
n−j
i−j

) Bi−j,n−j

(
t − a

b − a

)
. (28)

The orthonormal Bernstein polynomial, Bj,n(x) on [0, 1] is the n-th eigenfunction of the singular Sturm-Liouville
problem [41]

d
dx

[
x(1 − x)2

dB(x)
dx

]
+ n(n + 2)(1 − x)B(x) + (n − j + 1)(j − n)B(x) = 0, (29)

with the orthogonality property ∫ 1

0

Bi,n(x)Bj,n(x)dx = δij , (30)

where δij is the Kronecker delta function. Also, using (28) and (25), the orthonormal polynomials satisfy the following
relationships over the interval [0, 1]

∫ 1

0

Bi,n(x)Bj,n(x)dx =

⎧⎪⎪⎨
⎪⎪⎩

√
(2(n − i) + 1)

i∑
k=0

(−1)k

(
2n+1−k

i−k

)(
i
k

)(
n
j

)
[2n + 1 − k]

(
2n−k
i+j−k

) , j ≥ i,

0, j < i.

(31)

In the end of this section, we will prove the following theorem, for the derivatives of Bi,n(x) at the end points of
the interval [a, b].

Theorem 1. For k = 0, 1, · · · , n, we have

dk

dxk
Bi,n(a) =

√
2(n − i) + 1
(b − a)2k+1

i∑
j=0

(−1)i+k
(
2n+1−j

i−j

)(
i
j

)(
k

i−j

)
(n − j)!(

n−j
i−j

)
(n − j − k)!

γi−j,k (32)

and
dk

dxk
Bi,n(b) =

√
2(n − i) + 1
(b − a)2k+1

i∑
j=0

(−1)n−i+j
(
2n+1−j

i−j

)(
i
j

)(
k

n−i

)
(n − j)!(

n−j
i−j

)
(n − j − k)!

γn−i,k, (33)

where

γi,k =

{
1, i ≤ k,

0, i > k.
(34)

Proof. For a fixed value of k if i = 0, 1, · · · , k, then min{i, k} = i. Moreover B0,n(a) = 1 and Bi,n(a) = 0, i = 1, 2, · · · , n.
So, from (22), we can get j ≤ i and

dk

dxk
Bi,n(a) =

(−1)i+k

(b − a)k

n!
(n − k)!

(
k

i

)
. (35)

Also, if i = k + 1, k + 2, · · · , n, then min{i, k} = k. So, from (22), we can get j < i and dk

dxk Bi,n(a) = 0. Thus we have

dk

dxk
Bi,n(a) =

(−1)i+k

(b − a)k

n!
(n − k)!

(
k

i

)
γi,k. (36)
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Similarly, it can be easily shown that, for x = b,

dk

dxk
Bi,n(b) =

(−1)n−i

(b − a)k

n!
(n − k)!

(
k

n − i

)
γn−i,k. (37)

Using (28), we can write

dk

dxk
Bi,n(x) =

(√
2(n − i) + 1

b − a

)
i∑

j=0

(−1)j

(
2n+1−j

i−j

)(
i
j

)
(
n−j
i−j

) dk

dxk
Bi−j,n−j(x). (38)

Therefore from (36)–(38) we have

dk

dxk
Bi,n(a) =

(√
2(n − i) + 1

b − a

)
i∑

j=0

(−1)j

(
2n+1−j

i−j

)(
i
j

)
(
n−j
i−j

) (−1)i−j+k(n − j)!
(

k
i−j

)
(b − a)k(n − j − k)!

γi−j,k,

dk

dxk
Bi,n(b) =

(√
2(n − i) + 1

b − a

)
i∑

j=0

(−1)j

(
2n+1−j

i−j

)(
i
j

)
(
n−j
i−j

) (−1)n−i(n − j)!
(

k
n−i

)
(b − a)k(n − j − k)!

γn−i,k. �

3.3 Rational Bernstein functions (RBFs)

Many science and engineering problems of current interest are set in unbounded domains. The use of a suitable mapping
to transfer semi-infinite domain [0,+∞) to the finite domain [a, b] is a common and effective strategy to construct
approximations on the half line. In this section we describe the rational Bernstein functions (RBFs) and express some
of their basic properties and asymptotic behaviors for solving differential equations on the half-line.

