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Abstract. We calculate the mass and residue of the heavy spin-3/2 negative-parity baryons with single
heavy bottom or charm quark by use of a two-point correlation function. We use the obtained results
to investigate the diagonal radiative transitions among the baryons under consideration. In particular, we
compute corresponding transition form factors via light cone QCD sum rules, which are then used to obtain
the magnetic dipole moments of the heavy spin-3/2 negative-parity baryons. We remove the pollutions
coming from the positive-parity spin-3/2 and positive/negative-parity spin-1/2 baryons by constructing
sum rules for different Lorentz structures. We compare the results obtained with the existing theoretical
predictions.

1 Introduction

The investigation of electromagnetic properties of hadrons including their electromagnetic form factors and multipole
moments is one of the key tools in understanding their internal structure and geometric shapes. Such properties
of positive-parity hadrons for both the light and heavy systems have been widely studied theoretically. From the
experimental side, the subject of nucleon electromagnetic form factors have been in the focus of much attention for
many years although the experimental data via different experiments on some form factors are not in good agreement
(see, for instance, [1–13]). We hope we will overcome these deficiencies and experimentally study the electromagnetic
parameters of other light and heavy baryons by the developments in the facility of different experiments. However, we
have even less theoretical knowledge on the multipole moments of the negative-parity baryons. Hence, both theoretical
and experimental studies on the electromagnetic form factors of negative-parity states are welcome as they can help us
gain valuable knowledge on the nature of the strong interactions inside these objects. Jefferson Laboratory and Mainz
Microton facility are planing to measure the electromagnetic form factors and multipole moments of the negative-
parity baryons [2,14]. It is desired that the new electron beam facilities would allow to compile a large number of more
precise data to study the electro-excitations of the nucleon resonances.

The theoretical studies on the spectroscopic and electromagnetic decays of negative-parity baryons have mainly
been devoted to the radial excitations of the nucleons and other light baryons (see, for instance, [15–20] and references
therein). In the heavy sector, some spectroscopic properties of negative-parity spin-1/2 and spin-3/2 heavy baryons have
been studied in [21–25]. The magnetic moments of negative-parity heavy baryons with JP = 1

2

− are calculated in [26].
The transition magnetic moments between negative-parity heavy spin-1/2 baryons are also investigated in [27,28]. In
the present work, first we study the masses and residues of the heavy spin-3/2 negative-parity baryons using a two-point
correlation function in the context of QCD or SVZ sum rules [29,30]. The obtained results are then used to compute
the magnetic dipole moments of the heavy spin-3/2 negative-parity baryons in the frameworks of light cone QCD sum
rules (LCSR) by the help of photon distribution amplitudes (DAs). A similar calculations on the spectroscopic and
electromagnetic properties of the heavy spin-3/2 positive-parity baryons can be found in [31]. The interpolating current
of the baryons under consideration in the present study also couple to the heavy spin-3/2 positive-parity baryons as
well as heavy spin-1/2 baryons with both parities. To remove the unwanted contributions coming from these channels,
different Lorentz structures entering the calculations as well as an appropriate ordering of the Dirac matrices are used.
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The paper is organized as follows. In the next section, we construct a mass sum rule to evaluate the masses and pole
residues of the negative-parity heavy spin-3/2 baryons and numerically analyze the obtained sum rules. The results
are compared with the existing theoretical predictions. In sect. 3, we construct the LCSR for the electromagnetic form
factors defining the diagonal radiative transitions of the baryons under consideration and compute the corresponding
magnetic dipole moments and their numerical values. The last section is dedicated to the concluding remarks.

2 Mass and residue of the negative-parity spin-3/2 heavy baryons

In order to calculate the mass and residue of the negative-parity spin-3/2 baryons with single heavy bottom or charm
quark, we start with the following two-point correlation function:

Tμν = i

∫
d4x eik·x 〈0|T

{
ηB

μ (x)η̄B
ν (0)

}
|0〉, (1)

where ηB
μ is the interpolating current of B baryon coupling to both the positive- and negative-parity baryons. To

construct the mass sum rules for the baryons under consideration we calculate this correlation function via two
different ways: in terms of hadronic parameters and in terms of QCD degrees of freedom by the help of operator
product expansion (OPE). The hadronic side of the correlation function is obtained by inserting complete sets of
intermediate states with both parities. After performing the four-integral we get

THAD
μν =

〈0|ηB
μ |B+(k, s)〉〈B+(k, s)|η̄B

ν |0〉
m2

B+ − k2
+

〈0|ηB
μ |B−(k, s)〉〈B−(k, s)|η̄B

ν |0〉
m2

B− − k2
+ . . . , (2)

where B+ and B− denote the positive- and negative-parity spin-3/2 baryons, respectively, and . . . shows the contri-
butions of the higher states and continuum. To proceed, we need to define the following matrix elements:

