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Abstract. In this article, the influences of critical speed on the free vibration behavior of spinning 3D
single-walled carbon nanotubes (SWCNT) are investigated using modified couple stress theory (MCST).
Moreover, the surrounding elastic medium of SWCNT has been considered as a model of Winkler, char-
acterized by the spring. Taking into consideration the first-order shear deformation theory (FSDT), the
rotating SWCNT is modeled and its equations of motion are derived using the Hamilton principle. The
formulations include Coriolis, centrifugal and initial hoop tension effects due to rotation of the SWCNT.
The accuracy of the presented model is validated by some cases in the literature. The novelty of this study
is considering the effects of rotation and MCST, in addition to considering the various boundary conditions
of SWCNT. The generalized differential quadrature method (GDQM) is used to discretize the model and
to approximate the equation of motion. Then investigation has been made on critical speed and natural
frequency of the rotating SWCNT due to the influence of initial hoop tension, material length scale parame-
ter, constant of spring, frequency mode number, angular velocity, length-to-radius ratio, radius-to-thickness
ratio and boundary conditions.

1 Introduction

Owing to the recent advancement in science and technology, SWCNT have attracted considerable attention. The
surprising mechanical properties of SWCNT make them an appropriate choice to be used in chemistry, physics, and
nano-engineering applications, as well as for practical use in electrical engineering, materials science and construction
engineering. Therefore, it is vital to study the mechanical behavior of SWCNT, such as buckling and post-buckling [1],
vibration [2], thermal vibration [3] and instability analysis [4]. As examples of some SWCNT applications, one can
name drug delivery [5], micro-/nano-electromechanical systems (MEMS/NEMS) [6] and nanopipes containing a flowing
fluid [7]. Rotating SWCNT have caught eyes, in recent years, owing to their promising future. These rotating nano-
structures can also be used as MEMS gyroscope sensors [8] in the aerospace industry, military, automotive and consumer
electronics markets, including advanced automotive safety systems, high-performance navigation and guidance systems,
ride stabilization, roll-over detection and prevention, image stabilization in digital cameras and highly technological
applications including nano-/micro-satellites, nano-/micro-robotics, and even implantable devices to cure internal
disorders. Lately, Tu et al. [9] have suggested a rotating membrane filter made of a carbon nanotube for desalinating
water, which proves this study precious. The experiments and researches show that the size effects play an important
role in mechanical properties [10,11]. Thus, avoiding these effects may result in wrong designs and unacceptable
answers. It should be mentioned that the size effect is not considered in the classical continuum theories, so this theory
is not appropriate for micro and nano scales. One of the non-classical theories that consider the effects of size is the
couple stress theory. Toupin, Koiter, and Mindlin [12–14] investigated the couple stress theory including higher-order
rotation gradients, which is in fact the asymmetric part of the deformation gradient. According to this theory, it includes
four material constants (two classical ones and two additional ones) for isotropic elastic materials. As an example of this
theory, Asghari et al. [15] presented the size effects in Timoshenko beams based on the couple stress theory. It is difficult
to determine whether the microstructure depends on length scale parameters. Therefore, we are looking for a continuum
theory which involves only one additional material parameter of length scale. MCST is one of the best and most well-
known continuum mechanics theories which include small-scale effects with reasonable accuracy in micro-scale devices.
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Fig. 1. An application of a rotating SWCNT [9].