3.3.1 Basic properties

We define the rational Bernstein functions (RBFs) of order n as follows:

RBi,n(x; l) = Bi,n(Φl(x)), i = 0, 1, . . . , n, (39)

where Φl = [0,+∞) → [a, b) is an algebraic mapping given by

Φl(x) =
bx + al

x + l
, (40)

and l is a positive scaling/stretching factor. The inverse mapping of y = Φl(x) is

x = Φ−1
l (y) =

l(y − a)
b − y

. (41)

Furthermore, we can find the inverse image of the spaced nodes {yj}n
j=0 ⊂ [a, b) as

xl
j = Φ−1

l (yj) =
l(yj − a)
b − yj

, j = 0, 1, . . . , n. (42)

Theorem 2. Let a = 0 and b = 1, then the rational Bernstein functions RBj,n(y; l) on [0,∞) are the eigenfunctions of
the singular Sturm-Liouville problem:

y(y + l)
d2p(y)
dy2

+ l
dp(y)
dy

+ n(n + 2)
(

l

y + l

)
p(y) + γj,np(y) = 0, (43)

where γj,n = (n − j + 1)(j − n), j = 0, 1, . . . , n.
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Proof. As mentioned in sect. 3, Bj,n(x) on [0, 1] is the n-th eigenfunction of the singular Sturm-Liouville problem (29).
Let

p(y) = B̄j,n

(
y

y + l

)
. (44)

Now by using the following transformations:

x =
y

y + l
, y =

lx

1 − x
, x ∈ [0, 1), y ∈ [0,∞), (45)

we can get
dBj,n(x)

dx
=

l

(1 − x)2
dp(y)
dy

,
d
dx

(
dp(y)
dy

)
=

l

(1 − x)2
d2p(y)
dy2

. (46)

Inserting (46) into (29), yields

l

[
dp(y)
dy

+
lx

(1 − x)2
d2p(y)
dy2

]
+ n(n + 2)(1 − x)p(y) + γj,np(y) = 0, (47)

where γj,n = (n− j + 1)(j −n), j = 0, 1, . . . , n. Consequently, from (45) and (47), the Sturm-Liouville problem for the
rational Bernstein functions can be derived as (43). �

Lemma 1. For i = 0, 1, · · · , n, we have:

1) RBi,n(0; l) = (−1)i

√
2(n − i) + 1

b − a
, (48)

2) lim
x→+∞

RBi,n(x; l) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ i ≤ n − 1,

1√
b − a

n∑
j=0

(−1)j

(
2n + 1 − j

n − j

)(
n

j

)
, i = n,

(49)

3) RB′
i,n(0; l) =

(√
2(n − i) + 1

l2(b − a)

)
(−1)i+1(−i2 + 2in + i + n), (50)

4) lim
x→+∞

RB′
i,n(x; l) = 0, (51)

5) RB′′
i,n(0; l) =

−2(b − a)
l2

RB′
i,n(0; l) +

√
2(n − i) + 1
4l4(b − a)

(−1)iχn,i, (52)

where χn,i = 2ni(i2 − 2 in − i − 2n + 4)(i − 2n − 1)(n − 1).

Proof. From (39), we have

RBi,n(x; l) = Bi,n(Φl(x)),

RB′
i,n(x; l) = Φ′

l(x)B′
i,n(Φl(x)),

RB′′
i,n(x; l) = Φ′′

l (x)B′
i,n(Φl(x)) + Φ′

l(x)2B′′
i,n(Φl(x)).

In addition, from (40) it follows that

Φl(0) = a,

lim
x→+∞

Φl(x) = b,

Φ′
l(0) =

b − a

l
,

lim
x→+∞

Φ′
l(x) = 0,

Φ′′
l (0) =

−2(b − a)
l2

.

Now, by applying theorem 1 in the special cases k = 0, 1, 2, the lemma can be proved. �
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Remark 1. Boyd in [42, 43] offered guidelines for optimizing the map parameter l for rational Chebyshev functions,
which is useful for the presented method in this paper, too. For the map parameter l we have the following results:

– In general, there is no way to avoid a small amount of trial and error in choosing l when solving problems on an
infinite domain.

– The optimum value of l varies with the number of collocation points.
– A little experimentation is usually sufficient to determine a suitable value of l because near the optimum value of

l, the accuracy is insensitive to the precise value of l.
– The parameter l is a scaling/stretching factor which can be used to fine tune the spacing of collocation points.