〈0|ηB
μ |B+(k, s)〉 = λB+uμ(k, s),

〈0|ηB
μ |B−(k, s)〉 = λB−γ5uμ(k, s), (3)

where uμ(k, s) is the Rarita-Schwinger spinor for the spin-3/2 particles and λB± are the residues of the B± baryons.
Here we shall comment that the ηB

μ current not only interacts with the spin-3/2 states, but also with the spin-1/2
states. Hence, we should remove the unwanted pollution coming from the spin-1/2 states. The general form of the
matrix element of ηB

μ between the spin-1/2 and vacuum states can be written as

〈
0|ηB

μ |
1
2
(k)

〉
= (Akμ + Bγμ) u(k), (4)

where A and B are some constants. By multiplication of both sides of this equation with γμ, and by using the condition
γμηB

μ = 0 to get rid of transverse spin-1/2 components (for details, see [32]), we get

〈
0|ηB

μ |
1
2

+

(k)
〉

= B

(
− 4

m 1
2
+

kμ + γμ

)
u(k), (5)

for the positive-parity and 〈
0|ηB

μ |
1
2

−
(k)

〉
= Bγ5

(
− 4

m 1
2
−

kμ + γμ

)
u(k), (6)

for the negative-parity states. From these equations we see that the unwanted contributions coming from the spin-1/2
states are proportional to either kμ or γμ. To remove these contributions, first we order the Dirac matrices as γμ/kγν

and then set the terms with γμ in the beginning and γν at the end and those terms proportional to kμ and kν to zero
(for further details about the eliminating the contributions of the spin-1/2 particles, see [33]).

Now, we insert eq. (3) into eq. (2) and use the relation T−
μν = −γ5T+

μνγ5 (see also [16]) and the summation over
the spin-3/2 baryons via

∑
s

uμ(k, s)ūν(k, s) = −(�k + mB)
[
gμν − 1

3
γμγν − 2kμkν

3m2
B

+
kμγν − kνγμ

3mB

]
. (7)
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Table 1. The normalization constant A and the light quark fields q1 and q2 for the corresponding baryons.

A q1 q2

Σ
∗+(++)

b(c) 1/
√

3 u u

Σ
∗0(+)

b(c)

p

2/3 u d

Σ
∗−(0)

b(c) 1/
√

3 d d

Ξ
∗0(+)

b(c)

p

2/3 s u

Ξ
∗−(0)

b(c)

p

2/3 s d

Ω
∗−(0)

b(c) 1/
√

3 s s

As a result, for the hadronic side of the correlation function in the Borel scheme, we get

B̂THAD
μν = −

[
λ2
B+e

−
m2

B+
M2

B + λ2
B−e

−
m2

B−
M2

B

]
�kgμν −

[
λ2
B+mB+e

−
m2

B+
M2

B − λ2
B−mB−e

−
m2

B−
M2

B

]
gμν

+ other structures, (8)

where M2
B is the Borel mass parameter coming from the Borel transformation, which is performed to suppress the

contributions of the higher states and continuum.
The OPE side of the aforesaid correlation function is calculated in terms of the QCD degrees of freedom in deep

Euclidean region. To this aim, we need the explicit form of the interpolating current ηB
μ , which is given as (for some

details about the baryon currents, see [15,34–36])

ηB
μ = Aεijk

{
(qiT

1 Cγμqj
2)Q

k + (qiT
2 CγμQj)qk

1 + (QiT Cγμqj
1)q

k
2

}
, (9)

where C is the charge conjugation operator; i, j and k are color indices and Q denotes the heavy b or c quark. The
normalization constant A and the light quark fields q1 and q2 for each heavy baryon is given in table 1.

After inserting the explicit form of the interpolating current into the correlation function in eq. (2) and performing
contractions via the Wick’s theorem, we get the OPE side in terms of the heavy and light quarks propagators. For the
light quark propagator in coordinate space we use [37]

Sq(x) =
i/x

2π2x4
− mq

4π2x2
− 〈q̄q〉

12

(
1 − i

mq

4
/x
)
− x2

192
m2

0 〈q̄q〉
(
1 − i

mq

6
/x
)

− igs

∫ 1

0

du

[
/x

16π2x2
Gμν(ux)σμν − i

4π2x2
uxμGμν(ux)γν

−i
mq

32π2
Gμνσμν

(
ln

(
−x2Λ2

4

)
+ 2γE

)]
, (10)

where γE � 0.577 is the Euler constant and Λ is a scale parameter. The heavy quark propagator in an external field
is also taken as

SQ(x) = Sfree
Q (x) − igs

∫
d4k

(2π)4
e−ikx

∫ 1

0

du

[
/k + mQ

2(m2
Q − k2)2

Gμν(ux)σμν +
u

m2
Q − k2

xμGμνγν

]
, (11)

where Sfree
Q (x) is the free heavy quark operator in the x-representation and is given by