Yang et al. [16] presented a modified couple stress theory, in which the couple stress tensor is symmetric and there
is only one internal material length scale parameter involved, unlike the classical couple stress theory mentioned
above. Many researchers have used this theory to examine the dynamic and static behavior of micro-beams and micro-
plates [17–19]. It is noted that the non-local theory of Eringen is one of the best and most well-known continuum
mechanics theories which includes small scale effects with sufficient accuracy in nano-/micro-scale devices, but the
results show that modified couple stress theory which coincides with experimental results is better than Eringen’s non-
local elasticity and classical theories [20]. Therefore, in this study, the modified couple stress theory has been used. In
the theories of classical shell, it is assumed that the stresses are constant within the thickness. Consequently, due to
this assumption, the theories of classical shell cannot present precise results for thick and moderately thick shells. The
first-order shear deformation theory (FSDT) was presented by Reissner [21] and Mindlin [22] to compensate classical
theory for its defects. Researchers show that the dynamic behavior of carbon nanotube is substantially similar to those
of cylindrical shell [23]. Consequently, for a better comprehension of nanotube rotational behavior, the rotational
behavior of a cylinder should be studied first. The dynamic analysis of rotating cylindrical shell has been carried out
since about one century ago. At first, Bryan [24] analyzed a rotating cylindrical shell, considering a rotating ring. He
found the traveling mode phenomenon for the first time. Years later, Taranto and Lesson [25] studied the rotating
shells, considering the Coriolis effect. Zohar and Aboudi [26] worked on a rotating finite thin cylinder. Simultaneously,
Padovan [27] was doing research into natural frequencies of rotating prestressed cylinder using thin shell theory. He also
utilized numerical and finite element method to predict asymmetric frequencies and buckling loads [28,29]. A decade
later, Endo et al. [30] theoretically obtained flexural vibration of a thin cylindrical ring, and compared their findings
with experiment. Two years later, Saito and Endo [31] modified their previous studies considering initial tension. All of
the researches were undertaken into free vibration of rotating cylinders thus far, but Huang and Soedel [32] undertook
research into free and forced vibration of a finite cylinder with simply supported boundaries. As a main result, they
came to a major conclusion that rotation compels natural frequencies to bifurcate into two branches. Moreover, Huang
and Hsu [33] studied the influence of a harmonic moving load on the resonant of a rotating cylindrical shell. It is worth
mentioning that none of the previous works have considered the size effect and initial hoop tension on a rotating
SWCNT using MCST. The novelty of this work is considering rotation, initial hoop tension and size effect in addition
to considering various boundary conditions on SWCNT using MCST. Because of the high accuracy and efficiency of the
generalized differential quadrature method (GDQM), it is utilized to solve the governing equation of the problem for
each kinds of boundary condition. The governing equations and boundary conditions, which have been developed using
the Hamilton principle, are solved with the aid of GDQM. The results show that initial hoop tension, material length
scale parameter, constant of spring, angular velocity, length-to-radius ratio, radius-to-thickness ratio and boundary
conditions play important roles on the natural frequency and critical angular velocity of a rotating SWCNT.

2 Size-dependent spinning SWCNT resting on elastic foundation equations

To have a better understanding of the importance and applications of the proposed model, fig. 1 demonstrates a
rotating SWCNT which can turn salt water into fresh water [9]. In addition, fig. 2 shows a spinning SWCNT, where x,
θ, and z denote the orthogonal curvilinear coordinates on the middle surface (z = 0). The thickness, length, and the
middle surface radius of SWCNT are denoted by h, L, and R, respectively. Moreover, the surrounding elastic medium
of SWCNT has been considered as a model of Winkler, characterized by the spring.
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Fig. 2. The geometry of a spinning SWCNT resting on elastic foundation.

2.1 Modified couple stress theory

Yang et al. [16] presented modified couple stress theory for the first time. According to this theory, the strain energy
expressed as a function of rotation tensor gradient and strain tensor, in addition, it includes one length scale parameter
and two Lamé parameters. With regard to this theory, the strain energy is expressed as

U =
1
2

∫∫∫
V

(σijεij + ms
ijχ

s
ij)dV. (1)

In eq. (1), χs
ij , εij , σij and mij , respectively, represent the components of a symmetric rotation gradient tensor, strain

tensor, stress tensor, and higher-order stress tensor, which are expressed as

εij =
1
2
(ui,j + uj,i) (2)

χs
ij =

1
2
(ϕi,j + ϕj,i) (3)

ms
ij = 2l2μ(ẑ)χs

ij , ϕi =
1
2

[curl(u)]i , (4)

where ui and ϕi, respectively, represent the component of displacement vector, and extremely small rotation vector.
In eq. (4), l is a parameter which denotes an additional independent material length scale parameter, which is related
to symmetric rotation gradients. Note that the length scale parameter is assumed as constant in SWCNT. In addition,
the stress-strain relation can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx

σθθ

σxθ

σθz

σxz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 0 0 0

C12 C22 0 0 0

0 0 C66 0 0

0 0 0 C44 0

0 0 0 0 C55

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εθθ

2εxθ

2εθz

2εxz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (5)

where Cij is the elasticity matrix component. The stiffness coefficients are expressed as