3.3.2 Function approximation

Let us denote Λ = [0,+∞). We determine w(x) = l(b−a)
(x+l)2 as a non-negative, integrable and real-valued weight function

for the rational Bernstein functions over the interval [0,+∞). We define

L2
w(Λ) = {f |f is measurable on Λ and ‖f‖w < ∞}, (53)

equipped with the following inner product and norm:

〈f, g〉w =
∫

Λ

f(x)g(x)w(x)dx, ‖f‖w = 〈f, f〉
1
2
w. (54)

Let y = Φl(x), then we have

dy

dx
=

l(b − a)
(x + l)2

,
dx

dy
=

l(b − a)
(b − y)2

, w(x)
dx

dy
= 1. (55)

Hence, the orthogonality relation (30) leads to

〈RBi,n(x; l),RBj,n(x; l)〉w = δij . (56)

Now, suppose that H = L2
w(Λ), and let {RB0,n(x; l),RB1,n(x; l), . . . ,RBn,n(x; l)} ⊂ H be the set of rational or-

thonormal Bernstein functions of the order n. Also, we define P l
n : L2

w(Λ) −→ EB
l
n by

P l
nf(x) =

n∑
i=0

fiRBi,n(x; l), (57)

where
EB

l
n = Span{RB0,n(x; l),RB1,n(x; l), . . . ,RBn,n(x; l)}. (58)

Theorem 3. [44] For every given f in a Hilbert space H and every given closed subspace Z of H there is a unique best
approximation to w from Z.

Since H = L2
w(Λ) is Hilbert space and EB

l
n is a finite-dimensional subspace and EB

l
n is a closed subspace of H,

therefore, EB
l
n is a complete subspace of H. So, if f be an arbitrary element in H, by theorem 3, f has the unique

best approximation from EB
l
n such as f∗, that is

∃f∗ ∈ EB
l
n; ∀g ∈ EB

l
n ‖f − f∗‖w ≤ ‖f − g‖w. (59)

Since f∗ ∈ EB
l
n, there exist the unique coefficients f0, f1, . . . , fn such that

f(x) � f∗(x) =
n∑

i=0

fiRBi,n(x; l), (60)

where the coefficients fi can be obtained by

fi = 〈f(x),RBj,n(x; l)〉w, i = 0, 1, . . . , n. (61)
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4 Rational Bernstein collocation method (RBCM)

In this section, we use the rational Bernstein collocation method (RBCM) to solve the governing nonlinear differential
equations for stretching permeable surface in the presence of the velocity slip and temperature jump effects. Consider
the system of nonlinear ordinary differential equations (12) and (13) with boundary conditions (14) and (15) to
determine the approximate solutions of f(η) and θ(η).

At first, we approximate function f(η) by (nf + 1) terms of rational Bernstein functions as

f(η) � P
lf
nf f(η) =

nf∑
i=0

fiRBi,nf
(η; lf ). (62)

From the fourth part of lemma 1, we have

lim
η→+∞

dP
lf
nf f(η)
dη

=
nf∑
i=0

fi

(
lim

η→+∞
RB′

i,nf
(η; lf )

)
= 0, (63)

and therefore the first boundary condition (15) is satisfied. Now, we construct the residual function RESf (η) by
substituting f(η) by P

lf
nf f(η) in (12) as

RESf (η) =
d3P

lf
nf f(η)
dη3

−
(

dP
lf
nf f(η)
dη

)2

+ P
lf
nf f(η)

d2P
lf
nf f(η)
dη2

− A

(
dP

lf
nf f(η)
dη

+
1
2
η
d2P

lf
nf f(η)
dη2

)
. (64)

Let

tj = − cos
(

2jπ

2nf + 1

)
, j = 0, 1, . . . , nf , (65)

be the (nf + 1) Chebyshev-Gauss-Radau points on interval [−1, 1). From (42) with a = −1 and b = 1, we define the
collocation points η

lf
j ∈ [0,+∞) as follows:

η
lf
j = Φ−1

lf
(tj) =

lf (tj + 1)
1 − tj

, j = 0, 1, . . . , nf . (66)

The equations for obtaining the coefficients fis come from equalizing RESf (η) to zero at collocation points {ηlf
j }nf−2

j=0
plus two no-slip and slip boundary conditions as follows:

RESf (ηlf
j ) = 0, j = 0, 1, . . . , nf − 2, (67)

P
lf
nf f(ηlf

0 ) = fw,
dP

lf
nf f(η)
dη

∣∣∣∣
η=η

lf
0

= 1 + γ
d2P

lf
nf f(η)
dη2

∣∣∣∣
η=η

lf
0

. (68)

We can rewrite the boundary conditions (68) by the first, third and fifth parts of lemma 1 as

nf∑
i=0

fiζ
(1)
i = fw,

nf∑
i=0

fiζ
(2)
i = 1 + γ

nf∑
i=0

fiζ
(3)
i , (69)

where

ζ
(1)
i = (−1)i

√
2(n − i) + 1

b − a
,

ζ
(2)
i =

(√
2(n − i) + 1

l2(b − a)

)
(−1)i+1(−i2 + 2in + i + n),

ζ
(3)
i =

−2(b − a)
l2

ζ
(2)
i +

√
2(n − i) + 1
4l4(b − a)

(−1)iχn,i.
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Equations (67) and (69) generate a set of (nf + 1) nonlinear equations that can be solved by Newton method for the
unknown coefficients fis.

Now, by finding the approximate solutions P
lf
nf f(η), we suppose that the approximate solution θ(η) of (13) is as

follows:

θ(η) � P lθ
nθ

θ(η) =
nθ∑
i=0

θiRBi,nθ
(η; lθ). (70)

Similarly, we make the residual function RESθ(η) by substituting P lθ
nθ

θ(η) in equation (13) as:

RESθ(η) =
1

Pr

d2P lθ
nθ

θ(η)
dη2

+

∣∣∣∣∣∣∣
P

lf
nf f(η) P lθ

nθ
θ(η)

dP
lf
nf f(η)
dη

dP lθ
nθ

θ(η)
dη

∣∣∣∣∣∣∣
− A

(
2P lθ

nθ
θ(η) +

1
2
η
dP lθ

nθ
θ(η)

dη

)
= 0. (71)

Using the collocation points (66), the equations for obtaining the coefficients θis come through equalizing RESθ(η) to
zero at these points plus two no-slip and slip boundary conditions as follows:

RESθ(ηlθ
j ) = 0, j = 0, 1, . . . , nθ − 2, (72)

P lθ
nθ

θ(ηlθ
0 ) = 1 + φ

dP lθ
nθ

θ(η)
dη

∣∣∣∣
η=η

lθ
0

, lim
η→+∞

P lθ
nθ

θ(η) = 0. (73)

Again, by the first and three parts of lemma 1, we rewrite the boundary conditions (73) as follows:

nθ∑
i=0

θiζ
(1)
i = 1 + φ

nθ∑
i=0

θiζ
(2)
i , θnθ

= 0. (74)

Equations (72) and (74) generate a set of (nθ + 1) nonlinear equations that can be solved by Newton method for the
unknown coefficients θis.

5 Results and discussion

In this section, we present the numerical results of the RBCM to solve the system of nonlinear ordinary differential
equations (12) and (13) subject to boundary conditions (14) and (15). A parametric study is presented to see the
influence of the unsteadiness parameter, Prandtl number, suction parameter, velocity slip parameter and thermal slip
parameter on the fluid velocity component and temperature distribution profiles. To illustrate the reliability of the
proposed method, we compare the numerical results of RBCM with the other researcher’s result and numerical method
based on fourth-order Runge-Kutta method along with shooting technique.

To evaluate the validity and applicability of the presented technique, we define the following absolute errors:

Ef ′(ηk) = |f ′
RBCM (ηk) − f ′

Rk4(ηk)|, Eθ(ηk) = |θRBCM (ηk) − θRk4(ηk)|, ηk ∈ [a, b], (75)

where ηk = a + i(b−a)
N , i = 0, 1, . . . , N . Figure 2 gives a comparison between the present RBCM results and the

fourth-order Runge-Kutta (RK4) method along with shooting technique for some parameters of A, Pr, fw, φ, γ with
N = 100.