Sfree
Q (x) =

m2
Q

4π2

K1(mQ

√
−x2)√

−x2
− i

m2
Q/x

4π2x2
K2(mQ

√
−x2), (12)

where K1 and K2 are the modified Bessel function of the second kind. By using these propagators in the coordinate
space and performing the Fourier and Borel transformations as well as applying the continuum subtraction, after a
very lengthy calculations we get

B̂TOPE
μν = TOPE

1 �kgμν + TOPE
2 gμν + other structures, (13)
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where the functions TOPE
1,2 , for instance, for the Σ∗0

b particle, are given as

TOPE
1 =

∫ s0

m2
b

dse
− s

M2
B

{
15m8

bs − 4m10
b + 40m4

bs
3 − 60m2

bs
4 + 9s5 + 60m4

bs
3 ln[ s

m2
b
]

15 × 28π4s3

−
(
〈uū〉 + 〈dd̄〉

)mb(m2
b − s)2

24π2s2
− 〈g2

sGG〉 (m
6
b − 4m2

bs
2 + 3s3)

27 × 32π4s3
− 〈g2

sGG〉2 m2
b

28 × 34π4s3

+ m2
0

(
〈uū〉 + 〈dd̄〉

) m3
b

48π2s2
− 〈g2

sGG〉
(
〈uū〉 + 〈dd̄〉

) mb

25 × 32π2s2

}

+ e
− m2

b
M2

B

{
1
9
〈uū〉〈dd̄〉 + 〈g2

sGG〉
(
〈uū〉 + 〈dd̄〉

) 1
25 × 33π2mb

− m2
0〈uū〉〈dd̄〉m

2
b + M2

B

18M4
B

+ 〈g2
sGG〉2 m2

b + 2M2
B

210 × 34π4m2
bM

2
B

− m2
0〈dd̄〉〈g2

sGG〉 m2
b − 2M2

B

27 × 33π2mbM4
B

+ m2
0〈g2

sGG〉〈dd̄〉〈uū〉m
2
b(m

2
b − M2

B)
24 × 34M10

B

− 〈dd̄〉〈uū〉〈g2
sGG〉 m2

b

23 × 34M6
B

− m2
0〈g2

sGG〉〈uū〉 m2
b − 2M2

B

27 × 33π2mbM4
B

}
, (14)

and

TOPE
2 =

∫ s0

m2
b

dse
− s

M2
B

{
(s − m2

b)
(
41m4

b − sm2
b + 2s2

)
− 6m4

b

(
4s − 3m2

b

)
ln[ s

m2
b
]

27 × 32π4mb

− (4s + m2
b)(m

2
b − s)4

28 × 32π4mbs2
− 〈uū〉 (m

2
b − s)2(m4

b + 2m2
bs − 6s2)

72π2m2
bs

2
− 〈dd̄〉 (m

2
b − s)2(m2

b + 2s)
72π2s2

+ 〈g2
sGG〉

24m4
bs − 11m6

b − 21m2
bs

2 + 8s3 + 18m2
bs

2 ln[m2
b

s ]
29 × 33π4mbs2

+
(
m2

0〈uū〉 + m2
0〈dd̄〉

) (s2 + m4
b)

96π2s2
− 〈g2

sGG〉2 mb

210 × 33π4s

}

+ e
− m2

b
M2

B

{
1
3
mb〈uū〉〈dd̄〉 − m2

0〈uū〉〈dd̄〉 m3
b

6M4
B

+
〈g2

sGG〉
(
〈uū〉 + 〈dd̄〉

)

24 × 33π2

+ 〈g2
sGG〉2 m2

b − M2
B

210 × 34π4mbM2
B

+ m2
0〈g2

sGG〉〈uū〉〈dd̄〉mb(m4
b − 6m2

bM
2
B + 6M4

B)
24 × 33M10

B

− 〈g2
sGG〉〈uū〉〈dd̄〉mb(m2

b − 3M2
B)

23 × 33M6
B

− m2
0〈g2

sGG〉
(
〈uū〉 + 〈dd̄〉

) m2
b

26 × 32π2M4
B

}
, (15)

where s0 is the continuum threshold, and for simplicity, we ignored to present the terms containing the light quark
masses and those proportional to m4

0. Note that we only ignored to present such terms in the above formulas and we
will take into account their contributions in the numerical calculations.

Having calculated both the hadronic and OPE sides of the correlation function, we match the coefficients of the
structures �kgμν and gμν from these two sides and obtain the mass and residue of the negative-parity heavy spin-3/2
baryons as

m2
B− =

d
d 1

M2
B

(TOPE
2 − mB+TOPE

1 )

TOPE
2 − mB+TOPE

1

,

λ2
B− =

TOPE
2 − mB+TOPE

1

mB+ + mB−
e

m2
B−

M2
B , (16)

where d
d 1

M2
B

denotes the derivative with respect to 1
M2

B
.
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(a) (b)

(c) (d)

Fig. 1. Variations of the mass and residue of the heavy spin-3/2 negative-parity baryons with respect to M2
B at fixed values

of s0.