C11 =
E

1 − ν2
,

C12 = νC11,

C22 = C11,

C44 = C55 = C66 =
E

2(1 + ν)
. (6)
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2.2 The displacement field of cylindrical shell

According to the first-order shear deformation theory, the displacement fields of SWCNT along the x-, θ-, and z-
direction are expressed as

U(x, θ, z, t) = u(x, θ, t) + zψx(x, θ, t)
V (x, θ, z, t) = v(x, θ, t) + zψθ(x, θ, t)
W (x, θ, z, t) = w(x, θ, t). (7)

In eq. (7), u(x, θ, t), v(x, θ, t), and w(x, θ, t) are considered as neutral axis displacement, ψθ(x, θ, t) and ψx(x, θ, t) as
the rotation of a transverse normal surface about the circumferential and axial directions.

2.3 Governing equations and boundary conditions

To derive equations of motion and boundary conditions for SWCNT, using the modified couple stress theory and the
first-order shear deformation shell model, one must insert the components of displacement field into the strains. Now
by substituting the eq. (7) into eqs. (2), (3) and (4), the components of the deviatoric stretch gradient tensor and
strain tensor are obtained as follows:

εxx =
∂u

∂x
+ z

∂ψx

∂x

εθθ =
1
R

∂v

∂θ
+ z

1
R

∂ψθ

∂θ
+

w

R

εxz =
1
2

(
ψx +

∂w

∂x

)

εxθ =
1
2

(
1
R

∂u

∂θ
+

∂v

∂x

)
+

z

2

(
1
R

∂ψx

∂θ
+

∂ψθ

∂x

)

εθz =
1
2

(
ψθ +

1
R

∂w

∂θ
− v

R

)
. (8)

Moreover, the non-zero components of symmetric rotation gradient tensor are obtained as follows:

χs
xx = −1

2

(
∂ψθ

∂x
+

1
R

∂v

∂x
− 1

R

∂2w

∂x∂θ

)

χs
θθ = − 1

2R

(
1
R

∂u

∂θ
− ∂v

∂x
− z

∂ψθ

∂x

)
− 1

2

(
1
R

∂2w

∂x∂θ
− 1

R

∂ψx

∂θ

)

χs
zz = −1

2

(
1
R

∂ψx

∂θ
− ∂ψθ

∂x
− 1

R2

∂u

∂θ

)

χs
xθ = −1

4

(
1

R2

∂v

∂θ
+

∂2w

∂x2
− 1

R2

∂2w

∂θ2
− ∂ψx

∂x
+

1
R

∂ψθ

∂θ

)

χs
xz = −1

4

(
1
R

∂2u

∂x∂θ
− ∂2v

∂x2
− v

R2
+

1
R2

∂w

∂θ
+

ψθ

R

)
− z

4

(
1
R

∂2ψθ

∂x∂θ
− ∂2ψθ

∂x2

)

χs
θz = −1

4

(
1

R2

∂2u

∂θ2
− 1

R

∂2v

∂x∂θ
− 1

R

∂w

∂x
+

ψx

R

)
− z

4

(
1

R2

∂2ψx

∂θ2
− 1

R

∂2ψθ

∂x∂θ

)
. (9)

For the equations of motion and boundary conditions, the principle of minimum potential energy states that [34]

∫ t2

t1

(δT − δU + δW − δUh)dt = 0. (10)
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The strain energy of SWCNT based on modified couple stress theory is expressed as follows:

δU =
1
2

∫∫∫
V

(σijδεij + ms
ijδχ

s
ij)dV = δU1 + δU2

δU1 =
1
2

∫∫∫
V

(σijδεij)dV =
∫∫

A

{(
Nxx

∂

∂x
δu + Mxx

∂

∂x
δψx

)
+ Nθθ

(
1
R

∂

∂θ
δv +

δw

R

)

+ Mθθ
1
R

∂

∂θ
δψθ + Qxz

(
δψx +

∂

∂x
δw

)

+ Nxθ

(
1
R

∂

∂θ
δu +

∂

∂x
δv

)
+ Mxθ

(
1
R

∂

∂θ
δψx +

∂

∂x
δψθ

)