Figure 3 shows the velocity and temperature distributions for different value of unsteadiness parameter A. It is
clearly observed that the velocity and temperature profiles decrease with increasing the value of A. The temperature
profiles for different value of the Prandtl number are depicted in fig. 4. It is observed that an increase in the value
of Prandtl number decreases the thermal boundary layer thickness. It is evident that the lower value of Pr gives the
higher temperature and thermal boundary layer thickness. Figure 5 illustrates the effect of suction parameter fw on
the velocity and temperature. It is seen that with increasing of fw the velocity and temperature profile go to boundary
values in the smaller quantities of perpendicular distance, η. The influence of the velocity slip parameter γ on the
velocity and temperature profiles is shown in fig. 6. The value of γ changes from 0 to 5, where γ = 0 indicates the
no-slip condition. It is clearly observed that the velocity profile decreases with increasing the value of γ, whereas the
temperature distribution increases. The effect of γ on the temperature distribution in contrast to velocity profile is
far less clear. Figure 7 illustrates the effect of the thermal slip parameter φ on the temperature distribution. It is
obvious that with increasing of φ, the thermal of the flow decreases. The effects of the suction parameter fw, velocity
slip parameter γ and unsteadiness parameter A on the skin friction coefficient are displayed in fig. 8. As can be seen,
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Fig. 2. Plots of error values Ef ′(ηk) and Eθ(ηk) with N = 100.
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Fig. 3. Effect of the unsteadiness parameter A on the velocity and temperature profiles with Pr = 0.71, fw = 1, φ = γ = 0.2.

by increasing the fw and A, that skin friction coefficient decreases. Moreover, the skin friction coefficient increases
with the increasing velocity slip parameter γ. Also, it is clear that large values of γ, A and fw have a negligible effect
in the skin friction coefficient. Figure 9 shows the graphical representations for the various values of A, fw, Pr, φ
on the local Nusselt number. It is observed that an increase in A and fw increases the local Nusselt number. It is
clear that increasing Pr enhances the local Nusselt number for the small values of φ. We also validate our method
by comparing the skin friction coefficient and the local Nusselt number with the available results in the literature, as
shown in tables 1 and 2. The evaluated errors and CPU times denote the accuracy and efficiency of the new proposed
method.

Although some methods to choose the map parameter l for different problem are suggested in [42,43], there is not
a general method for this choice and it is usually selected by trial and error. However, we need to choose the parameter
l so that it controls the width of the base functions. Here, we introduce the following method for finding a suitable
map parameter l.
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Fig. 4. Effect of the Prandtl number Pr on the temperature profile with A = fw = 1, φ = γ = 0.2.
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Fig. 5. Effect of the suction parameter fw on the velocity and temperature profiles with Pr = 0.71, A = 1, φ = γ = 0.2.
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Fig. 6. Effect of the velocity slips parameter γ on the velocity and temperature profiles with Pr = 0.71, A = fw = 1, φ = 0.2.

In this method, we depict the maximum absolute residual error versus l for a fixed values of n. This curve has a
“V ” shape. for reasons explained in more detail in [42,43,45].

Figure 10 shows the graphs of maximum absolute residual errors (64) and (71) for case A = 3, fw = 1, Pr = 0.71,
γ = φ = 0.2 with nf = nθ = 10, 20, 30 and various values of lf , lθ. We observe that the optimum values of parameter
lf are about lf = 3, 3.5 and 3.7 for nf = 10, 20 and 30, respectively. Also, we can see that the optimum values of
parameter lθ are about lθ = 3, 3.5 and 4 for nθ = 10, 20 and 30, respectively.
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Fig. 7. Effect of the thermal slip parameter φ on the temperature profile with Pr = 0.71, A = fw = 1, γ = 0.2.
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6 Conclusions

In this study, the velocity slip and temperature jump effects for an unsteady flow past a porous accelerating stretching
surface was investigated using the rational Bernstein collocation method (RBCM). The difficulty in this type of
problems, due to the existence of its slip boundary conditions, was overcome here. The effects of various parameters
like the unsteadiness parameter A, Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal
slip parameter φ on the velocity and temperature distribution profiles are discussed with the help of graphs. The
effect of the parameters on the skin friction and the local Nusselt number is also examined. The results obtained from
RBCM are in excellent agreement with those obtained from numerical solutions by fourth-order Runge-Kutta method
and other previous methods.
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Table 1. Comparison results of −f ′′(0) for various values of A, fw, γ with nf = 30.