To obtain the numerical values of the masses and residues of the negative-parity heavy spin-3/2 baryons we
take 〈ūu〉(1GeV) = 〈d̄d〉(1GeV) = −(0.24 ± 0.01)3 GeV3, 〈s̄s〉(1GeV) = 0.8〈ūu〉(1GeV)GeV3, 〈αsG2

π 〉 = (0.012 ±
0.004)GeV4 and m2

0(1GeV) = (0.8 ± 0.2)GeV2 [38, 39]. Beside these input parameters, we shall also find working
regions of the auxiliary parameters s0 and M2

B, such that the physical quantities show weak dependence on these
parameters according to the standard criteria of the method used. The continuum threshold is not entirely arbitrary,
but it depends on the energy of the first excited state with the same quantum numbers. Hence, according to the standard
prescriptions, the value of this threshold is mainly chosen, such that the mass of the first excited state remains above√

s0. This may be considered as a weak point of the QCD sum rule approach especially in the case of the negative-
parity baryons. Since for many states we know the exact values of the ground state masses experimentally but have not
enough information on the energy of the corresponding first excited states. Considering this point, in our calculations,
we impose the pole dominance condition and demand that the pole contribution consists the highest possible part of
the whole result in each channel. This leads us to take this parameter in the interval (mB− +0.1)2 ≤ s0 ≤ (mB− +0.7)2.
The upper and lower bands on the Borel parameter is determined requiring that not only the contributions of the
higher states and continuum are small compared to the pole contributions, but also the perturbative part exceeds the
non-perturbative contributions and the series of sum rules converge (for a discussion on the different but equivalent
ways of fixing the Borel parameter, see [40]). By these considerations, the following working intervals are found:

8GeV2 ≤ M2
B ≤ 14GeV2, for Ωb, Σb and Ξb,

and
5GeV2 ≤ M2

B ≤ 8GeV2, for Ωc, Σc and Ξc. (17)

The variations of the mass and residue of the baryons under consideration with respect to M2
B at fixed values of s0 are

shown in fig. 1. From this figure, we see that the mass and residue of these baryons show good stabilities with respect
to the Borel mass parameter in its working regions. Our numerical calculations show also that the dependence of the
results on s0 is relatively weak at the above-mentioned working region for the continuum threshold.
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Table 2. Values of the masses and residues of the heavy spin-3/2 negative-parity baryons with single heavy bottom or charm
quark.

Mass and residue Present work [21] [23] [24,25]

mΩ∗
b

(GeV) 6.40 ± 0.26 6.26 ± 0.15 6.304 6.330

mΩ∗
c

(GeV) 3.08 ± 0.12 2.98 ± 0.16 2.986 2.998

mΣ∗
b

(GeV) 5.91 ± 0.22 6.00 ± 0.18 6.101 6.076

mΣ∗
c

(GeV) 2.84 ± 0.11 2.74 ± 0.20 2.763 2.761

mΞ∗
b

(GeV) 6.06 ± 0.24 6.14 ± 0.16 6.194 6.212

mΞ∗
c

(GeV) 2.93 ± 0.11 2.86 ± 0.17 2.871 2.900

λΩ∗
b

(GeV3) 0.094 ± 0.028 0.095 ± 0.019 – –

λΩ∗
c

(GeV3) 0.036 ± 0.011 0.072 ± 0.013 – –

λΣ∗
b

(GeV3) 0.048 ± 0.014 0.047 ± 0.012 – –

λΣ∗
c

(GeV3) 0.027 ± 0.009 0.037 ± 0.009 – –

λΞ∗
b

(GeV3) 0.058 ± 0.017 0.054 ± 0.013 – –

λΞ∗
c

(GeV3) 0.033 ± 0.010 0.045 ± 0.009 – –

We depict the numerical results of the masses and residues of the negative-parity heavy spin-3/2 baryons in table 2.
The errors in the presented results are due to the uncertainties in determination of the working regions for the auxiliary
parameters as well as the errors of other input parameters. With a quick glance at this table we read that the values
of the masses of the heavy spin-3/2 negative-parity baryons obtained in the present work are overall close to the
predictions of [21,23–25]. For the residue of b-baryons, our results are very close to those of [21], but for the residues
of c-baryons our results considerably small compared to the predictions of [21]. The results of the present work for
the masses and residues will be used in determination of the magnetic dipole moments of the negative-parity heavy
spin-3/2 baryons in the following section.

