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Abstract. Rigorous use of the SUSYQM approach applied for the Klein-Gordon equation with scalar
and vector potentials is discussed. The method is applied to solve exactly, for bound states, two models
with position-dependent masses and PT -symmetric vector potentials, depending on some parameters. The
necessary conditions on the parameters to get physical solutions are described. Some special cases are also
derived by adjusting the parameters of the models.

1 Introduction

Since the pioneering works of Bender and Boettecher [1,2], it is now recognized that the Hermiticity of the Hamiltonian
in Schrödinger equation is not a necessary condition to obtain real eigenvalues for the energy. It has been shown that,
one-dimensional stationary Schrödinger equation may exhibit real energy eigenvalues for non-Hermitian potentials
provided that the Hamiltonian H has a parity-time reversal symmetry,

[PT ,H] = 0, (1)

where the action of the space reflection operator P and the time reversal operator T on position and momentum
operators are given by

P : x → −x; p → −p and T : x → x; p → −p; i → −i. (2)

Indeed, the action of PT on both sides of the Schrödinger equation

Hψn(x) = Enψn(x), (3)

combined with the properties (1) and (2) leads to

H [PT ψn(x)] = E∗
n [PT ψn(x)] , (4)

where E∗
n denotes the complex conjugate of En. Thus, if ψn(x) is an eigenfunction of H with eigenvalue En, then

PT ψn(x) = ψ∗
n(−x) is also an eigenfunction of H with eigenvalue E∗

n. Consequently, for eigenfunctions satisfying
PT ψn(x) = λnψn(x), necessarily En = E∗

n and vice versa, since there is no degeneracy in one dimension. In this case,
PT -symmetry is said non-broken, otherwise the PT -symmetry is said broken and the eigenvalues come in complex
conjugate pairs. Furthermore, since (PT )2 = 1, λn are phase factors that can be absorbed in the eigenfunctions. Hence,
in the case of non-broken PT -symmetry, the eigenfunctions may be normalized in such a way that PT ψn(x) = ψn(x).

The normalization condition in non-broken PT -symmetric theory is then given by [3,4]
∫

[PT ψn(x)] ψn(x)dx =
∫

ψ2
n(x)dx = (−1)n. (5)
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During the last two decades, solvable PT -symmetric potentials have been extensively studied both in relativistic
and non-relativistic quantum mechanics by using different techniques [5–20]. Moreover, some authors have investigated
the solutions of Schrödinger equation [21–23] and Dirac equation [24–29] for certain PT -symmetric potential models
with position-dependent mass. Also, problems with position-dependent mass in the context of Klein-Gordon and Dirac
equations with Hermitian potentials have been discussed in several works [30–34]. However, in our knowledge, PT -
symmetric potentials have not been studied in the context of Klein-Gordon equation with position-dependent mass.
The aim of this work is to fill this gap and solve exactly the (1 + 1)-dimensional time-independent Klein-Gordon
equation with position-dependent mass for bound states in the framework of PT -symmetry. In sect. 2, a summary
of the approach of supersymmetric quantum mechanics (SUSYQM) [35, 36] is outlined for PT -symmetric potentials.
In sect. 3, we show how to map Klein-Gordon equation for position-dependent mass with mixing scalar and vector
potentials into a Schrödinger-like equation with constant mass and energy-dependent effective potential, suitable for
processing by the SUSYQM approach. Section 4 is devoted to applications, where we solve exactly two problems with
suitable mass distribution-functions in the presence of PT -symmetric vector potentials and null scalar potentials, by
the approach of SUSYQM.

2 Basic concepts of SUSYQM approach with PT -symmetric Hamiltonian

In connection to the formalism of SUSYQM for Hermitian Hamiltonians [35, 36], bound-state eigenvalues and cor-
responding eigenfunctions of a PT -symmetric one-dimensional Hamiltonian, H = − �

2

2m
d2

dx2 + V (x), with non-broken
PT -symmetry (real eigenvalues), may be obtained in the same way. The partner Hamiltonians H(−) and H(+) asso-
ciated to H are defined as

H(−) = H − E0 = BA (6)

and
H(+) = AB, (7)

where E0 is the ground-state energy of the Hamiltonian H, with

A =
�√
2m

d
dx

+ W (x), B = − �√
2m

d
dx

+ W (x), (8)

and the superpotential W (x) is a complex function.
Hence, according to eq. (6), H and H(−) have the same eigenfunctions (ψn(x) ∼ ψ