A γ fw lf RBCM CPU time(s) RK4 Error

0 0 0 7 1.00000000 8.36 1.00000000 7.47128740e − 10

2 5 3 0.45469419 9.64 0.45469419 4.38975174e − 13

5 10 3 0.19607918 9.82 0.19607918 3.06171982e − 13

1 0 0 7 1.32052206 10.86 1.32052206 1.23484110e − 16

2 5 3 0.45549392 11.73 0.45549392 9.47656554e − 17

5 10 3 0.19609829 13.21 0.19609829 4.27606791e − 17

7 0 0 3 2.53708081 11.14 2.53708081 6.33748846e − 20

2 5 1 0.45974146 13.03 0.45974146 6.57661674e − 14

5 10 1 0.19620917 13.85 0.19620917 1.63879225e − 15

15 0 0 3 3.56613202 12.91 3.56613202 1.31476036e − 18

2 5 1 0.46401671 14.37 0.46401671 8.62994603e − 17

5 10 1 0.19634753 14.98 0.19634753 3.53598317e − 16

Table 2. Comparison results of −θ′(0) for various values of A, fw, γ, Pr, φ with nf = nθ = 30.

A γ fw φ Pr lf lθ Ref. [46] Ref. [47] Ref. [48] Ref. [49] Ref. [40] RBCM RK4 Error

0 0 0 0 0.72 7 8.2 0.8058 0.8086 0.8086 0.80868 0.80863135 0.80863140 0.80863134 8.92268800e − 09

1 7 7.2 0.9961 1.0000 1.0000 1.00000000 1.00000000 1.00000000 4.77407300e − 09

10 7 1 3.7006 3.7207 3.7207 3.72064063 3.72067116 3.05267526e − 05

100 7 0.55 12.2941 12.2940 12.2940 12.2940911 12.2940811 1.01156526e − 05

1 0 0 0 0.72 7 8 1.41358702 1.41358702 9.62339619e − 16

1 7 7 1.6820 1.68199253 1.68199253 1.64811127e − 17

10 7 1 5.56377330 5.56377330 3.70543764e − 15

100 7 0.5 17.9013332 17.9013332 1.35796486e − 12

2 5 2 0.72 3 3 0.44315632 0.44315632 9.47450917e − 17

1 3 3 0.45693356 0.45693356 2.87320610e − 18

10 3 1 0.49508171 0.49508171 5.44624965e − 15

100 3 0.5 0.49963801 – –
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Fig. 10. Comparison of the residual errors for f(η) and θ(η) with different choices of the parameters lf and lθ and the numbers
of grid points nf and nθ.

The main advantages of the RBCM are the following:

– The technique is easy to implement and yields very accurate results in comparison with other mentioned methods.
– The proposed method does not require truncating or transforming the semi-infinite domain of the problem to a

finite domain.
– This method reduces the solution of the problem to solution of a system of algebraic equations.
– Unlike the Runge-Kutta methods, where provide the solution of the problem at a discrete set of points, the RBCM

provides the continuous solution of the problem.



Page 16 of 16 Eur. Phys. J. Plus (2017) 132: 96

References

1. L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970).
2. P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977).
3. A. Ishak, R. Nazar, I. Pop, Nonlinear Anal. Real World Appl. 10, 2909 (2009).
4. M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M. Rashidi, Powder Technol. 267, 256 (2014).
5. M.M. Rashidi, N. Freidoonimehr, A. Hosseini, O.A. Bég, T.K. Hung, Meccanica 49, 469 (2013).
6. N. Freidoonimehr, M.M. Rashidi, S. Mahmud, Int. J. Therm. Sci. 87, 136 (2015).
7. J.C. Maxwell, Philos. Trans. R. Soc. London Ser. 170, 231 (1879).
8. A. Beskok, G.E. Karniadakis, Microscale Thermophys. Eng. 3, 43 (1999).
9. L.A. Wu, Appl. Phys. Lett. 93, 253103 (2008).

10. A.K. Srikanth, Slip flow through long circular tubes, in Proceedings of the Sixth International Symposium on Rarefied gas
dynamics (Academic Press, 1969) pp. 667–680.