3 Magnetic dipole moment of the negative-parity spin-3/2 heavy baryons

In order to obtain the LCSR for the magnetic dipole moment of the negative-parity heavy spin-3/2 baryons we choose
the following two-point correlation function in the presence of a background photon field:

Πμν = i

∫
d4x eip·x 〈γ(q)|T

(
ηB

μ (x) η̄B
ν (0)

)
|0〉, (18)

where γ(q) means the electromagnetic field. Let us note that we use the background electromagnetic plane wave field
and the photon DAs instead of the electromagnetic current in accordance with the light cone QCD sum rule approach
and the point that at q2 = 0 the em-current gives the charge only. In terms of twist expansion the local em-current
is twist-2 but the photon DAs contain also the higher twists. We will also calculate this correlation function once
in terms of hadronic parameters called the physical or hadronic side, and the second in terms of QCD parameters
called the QCD or OPE side. By matching these two sides through a dispersion relation in the Borel scheme one can
calculate the magnetic dipole moment of the baryons under consideration in terms of other parameters entering the
calculations.
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3.1 Hadronic side

For the hadronic side of the calculation one inserts complete sets of states between the interpolating currents in eq. (18)
with quantum numbers of heavy baryons. Integration over four-x give

ΠHAD
μν =

〈0|ηB
μ |B+(p2)〉〈B+(p2)γ(q)|B+(p1)〉〈B+(p1)|η̄B

ν |0〉
(m2

B+ − p2
1)(m

2
B+ − p2

2)

+
〈0|ηB

μ |B−(p2)〉〈B−(p2)γ(q)|B+(p1)〉〈B+(p1)|η̄B
ν |0〉

(m2
B+ − p2

1)(m
2
B− − p2

2)

+
〈0|ηB

μ |B+(p2)〉〈B+(p2)γ(q)|B−(p1)〉〈B−(p1)|η̄B
ν |0〉

(m2
B− − p2

1)(m
2
B+ − p2

2)

+
〈0|ηB

μ |B−(p2)〉〈B−(p2)γ(q)|B−(p1)〉〈B−(p1)|η̄B
ν |0〉

(m2
B− − p2

1)(m
2
B− − p2

2)

+ . . . , (19)

where p1 = p+q, p2 = p and . . . stand for the contributions coming from the higher states and continuum. To proceed,
beside the matrix elements defined in the previous section in terms of residues, we need the following matrix elements
parametrized in terms of electromagnetic form factors (see also [33]):

〈B+(p2)γ(q)|B+(p1)〉 = ερūα(p2)

{
− gαβ

[
γρ(f1 + f2) +

(p1 + p2)ρ

2mB+
f2 + qρf3

]

− qαqβ

2m2
B+

[
γρ(g1 + g2) +

(p1 + p2)ρ

2mB+
g2 + qρg3

]}
uβ(p1),

〈B−(p2)γ(q)|B−(p1)〉 = ερūα(p2)

{
− gαβ

[
γρ(f∗

1 + f∗
2 ) +

(p1 + p2)ρ

2mB−
f∗
2 + qρf∗

3

]

− qαqβ

2m2
B−

[
γρ(g∗1 + g∗2) +

(p1 + p2)ρ

2mB−
g∗2 + qρg∗3

]}
uβ(p1),

〈B+(p2)γ(q)|B−(p1)〉 = ερūα(p2)

{
− gαβ

[
γρ(fT

1 + fT
2 ) +

(p1 + p2)ρ

mB+ + mB−
fT
2 + qρfT

3

]

− qαqβ

m2
B+ + m2

B−

[
γρ(gT

1 + gT
2 ) +

(p1 + p2)ρ

mB+ + mB−
gT
2 + qρgT

3

]}
γ5uβ(p1),

〈B−(p2)γ(q)|B+(p1)〉 = −ερūα(p2)γ5

{
− gαβ

[
γρ(fT∗

1 + fT∗

2 ) +
(p1 + p2)ρ

mB+ + mB−
fT∗

2 + qρfT∗

3

]

− qαqβ

m2
B+ + m2

B−

[
γρ(gT∗

1 + gT∗

2 ) +
(p1 + p2)ρ

mB+ + mB−
gT∗

2 + qρgT∗

3

]}
uβ(p1), (20)

where fi, f∗
i , fT

i , fT∗

i , gi, g∗i , gT
i and gT∗

i are electromagnetic form factors, whose values at q2 = 0 are needed in
determination of the multipole moments. In the above equation, ερ is the four-polarization vector of the electromagnetic
field.

Here also to remove the pollution from the spin-1/2 baryons a process similar to that of the previous section is
followed and the ordering γμ/ε/q/pγν is applied. To complete the task, the terms containing the γμ at the beginning, γν

at the end and those proportional to p1μ and p2ν are set to zero.
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Substituting eqs. (3) and (20) in eq. (19) and using eq. (7), the final form of the hadronic side of the correlation
function in Borel scheme is obtained as