(−)
n (x)) and the eigenvalues

{E(−)
n = En − E0} corresponding to H(−) are semi-positive definite,

H(−)ψ(−)
n (x) = BAψ(−)

n (x) = E(−)
n ψ(−)

n (x), (9)

with
E

(−)
0 = 0 and E(−)

n > 0 for n = 1, 2, . . . . (10)

Assuming that the ground-state eigenfunction ψ
(−)
0 (x) satisfies Aψ

(−)
0 (x) = 0, it is given by

ψ
(−)
0 (x) = N0 exp

(
−
√

2m

�

∫ x

W (y)dy

)
, (11)

where N0 is a normalization constant, such that ψ
(−)
0 (x) is square integrable in the sense of (5).

The action of the operator A on both sides of eq. (9) leads to

H(+)
(
Aψ(−)

n (x)
)

= E(−)
n

(
Aψ(−)

n (x)
)

, (12)

such that the eigenvalues E
(+)
n of H(+) and the normalized corresponding eigenfunctions ψ

(+)
n (x) for n = 0, 1, 2, . . .,

are related to those of H(−) by [35,36]
E(+)

n = E
(−)
n+1, (13)

and
ψ(+)

n (x) =
1√

E
(−)
n+1

Aψ(−)
n (x). (14)
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Explicitly, the partner Hamiltonians reads

H(∓) = − �
2

2m

d2

dx2
+ V (∓)(x), (15)

where the partner potentials, V (∓)(x), are given by

V (∓)(x) = W 2(x) ∓ �√
2m

dW (x)
dx

. (16)

The partner potentials are said shape-invariant potentials [37] if they satisfy

V (+)(x; {a1}) = V (−)(x; {a2}) + R({a1}), (17)

where {a1} and {a2} are two sets of real parameters related by a certain function ({a2} = f({a1})) and the remainder
R({a1}) is independent of x.

If the requirement (17) is satisfied, one can show [35, 36] that the energy spectrum of H(−) can be deduced
algebraically and is given by

E
(−)
0 = 0, E(−)

n =
n∑

k=1

R ({ak}) for n = 1, 2, · · · , (18)

with {ak} = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
(k−1) times

({a1}).

The spectrum of the Hamiltonian H is then given by

En = E(−)
n + E0. (19)

The unnormalized eigenfunctions of the excited states are given by the recurrence formula [35,36,38,39]

ψn (x; {a1}) = B({a1})ψn−1 (x; {a2}) , for n ≥ 1, (20)

which leads to the general formula

ψn (x; {a1}) =

[
n∏

i=1

B({ai})
]

ψ0 (x, {an+1}) for n ≥ 1. (21)

3 (1 + 1)-Dimensional time-independent Klein-Gordon equation with position-dependent
mass and mixing scalar and vector potentials

The one-dimensional time-independent Klein-Gordon equation for a spinless particle with position-dependent mass
M(x), subjected to mixing vector and scalar potentials V (x) and S(x), reads (� is the Plank constant, c is the speed
of light) (

−�
2 d2

dx2
+

1
c2

[(
M(x)c2 + S(x)

)2 − (E − V (x))2
])

ϕ(x) = 0, (22)

where E is the energy of the particle and ϕ(x) its corresponding wave function. Since eq. (22) is not an eigenvalues
equation, like Schrödinger equation, it is not easy to use SUSYQM approach to solve it and obtain the energy spectrum
algebraically. To overcome this difficulty, eq. (22) is often written, in the literature, as an eigenvalues equation in the
form (

−�
2 d2

dx2
+ Veff(x)

)
ϕ(x) = Ẽϕ(x), (23)

with
Veff(x) =

1
c2

[(
M(x)c2 + S(x)

)2 − V 2(x) + 2EV (x)
]
, (24)

and

Ẽ =
E2

c2
. (25)
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The disadvantage in doing so is that E appears in both the effective potential Veff(x) and the eigenvalue Ẽ.
When using SUSYQM approach, the energy E in the hierarchical partner potentials is considered as a parameter that
remains unchanged but it changes in the hierarchical eigenvalues, which leads to confusion. In this work, we will follow
a different approach that removes the ambiguity.