11. H. Andersson, Acta Mech. 158, 121 (2002).
12. C.Y. Wang, Chem. Eng. Sci. 57, 3745 (2002).
13. T.G. Fang, J. Zhang, S.S. Yao, Chin. Phys. Lett. 27, 124702 (2010).
14. T. Hayat, M. Qasim, S. Mesloub, Int. J. Numer. Methods Fluid. 66, 963 (2011).
15. S. Jafari, N. Freidoonimehr, J. Braz. Soc. Mech. Sci. Eng. 37, 1245 (2015).
16. M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M. Rashidi, Adv. Powder Technol. 26, 542 (2015).
17. M. Nawaz, A. Zeeshan, R. Ellahi, S. Abbasbandy, S. Rashidi, Int. J. Numer. Methods Heat Fluid Flow 25, 665 (2015).
18. A. Zeeshan, A. Majeed, R. Ellahi, J. Mol. Liq. 215, 549 (2016).
19. A. Majeed, A. Zeeshan, R. Ellahi, J. Mol. Liq. 223, 528 (2016).
20. K. Maqbool, A. Sohail, N. Manzoor, R. Ellahi, Commun. Theor. Phys. 66, 547 (2016).
21. R. Ellahi, M.M. Bhatti, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 26, 1802 (2016).
22. R. Ellahi, F. Hussain, J. Magn. & Magn. Mater. 393, 284 (2015).
23. P.P. Korovkin, Interpolation and approximation by polynomials: Bernstein polynomials, in Springer Encyclopedia of Math-

ematics (Springer, 2001).
24. G. Farin, Curves and Surfaces for Computer Aided Geometric Design (Academic Press, Boston, Mass, USA, 1996).
25. M. Heydari, G.B. Loghmani, S.M. Hosseini, Comput. Appl. Math. (2015) DOI: 10.1007/s40314-015-0251-2.
26. D.D. Bhatta, M.I. Bhatti, Appl. Math. Comput. 174, 1255 (2006).
27. B.N. Mandal, S. Bhattacharya, Appl. Math. Comput. 190, 1707 (2007).
28. S. Bhattacharya, B.N. Mandal, Appl. Math. Sci. 2, 1773 (2008).
29. A. Chakrabarti, S.C. Martha, Appl. Math. Comput. 211, 459 (2009).
30. M.I. Bhatti, P. Bracken, J. Commun. Appl. Math. 205, 272 (2007).
31. S.A. Yousefi, M. Behroozifar, Int. J. Syst. Sci. 41, 709 (2010).
32. S.A. Yousefi, M. Behroozifar, M. Dehghan, J. Comput. Appl. Math. 235, 5272 (2011).
33. E.H. Doha, A.H. Bhrawy, M.A. Saker, Bound. Value Probl. 2011, 829543 (2011).
34. E.H. Doha, A.H. Bhrawy, M.A. Saker, Appl. Math. Lett. 24, 559 (2011).
35. S.A. Yousefi, M. Behroozifar, M. Dehghan, Appl. Math. Model. 36, 945 (2012).
36. K. Maleknejad, E. Hashemizadeh, B. Basirat, Commun. Nonlinear Sci. Numer. Simulat. 17, 52 (2012).
37. K. Maleknejad, E. Hashemizadeh, R. Ezzati, Commun. Nonlinear Sci. Numer. Simulat. 16, 647 (2011).
38. D. Rostamy, K. Karimi, Fract. Calc. Appl. Anal. 15, 556 (2012).
39. M. Heydari, G.B. Loghmani, M.M. Rashidi, S.M. Hosseini, Propulsion Power Res. 4, 169 (2015).
40. N. Freidoonimehr, M.M. Rashidi, Z. Yang, A. Hajipour, Y. Xiao-Jun, Velocity slip and temperature jump effects for an

unsteady flow over a stretching permeable surface, to be published in Thermal Science.
41. Michael A. Bellucci, arXiv:1404.2293 (2014).
42. J.P. Boyd, J. Comput. Phys. 45, 43 (1982).
43. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition (Dover Publications Inc., Mineola, 2001).
44. E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1978).
45. J.P. Boyd, J. Comput. Phys. 69, 112 (1987).
46. M.E. Ali, Heat Mass Transfer 29, 227 (1994).
47. A. Ishak, R. Nazar, I. Pop, Meccanica 44, 369 (2009).
48. L.J. Grubka, K.M. Bobba, ASME J. Heat. Transf. 107, 248 (1985).
49. A. Mahdy, Nucl. Eng. Des. 249, 248 (2012).