B̂ΠHAD
μν =

[
λB−λB+mB−

(
fT
1 + fT

2

)
e
−

m2
B−

M2
1

−
m2

B+
M2

2 + λB−λB+mB+

(
fT∗

1 + fT∗

2

)
e
−

m2
B+

M2
1

−
m2

B−
M2

2

− λ2
B−mB−

(
f∗
1 + f∗

2

)
e
−

m2
B−

M2
1

−
m2

B−
M2

2 − λ2
B+mB+

(
f1 + f2

)
e
−

m2
B+

M2
1

−
m2

B+
M2

2

]
gμν �ε �q

+
[
λ2
B−

(
m2

B− − m2
B+

)(
f∗
1 + f∗

2

)
e
−

m2
B−

M2
1

−
m2

B−
M2

2 + λB−λB+mB−
(
mB− + mB+

)(
fT
1 + fT

2

)

× e
−

m2
B−

M2
1

−
m2

B+
M2

2 − λB−λB+mB+

(
mB+ + mB−

)(
fT∗

1 + fT∗

2

)
e
−

m2
B+

M2
1

−
m2

B−
M2

2

]
gμν �ε

−
[
λB−λB+

(
fT
1 + fT

2

)
e
−

m2
B−

M2
1

−
m2

B+
M2

2 − λB−λB+

(
fT∗

1 + fT∗

2

)
e
−

m2
B+

M2
1

−
m2

B−
M2

2

+ λ2
B+

(
f1 + f2

)
e
−

m2
B+

M2
1

−
m2

B+
M2

2 − λ2
B−

(
f∗
1 + f∗

2

)
e
−

m2
B−

M2
1

−
m2

B−
M2

2

]
gμν �p �ε �q

−
[
λB−λB+

(
mB− + mB+

)(
fT∗

1 + fT∗

2

)
e
−

m2
B+

M2
1

−
m2

B−
M2

2 + λB−λB+

(
mB− + mB+

)

×
(
fT
1 + fT

2

)
e
−

m2
B−

M2
1

−
m2

B+
M2

2

]
gμν �p �ε

+ other structures, (21)

where M2
1 , M2

2 are the Borel mass parameters in the initial and final channels, respectively. We are interested in
calculation of the magnetic dipole moment of only the negative-parity baryons which is given as μ = 3(f∗

1 + f∗
2 ) in the

unit of their natural magneton, i.e. e�/(2mBc). So we have diagonal transitions for this case and the initial and final
baryon masses are the same. Hence, in the calculations, we take M2

1 = M2
2 = M2

B = 2M2.

3.2 OPE Side

In order to obtain the OPE side of the correlation function, we insert the interpolating current of the heavy spin-3/2
baryons into eq. (18). After performing contractions of all quark pairs using the Wick’s theorem, we get

ΠOPE
μν = −iA2εabcεa′b′c′

∫
d4xeipx〈γ(q)

∣∣∣
{

Sca′

Q γνS′bb′

q2
γμSac′

q1

+ Scb′

Q γνS′aa′

q1
γμSbc′

q2
+ Sca′

q2
γνS′bb′

q1
γμSac′

Q + Scb′

q2
γνS′aa′

Q γμSbc′

q1

+ Scb′

q1
γνS′aa′

q2
γμSbc′

Q + Sca′

q1
γνS′bb′

Q γμSac′

q2
+ Tr

(
γμSab′

q1
γνS′ba′

q2

)
Scc′

Q

+ Tr
(
γμSab′

Q γνS′ba′

q1

)
Scc′

q2
+ Tr

(
γμSab′

q2
γνS′ba′

Q

)
Scc′

q1

} ∣∣∣ 0
〉
, (22)

where S′ = CST C; and SQ and Sq are the heavy and light quark propagators, respectively. The correlation function
in OPE side contains three different contributions:

– perturbative contributions;
– mixed contributions where the photon is radiated from the short distances and at least one of the quarks interacts

with the QCD vacuum and makes a condensate;
– non-perturbative contributions where the photon is radiated at long distances.
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To proceed in calculations of these contributions, we use the heavy and light quark propagators again in coordinate
space. We also need some matrix elements defined in terms of the photon DAs [41]:

〈γ(q)|q̄(x)σμνq(0)|0〉 = −ieq q̄q(εμqν − ενqμ)
∫ 1

0

dueiūqx

(
χϕγ(u) +

x2

16
A(u)

)