First, remark that eq. (22) may be seen as a zero energy Schrödinger-like equation for a particle with constant
mass (m = 1/2), subjected to the E-dependent potential

VE(x) =
1
c2

[(
M(x)c2 + S(x)

)2 − (E − V (x))2
]
. (26)

Thus, the problem reduces to search the solution of a zero-energy Schrödinger-like equation with a conditional
parameter in potential. To solve a typical equation for bound states, i.e. discrete real energies E ≡ En and normalized
wave functions ϕ(x) ≡ ϕn(x), using SUSYQM, we consider instead the Schrödinger equation (2m = 1)

(
−�

2 d2

dx2
+ VE(x)

)
Φn(x) = εnΦn(x) with n = 0, 1, 2, . . . , (27)

where E is considered as a real parameter in the potential VE(x). Now, SUSYQM approach can be applied to solve
equation (27) without any confusion. When VE(x) is Hermitian or PT -symmetric and the PT -symmetry is not
spontaneously broken, the eigenvalues εn are real functions of the parameter E. Hence, once the eigenvalues εn and
the corresponding eigenfunctions Φn(x) for eq. (27) are obtained, the energies En of the original problem (eq. (22))
are given by the real solutions of the equation

εn(E) = 0, (28)

and the wave functions ϕn(x) can be deduced by

ϕn(x) = Φn(x)|εn(E)=0. (29)

4 Applications

We are interested in this paper to solve exactly eq. (27) for two models with PT -symmetric E-dependent potential.
resulting from complex PT -symmetric vector potential and null scalar potential. For each model, the mass distribution
is suitably chosen such that to obtain an E-dependent potential that is exactly solvable for bound states.

4.1 Model with asymptotically unbounded mass, coupled to a linear PT -symmetric vector potential

Consider a relativistic position-dependent spinless particle moving on the whole X-axis and subjected to a linear
PT -symmetric vector potential and null scalar potential. The mass distribution and the vector potential are taken,
respectively, as

M(x) =

√
μ2 +

(
λ

c

)2

x2, (30)

and
V (x) = icηx, (31)

where μ is the value of the mass at the origin of the coordinate, λ and η are real parameters with dimension MT−1,
and without loss of generality λ is assumed to be positive. Note that the speed of light c is explicitly included in the
expressions of M(x) and V (x) only by convenience of calculations. However, λ and η may be seen of order 0 and order
1 compared to c−1 respectively, i.e.,

λ = λ0 + O
(
c−1

)
and η = η0c

−1 + O
(
c−2

)
. (32)

Substituting eqs. (30) and (31) into (26), the E-dependent potential reads

VE(x) =
(
λ2 + η2

)
x2 + i

2ηE

c
x +

μ2c4 − E2

c2
, (33)

which is a PT -symmetric function (VE(x) = V ∗
E(−x)) for real values of the energy E.
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To solve eq. (27) with the potential (33), by using SUSYQM, we choose the superpotential in the form

WE(x) = Ax + i
ηE

cA
, (34)

where A is a real parameter.
In order to fix the parameter A and obtain the ground-state eigenvalue ε0 ≡ ε0(E), we have to solve the identity

VE(x) − ε0 = W 2
E(x) − �W ′

E(x). (35)

Substituting (33) and (34) into (35) and identifying the coefficients of terms in power of x, leads to

A2 = λ2 + η2, (36)

and

ε0 = μ2c2 + �A − λ2E2

c2A2
. (37)

Note that ε0 is real for real values of E. However, using eq. (11), the unnormalized ground-state eigenfunction may
be put in the form

Φ0(x) ∼ e−
A
2�

(x+i ηE

cA2 )2 . (38)

By demanding that Φ0(x) is normalizable on the real axis in the sense of eq. (5) requires that A is positive, such
that the acceptable solution of (36) is

A =
√

λ2 + η2. (39)

The supersymmetric partner potentials V
(∓)
E (x) = W 2

E(x) ∓ �W ′
E(x) are explicitly given by

V
(−)
E (x) = A2x2 + i

2ηE

c
x − η2E2

c2A2
− �A, (40)

V
(+)
E (x) = A2x2 + i

2ηE

c
x − η2E2

c2A2
+ �A. (41)

They satisfy the shape invariance condition (17), which reads

V
(+)
E (x, a1) = V

(−)
E (x, a2) + R (a1) , (42)

with
a1 = A, a2 = f (a1) = a1, (43)

and
R (a1) = 2�a1 = 2�A. (44)

Using (19), the energy eigenvalues corresponding to the potential VE(x) are given by

εn = ε(−)
n + ε0, (45)

where ε
(−)
n are the eigenvalues of the partner V

(−)
E (x), which are expressed in terms of the remainder function R as

ε(−)
n =

n∑
k=1

R (ak) = 2n�A, (46)

and we have used the fact that
ak = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

(k−1) times

(a1) = a1. (47)

Since ak = A > 0 for all k = 1, 2, . . ., the number of eigenvalues is unlimited. Thus, substituting (37) and (46)
into (45), the energy eigenvalues εn are given by

εn = μ2c2 + (2n + 1) �A − λ2E2

c2A2
. (48)



Page 6 of 12 Eur. Phys. J. Plus (2017) 132: 40

By virtue of (28), the generating formula for allowed energy values of the original problem, En, may be put in the
form

En = ±A

λ

√
μ2c4 + (2n + 1) �c2A, n = 0, 1, 2, . . . . (49)

Thus, all the energy values are real, independently of the parameters μ, λ and η, and consequently the PT -symmetry
is always not broken.

To determine the wave functions ψn(x) of the original problem (ψn(x) = Φn(x)|εn(E)=0), let us write eq. (27) for
εn = 0 in the form (

−�
2 d2

dx2
+ A2

(
x + i

ηEn

cA2

)2
)

ψn(x) = (2n + 1) �Aψn(x), (50)

where we made use of (29), (33) and (48).
By defining a new function ϕn(z) by

ψn(x) = e−
Z2
2 ϕn(z), (51)

with z =
√

A
�
(x + iηEn

cA2 ) and substituting into (50), it is easily seen that ϕn(z) satisfies the Hermite equation

ϕ′′
n(z) − 2zϕ′

n(z) + 2nϕn(z) = 0. (52)

Hence, the wave functions may be written in the form

ψn(x) = |Nn| ei nπ
2 e−

A
2�

(x+i ηEn
cA2 )2Hn

(√
A

�

(
x + i

ηEn

cA2

))
, (53)

where Hn(z) is the Hermite polynomial and |Nn| is a real normalizing factor. The phase factor ei nπ
2 is introduced

explicitly in order to make the wave function ψn(x) also eigenfunction of the PT operator with eigenvalue equal to 1.
Normalizing ψn(x) in the sense of eq. (5) allows to fix the normalization factor in the form

|Nn| =
(

A

π�

) 1
4
(

1
2nn!

) 1
2

. (54)

In conclusion, it is obvious from eq. (49) that we have to consider λ 	= 0 with arbitrary η. This means that the
position dependence of the mass which is responsible of the existence of bound states. The vector potential only
contributes to the magnification of the energy values. In other words, for a fixed value of λ, the energy values are
amplified with increasing values of |η|. However, in the Hermitian version of the problem, with V (x) = ηcx, the
parameter η is to be replaced by −iη in eq. (49) so that the role of the vector potential is inverted. Indeed, in this
case, for a fixed value λ, energy values decrease with increasing values of |η| and bound states exist only if |η| < λ.

4.1.1 Special cases

– Setting μ = 0 in (30), the problem reduces to a particle with a mass distribution as a linear function of the position,
given by

M(x) =
λ

c
|x|, (55)

subjected to the PT -symmetric vector potential (31). This special case may also be seen as the problem of massless
particle subjected to the PT -symmetric vector potential (31), combined with a real linear scalar potential, S(x) =
±λ

c x. The energy values and wave functions reduce to

En|μ=0 = ± c

λ

√
(2n + 1) �A3, n = 0, 1, 2, · · · . (56)

and

ψn(x)|μ=0 = |Nn| ei nπ
2 e−

A
2�

(x+i
ηEn|μ=0

cA2 )2Hn

(√
A

�

(
x + i

ηEn|μ=0

cA2

))
, (57)

with |Nn| given by (54).
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– Setting λ = μω, η = μξ
c and considering the non-relativistic (NR) limit, by subtracting the rest energy μc2 from

the total positive energy and taking the limit c → ∞, one gets

lim
c→∞

(
En − μc2

)
= ENR

n and lim
c→∞

ψn(x) = ψNR
n (x),

with

ENR
n =

(
n +

1
2

)
�ω (58)

and

ψNR
n (x) =

(μω

�π

) 1
4
(

1
2nn!