− i

2(qx)
eq〈q̄q〉

[
xν

(
εμ − qμ

εx

qx

)
− xμ

(
εν − qν

εx

qx

)] ∫ 1

0

dueiūqxhγ(u),

〈γ(q)|q̄(x)γμq(0)|0〉 = eqf3γ

(
εμ − qμ

εx

qx

) ∫ 1

0

dueiūqxψv(u),

〈γ(q)|q̄(x)γμγ5q(0)|0〉 = −1
4
eqf3γεμναβενqαxβ

∫ 1

0

dueiūqxψa(u),

〈γ(q)|q̄(x)gsGμν(vx)q(0)|0〉 = −ieq〈q̄q〉 (εμqν − ενqμ)
∫

Dαie
i(αq̄+vαg)qxS(αi),

〈γ(q)|q̄(x)gsG̃μνiγ5(vx)q(0)|0〉 = −ieq〈q̄q〉 (εμqν − ενqμ)
∫

Dαie
i(αq̄+vαg)qxS̃(αi),

〈γ(q)|q̄(x)gsG̃μν(vx)γαγ5q(0)|0〉 = eqf3γqα(εμqν − ενqμ)
∫

Dαie
i(αq̄+vαg)qxA(αi),

〈γ(q)|q̄(x)gsGμν(vx)iγαq(0)|0〉 = eqf3γqα(εμqν − ενqμ)
∫

Dαie
i(αq̄+vαg)qxV(αi),

〈γ(q)|q̄(x)σαβgsGμν(vx)q(0)|0〉 = eq〈q̄q〉
{[(

εμ − qμ
εx

qx

) (
gαν − 1

qx
(qαxν + qνxα)

)
qβ

−
(

εμ − qμ
εx

qx

) (
gβν − 1

qx
(qβxν + qνxβ)

)
qα

−
(

εν − qν
εx

qx

)(
gαμ − 1

qx
(qαxμ + qμxα)

)
qβ

+
(

εν − qν
εx

q.x

)(
gβμ − 1

qx
(qβxμ + qμxβ)

)
qα

] ∫
Dαie

i(αq̄+vαg)qxT1(αi)

+
[(

εα − qα
εx

qx

)(
gμβ − 1

qx
(qμxβ + qβxμ)

)
qν

−
(

εα − qα
εx

qx

)(
gνβ − 1

qx
(qνxβ + qβxν)

)
qμ

−
(

εβ − qβ
εx

qx

) (
gμα − 1

qx
(qμxα + qαxμ)

)
qν

+
(

εβ − qβ
εx

qx

) (
gνα − 1

qx
(qνxα + qαxν)

)
qμ

] ∫
Dαie

i(αq̄+vαg)qxT2(αi)

+
1
qx

(qμxν − qνxμ)(εαqβ − εβqα)
∫

Dαie
i(αq̄+vαg)qxT3(αi)

+
1
qx

(qαxβ − qβxα)(εμqν − ενqμ)
∫

Dαie
i(αq̄+vαg)qxT4(αi)

}
, (23)

where ϕγ(u) is the leading twist-2 photon DAs, ψv(u), ψa(u), A(αi) and V(αi) are twist 3 and hγ(u), A(u) and Ti

(i = 1, 2, 3, 4) are twist 4 photon DAs [41]. In the above equations χ is the magnetic susceptibility of the light quarks.
The measure

∫
Dαi is defined as

∫
Dαi =

∫ 1

0

dαq̄

∫ 1

0

dαq

∫ 1

0

dαgδ(1 − αq̄ − αq − αg) (24)
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and the photon DAs are given as [41]

ϕγ(u) = 6uū
(
1 + ϕ2(μ)C

3
2
2 (u − ū)

)
,

ψv(u) = 3
(
3(2u − 1)2 − 1

)
+

3
64

(
15wV

γ − 5wA
γ

) (
3 − 30(2u − 1)2 + 35(2u − 1)4

)
,

ψa(u) =
(
1 − (2u − 1)2

) (
5(2u − 1)2 − 1

) 5
2

(
1 +

9
16

wV
γ − 3

16
wA

γ

)
,

A(αi) = 360αqαq̄α
2
g

(
1 + wA

γ

1
2
(7αg − 3)

)
,

V(αi) = 540wV
γ (αq − αq̄)αqαq̄α

2
g,

hγ(u) = −10
(
1 + 2κ+

)
C

1
2
2 (u − ū),

A(u) = 40u2ū2
(
3κ − κ+ + 1

)
+ 8(ζ+

2 − 3ζ2) [uū(2 + 13uū)

+ 2u3(10 − 15u + 6u2) ln(u) + 2ū3(10 − 15ū + 6ū2) ln(ū)
]
,

T1(αi) = −120(3ζ2 + ζ+
2 )(αq̄ − αq)αq̄αqαg,

T2(αi) = 30α2
g(αq̄ − αq)

(
(κ − κ+) + (ζ1 − ζ+

1 )(1 − 2αg) + ζ2(3 − 4αg)
)
,

T3(αi) = −120(3ζ2 − ζ+
2 )(αq̄ − αq)αq̄αqαg,

T4(αi) = 30α2
g(αq̄ − αq)

(
(κ + κ+) + (ζ1 + ζ+

1 )(1 − 2αg) + ζ2(3 − 4αg)
)
,

S(αi) = 30α2
g{(κ + κ+)(1 − αg) + (ζ1 + ζ+

1 )(1 − αg)(1 − 2αg)

+ ζ2[3(αq̄ − αq)2 − αg(1 − αg)]},

S̃(αi) = −30α2
g{(κ − κ+)(1 − αg) + (ζ1 − ζ+

1 )(1 − αg)(1 − 2αg)