) 1
2

ei nπ
2 e−

μω
2�

(x+i ξ

ω2 )2Hn

(√
μω

�

(
x + i

ξ

ω2

))
. (59)

We see that in this limit the energy values are those of an harmonic oscillator and the effect of the vector potential
appears only in the wave functions. In the absence of the vector potential, η = 0 (or ξ = 0), the wave functions
also reduce to those of the harmonic oscillator

ψNR
n (x)|η=0 =

(μω

π�

) 1
4
(

1
2nn!

) 1
2

e−
μω
2�

x2
Hn

(√
μω

�
x

)
. (60)

Thus, on can say that this model may be seen as the extension of the one-dimensional non-relativistic harmonic
oscillator to the relativistic Klein-Gordon harmonic oscillator. Indeed, by setting η = 0, λ = μω and taking the
non-relativistic limit in the Klein-Gordon equation eq. (22), it can be seen that it reduces to the Schrödinger
equation for the harmonic oscillator potential.

4.2 Model with asymptotically bounded mass coupled to a PT -symmetric hyperbolic vector potential

In this model, we take the mass distribution and the potential functions in the forms

M(x) =

√
μ2 +

(
λ

αc

)2

tanh2 αx, (61)

and
V (x) = i

cη

α
tanhαx, (62)

where μ is the value of the mass at the origin of the coordinate, α > 0 and λ, η are real parameters satisfying (32),
with λ > 0.

Substituting eqs. (61) and (62) into (26) and denoting the energy by E , the effective E-potential reads

VE(x) = − λ2 + η2

α2 cosh2 αx
+ i

2ηE
αc

tanh αx +
λ2 + η2

α2
+

μ2c4 − E2

c2
, (63)

that is, for real values of the energy E , a shifted PT -symmetric potential of Rosen-Morse II type.
Choosing the superpotential in the form

WE(x) =
B

α
tanhαx + i

ηE
cB

, (64)

and using eq. (35), we find that the parameter B and the ground-state energy ε0 are given by

B
(
B + �α2

)
= λ2 + η2, (65)

and

ε0 = −
(

B2

α2
− η2E2

c2B2

)
+

λ2 + η2

α2
+

μ2c4 − E2

c2
. (66)

The unnormalized ground state eigenfunction reads

Φ0(x) ∼ exp
(
−1

�

∫ x

WE(y)dy

)
= e−i ηE

�cB x (cosh αx)−
B

�α2 . (67)
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Demanding that Ψ0(x) satisfy the normalization condition in the sense of eq. (5), the parameter B must be positive.
Thus, solving eq. (65) with this restriction gives

B =

√
λ2 + η2 +

�2α4

4
− �α2

2
. (68)

The supersymmetric partner potentials are constructed as

V
(−)
E (x) = W 2

E (x) − �W ′
E(x) = −B(B + �α2)

α2 cosh2 αx
+ i

2ηE
αc

tanhαx +
B2

α2
− η2E2

c2B2
, (69)

V
(+)
E (x) = W 2(x) + �W ′

E(x) = −B(B − �α2)
α2 cosh2 αx

+ i
2ηE
αc

tanhαx +
B2

α2
− η2E2

c2B2
, (70)

which satisfy the shape invariance condition (17), with

a1 = B, a2 = f (a1) = a1 − �α2 (71)

and

R (a1) =
(

a2
1

α2
− η2E2

c2a2
1

)
−
(

a2
2

α2
− η2E2

c2a2
2

)
. (72)

By virtue of (71), one has
ak = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

(k−1) times

(a1) = a1 − (k − 1) �α2,

such that the energy spectra for bound states of V
(−)
E (x) are given by

ε(−)
n =

n∑
k=1

R (ak) =
(

a2
1

α2
− η2E2

c2a2
1

)
−
(

a2
n+1

α2
− η2E2

c2a2
n+1

)

=
(

B2

α2
− η2E2

c2B2

)
−
(

(B − n�α2)2

α2
− η2E2

c2(B − n�α2)2

)
. (73)

Using (45) and substituting eqs. (66) and (73) into (45), we get the energy spectra of VE(x) in the form

εn =
B
(
B + �α2

)
α2

+
μ2c4 − E2

c2
−
(

(B − n�α2)2

α2
− η2E2

c2(B − n�α2)2

)
, (74)

where n is limited to positive integer numbers satisfying

0 ≤ n ≤ nmax =
{

B

�α2

}
, (75)

and {k} denotes the largest integer inferior to k.
Thus, the condition λ > 0 is sufficient for the existence of at least one bound state for the effective potential

(real eigenvalues εn and normalizable corresponding eigenfunctions). However, this will not be necessarily a sufficient
condition for the existence of bound states for the original problem.

Putting εn = 0 in eq. (74) and solving it, the allowed energy values of the original problem, En, are given by the
following generating formula:

En = ±

√√√√μ2c4 + c2

α2 (B(B + �α2) − (B − n�α2)2)

1 − η2

(B−n�α2)2

, (76)

where now allowed values of n must satisfy (75) and also are such that En are real. It is easy to see that, while the
numerator of the expression in the square root is always positive if (75) is satisfied, the positivity of the denominator
requires the new condition

0 ≤ n ≤ nmax =
{

B − η

�α2

}
, (77)

which is more restrictive than (75).
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Hence, using (68) with (77) we find that the existence of at least one bound state for the original problem requires
a new constraint on the parameters λ, η and α, given by

λ2 > �α2η. (78)

This means that when λ increases there is a tendency to increase the number of bound states, while growth of
η tends to decrease this number while magnifying the eigenvalues. In other words, for fixed λ, the number of bound
states is maximum for null vector potential (η = 0) and then decreases with increasing η. Thus, the imaginary vector
potential tends to reduce the confinement of the particle that is produced by the variation of its mass. Indeed, in the
case of null vector potential, one has

En|η=0 = ±

√√√√√μ2c4 +
c2

α2

⎡
⎣λ2 −

(√
λ2 +

�2α4

4
−
(

n +
1
2

)
�α2

)2
⎤
⎦, (79)

with

0 ≤ n ≤ nmax|η=0 =

{√
λ2

�2α4
+

1
4
− 1

2

}
. (80)

It appears that
En|η=0 ≤ En (81)

and
nmax|η=0 ≥ nmax. (82)

To obtain the wave functions Ψn(x) of the original problem, (Ψn(x) = Φn(x)|εn(E)=0), we proceed as in the previous
model. In this case, we are led to solve the following equation:

(
�

2 d2

dx2
+

B(B + �α2)
α2 cosh2 αx

− i
2ηEn

αc
tanhαx +

η2E2
n

c2(B − n�α2)2
− (B − n�α2)2

α2

)
Ψn(x) = 0. (83)

By the point transformation, defined by

z = tanh (αx) ; z ∈] − 1, 1[ and Ψn(x) = (1 − z)
an
2 (1 + z)

bn
2 φn(z), (84)

with

an =
B − n�α2

�α2
+ i

ηEn

α�c(B − n�α2)
, (85a)

bn =
B − n�α2

�α2
− i

ηEn

α�c(B − n�α2)
= a∗

n, (85b)

it is straightforward to show that the new function φn(z) satisfies the differential equation of Jacobi polynomials,

(
1 − z2

) d2φn(z)
dz2

+ [bn − an − (an + bn + 2) z]
dφn(z)

dz
+ n (n + an + bn + 1)φn(z) = 0. (86)

Knowing that an and bn are the complex conjugates of each other and taking account of the following symmetry
relation of Jacobi polynomials [40]

P (an,bn)
n (−z) = (−1)nP (bn,an)

n (z), (87)

the wave functions Ψn(x) may be put in a PT -symmetric form as follows

Ψn(x) = |Nn| ei nπ
2 (1 − tanh αx)

an
2 (1 + tanhαx)

bn
2 P (an,bn)

n (tanh αx) , (88)

where the normalization constant |Nn| is given by

|Nn| =

√
2αn!anbnΓ (an + bn + n + 1)

2an+bn(an + bn)Γ (an + n + 1)Γ (bn + n + 1)
=

|an|
√

αn!Γ (2Re an + n + 1)
2Re an

√
Re an|Γ (an + n + 1)|

. (89)
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4.2.1 Special case

– Taking the limit α → 0 in eqs. (61) and (62), the mass distribution and the vector potential coincide exactly with
those of the first model, given respectively by (30) and (31). We will see that, (76), (88) and (89) reduce also
to (49), (53) and (54), respectively. Indeed, one has

1
α2

(
B
(
B + �α2

)
−
(
B − n�α2

)2)
= B (2n + 1) � − n2

�
2α2 −−−→

α→0
�

√
λ2 + η2 (2n + 1) (90)

and

1 − η2

(B − n�α2)2
−−−→
α→0

λ2

λ2 + η2
, (91)

such that

En −−−→
α→0

En = ±
√

λ2 + η2

λ

√
μ2c4 + (2n + 1) �c2

√
(λ2 + η2), (92)

which is exactly the relation (49). The number of energy levels is now unlimited, i.e. n = 0, 1, 2, . . ., as it can be
verified by taking the limit α → 0 in (77). In addition, in the limit α → 0, the constraint (78) reduces to λ > 0 as
it should be.
As regards the wave functions, keeping only leading terms in the limit α → 0 leads to