+ ζ2[3(αq̄ − αq)2 − αg(1 − αg)]}, (25)

where ϕ2(1GeV) = 0, wV
γ = 3.8 ± 1.8, wA

γ = −2.1 ± 1.0, κ = 0.2, κ+ = 0, ζ1 = 0.4, ζ2 = 0.3, ζ+
1 = 0 and ζ+

2 = 0 [41].
After lengthy calculations (for details see, for instance, [20,31]), the OPE side of the correlation function is obtained

in terms of the selected structures as

B̂ΠOPE
μν = ΠOPE

1 gμν �ε �q + ΠOPE
2 gμν �ε + ΠOPE

3 gμν �p �ε �q + ΠOPE
4 gμν �p �ε + other structures, (26)

where ΠOPE
1,2,3,4 are very lengthy functions, hence we do not present their explicit expressions here.

Having obtained both the hadronic and OPE sides of the correlation function in Borel scheme it is the time for
equating the two sides in order to obtain LCSR for the magnetic moment of the spin-3/2− baryons with single heavy
bottom or charm quark. Before doing this we should remind that the magnetic dipole moment is defined in terms of
form factors, in the unit of the natural magneton, i.e. e�/(2mBc), as μ = 3(f∗

1 +f∗
2 ) at q2 = 0, where the factor 3 is due

the fact that in the non-relativistic limit the interaction Hamiltonian with magnetic field is given as μB = 3(f∗
1 +f∗

2 )B.
After replacement f∗

1 + f∗
2 → μ/3 in the final expression of the physical side in eq. (21) and equating the obtained

result to the OPE side in eq. (26), we get the following expression for the magnetic dipole moment of the baryons
under consideration:

μ = 3
ΠOPE

2 − (mB+ + mB−)ΠOPE
1 + mB+(mB+ + mB−)ΠOPE

3 − mB+ΠOPE
4

2λ2
B−mB−(mB+ + mB−)

e
m2

B−
M2 . (27)

The numerical values for the magnetic dipole moments of the heavy spin-3/2 negative-parity baryons in units of
nuclear magneton are presented in table 3. The errors in numerical values in the presented results again belong to the
uncertainties in calculations of the working regions for the Borel mass parameter M2 and the continuum threshold s0,
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Table 3. Values of the magnetic moment of the heavy spin-3/2 negative-parity baryons with single heavy bottom or charm
quark in units of nuclear magneton μN . The signs +, − and 0 on baryons show their charge.

Heavy baryons with JP = 3
2

−
μ

Ω∗−
b −1.37 ± 0.41

Ω∗0

c −3.46 ± 1.04

Σ∗0

b 0.55 ± 0.17

Σ∗+

c 2.10 ± 0.59

Σ∗+

b 2.24 ± 0.67

Σ∗
++

c 7.73 ± 2.31

Σ∗−
b −1.53 ± 0.46

Σ∗0

c −4.02 ± 1.16

Ξ∗0

b 0.57 ± 0.17

Ξ∗+

c 2.29 ± 0.68

Ξ∗−
b −1.32 ± 0.39

Ξ∗0

c −2.95 ± 0.83

those uncertainties coming from the parameters entering the photon DAs as well as the uncertainties of other input
parameters. Quantitatively, in average, 47%, 14% and 39% of the uncertainties belong to the variations of s0, M2 and
DAs together with other inputs, respectively. When we compare these results with the magnetic dipole moments of
the positive-parity spin-3/2 heavy baryons [31], we see that the magnetic dipole moments of the negative-parity heavy

baryons are compatible with those of the positive-parity baryons except for the Ω∗0

c , Σ∗0

c , Σ∗++

c and Ξ∗0

c baryons
which there exist considerable differences in the values. Hence the naive expectation, relation between the magnetic
moments and masses of the positive- and negative-parity baryons, i.e.,

μn =
mp

mn
μp, (28)

where n and p stand for the negative- and positive-parity heavy baryons, respectively, holds for all b-baryons and
some of c-baryons, but is considerably violated for the c-baryons mentioned above. This violation can be attributed
to the fact that in our calculations we take into account also the contributions of the positive-to-positive, positive-
to-negative and negative-to-positive transitions that affect the c-baryons more compared to the b-baryons. The sign
of the magnetic dipole moments of the heavy spin-3/2 baryons with both parities are the same. Our results may be
checked via other non-perturbative approaches as well as by future experiments.

4 Conclusion

We calculated the masses and residues of the negative-parity heavy spin-3/2 baryons with single heavy b- or c-quark
in the framework of QCD sum rules and compared the results with the existing predictions in the literature. We
used the values obtained to calculate the electromagnetic form factors and finally the values of the magnetic dipole
moments of the considered baryons in the context of the light cone QCD sum rules using the photon DAs. Our results
may be checked via different non-perturbative methods. Checking our predictions by future experiments can be very
useful for understanding the internal structure as well as the geometric shape of the negative-parity heavy spin-3/2
baryons.
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