Re an −−−→
α→0

√
λ2 + η2

�α2
−
(

n +
1
2

)
and Im an −−−→

α→0

ηEn

�cα
√

λ2 + η2
, (93)

such that a straightforward calculation gives

(1 − tanh αx)
an
2 (1 + tanhαx)

a∗
n
2 −−−→

α→0
exp

(
−
√

λ2 + η2

2�
x2 − i

ηĒn

�c
√

λ2 + η2
x

)
, (94)

and (see definitions (8.960.1, page 999) and (8.950.1, page 996) in ref. [41])

P (an,bn)
n (tanh αx) −−−→

α→0

1
2nn!

(√
λ2 + η2

α2�

)n
2

Hn

⎛
⎝
(√

λ2 + η2

�

) 1
2 (

x + i
ηEn

c(λ2 + η2)

)⎞
⎠ . (95)

Otherwise, using Stirling formula
Γ (X) =

√
2πXX− 1

2 e−X , (96)
that is valid for large X, a straightforward calculation leads to

Γ (2Re an + n + 1) −−−→
α→0

√
2π

(
2

√
λ2 + η2

α2�

) 2
√

λ2+η2

α2�
−n− 1

2

e−2

√
λ2+η2

α2� , (97)

and

|Γ (an + n + 1)| −−−→
α→0

√
2π

(√
λ2 + η2

α2�

)„√
λ2+η2

α2�

«

exp

(
− η2E2

n

2�c2 (λ2 + η2)
3
2

)
e−

√
λ2+η2

�α2 . (98)

Using (93), (97) and (98), we easily verify that, in the leading order of α, the normalization constant |Nn| reduces
to

|Nn| −−−→
α→0

∣∣Nn

∣∣ =
√

2nn!

(√
λ2 + η2

π�

) 1
4
(√

λ2 + η2

α2�

)−n
2

exp

(
η2E2

n

2�c2 (λ2 + η2)
3
2

)
. (99)

Finally, substitution of (94), (95) and (99) into (88) leads to

Ψn(x) −−−→
α→0

ψn(x) =
ei nπ

2

√
2nn!

(√
λ2 + η2

π�

) 1
4

e
−

√
λ2+η2
2�

„

x+i ηEn
c(λ2+η2)

«2

× Hn

⎛
⎝
√√

λ2 + η2

�

(
x + i

ηEn

c(λ2 + η2)

)⎞
⎠ , (100)

that coincide exactly with the wave function of the first model (relations (53) and (54)).
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5 Conclusion

In this paper, we have discussed bound state solutions of the (1 + 1)-dimensional stationary Klein-Gordon equation
with position-dependent mass and PT -symmetric vector and scalar potentials by the approach of supersymmetric
quantum mechanics. We have shown that, for better use of SUSYQM, the problem can be mapped into a constant
mass Schrödinger equation with energy-dependent effective potential. This method is applied to solve exactly two
models with null scalar potentials and suitable couples of mass distribution and PT -symmetric vector potential, that,
interestingly, coincide in a limiting case.

In the first model, the vector potential is chosen as a PT -symmetric linear function of the position, and the mass
distribution is the square root of a quadratic form. The problem leads to solve Schrödinger equation with quadratic
energy-dependent PT -symmetric potential. The bound-state energies are exactly obtained by SUSYQM and the wave
functions are easily deduced.

In the second model, the PT -symmetric vector potential is chosen as a hyperbolic tangent function, and the mass
distribution is the square root of a quadratic form of a hyperbolic tangent function. The problem is then reduced to solve
Schrödinger equation with an energy-dependent PT -symmetric potential of Rosen-Morse II type. Again, SUSYQM
approach has been applied successfully to obtain exactly the bound-state energies and to deduce the corresponding
wave functions. In particular, we have discussed the constraints that must be satisfied by the parameters of the problem
in order to obtain physical results. Furthermore, we have discussed some special cases of the two models and shown
that they coincide in a limiting case.

This work was supported by the Algerian Ministry of Higher Education and Scientific Research.
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