+ Qzθ

(
δψθ +

1
R

∂

∂θ
δw − δv

R

)}
R dxdθ

δU2 =
1
2

∫∫∫
V

(ms
ijδχ

s
ij)dV =

∫∫
A

{(
− Yθθ

2R2
+

Yzz

2R2

)
∂

∂θ
δu −

(
Yθz

2R2

)
∂2

∂θ2
δu −

(
Yzx

2R

)
∂2

∂θ∂x
δu

+
(

Yθθ

2R
− Yxx

2R

)
∂

∂x
δv +

(
Yxz

2

)
∂2

∂x2
δv −

(
Yθx

2R2

)
∂

∂θ
δv

+
(

Yθz

2R

)
∂2

∂θ∂x
δv +

(
Yxz

2R2

)
δv +

(
Yθz

2R

)
∂

∂x
δw −

(
Yθx

2

)
∂2

∂x2
δw

−
(

Yzx

2R2

)
∂

∂θ
δw +

(
Yxθ

2R2

)
∂2

∂θ2
δw +

(
−Yθθ

2R
+

Yxx

2R

)
∂2

∂θ∂x
δw

+
(

Yxθ

2

)
∂

∂x
δψx +

(
Yθθ

2R
− Yxx

2R

)
∂

∂θ
δψx −

(
Tzx

2R

)
∂2

∂θ∂x
δψx

−
(

Yzθ

2R

)
δψx −

(
Yxθ

2R

)
∂

∂θ
δψθ +

(
Yθθ

2R
− Yxx

2
+

Yzz

2

)
∂

∂x
δψθ

+
(

Tzθ

2R

)
∂2

∂θ∂x
δψθ −

(
Tzθ

2R2

)
∂2

∂θ2
δψx +

(
Txz

2

)
∂2

∂x2
δψθ −

(
Yxz

2R

)
δψθ

}
R dxdθ, (11)

where classical and non-classical force and momentum are defined as follows:

(Nxx, Nθθ, Nxθ) =
∫ h/2

−h/2

(σxx, σθθ, σxθ)dz,

(Mxx,Mθθ,Mxθ) =
∫ h/2

−h/2

(σxx, σθθ, σxθ)z dz,

(Qxz, Qzθ) =
∫ h/2

−h/2

ks(σxz, σzθ)dz,

(Yxx, Yθθ, Yzz, Yxθ, Yxz, Yzθ) =
∫ h/2

−h/2

(mxx,mθθ,mzz,mxθ,mxz,mzθ)dz,

(Txx, Tθθ, Tzz, Txθ, Txz, Tzθ) =
∫ h/2

−h/2

(mxx,mθθ,mzz,mxθ,mxz,mzθ)z dz. (12)

The velocity vector of any generic point on a rotating shell is expressed as

V =
∂u

∂t
i +

(
∂v

∂t
+ Ωw

)
j +

(
∂w

∂t
− Ωv

)
k. (13)

The first three terms, respectively, are result from linear velocities in axial, circumferential and lateral directions. The
fourth and fifth terms are coriolis and centrifugal effects. Overdoted terms represent temporal derivatives. i, j, and k
are unit vectors in the x-, θ-, and z-direction, respectively. Furthermore, the kinetic energy of a cylindrical shell can
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be expressed as

δT =
∫

Z

∫∫
A

ρ

{(
∂u

∂t
+ z

∂ψx

∂t

)(
∂

∂t
δu + z

∂

∂t
δψx

)
+
(

∂v

∂t
+ z

∂ψθ

∂t

)(
∂

∂t
δv + z

∂

∂t
δψθ

)

+
(

∂w

∂t

)
∂

∂t
δw + Ω

[
w

(
∂

∂t
δv + z

∂

∂t
δψθ

)
− (v + zψθ)

(
∂

∂t
δw

)

+ δw

(
∂v

∂t
+ z

∂ψθ

∂t

)
− (δv + zδψθ)

(
∂

∂t
w

)]

+ Ω2 [(v + zψθ)(δv + zδψθ) + wδw]
}

R dz dxdθ. (14)

The centrifugal force due to rotation produces initial hoop tension. This effect is considered in potential energy.
Potential energy involves the non-linear terms of thin Sanders theory in strain relations as recommended [35],

Uh =
1
2

∫∫
A

Nh

{(
∂w

R∂θ
− v

R

)2

+
1
4

(
∂u

R∂θ
− ∂v

∂x

)2
}

R dθ dx. (15)

In the above equation, Nh = ρhR2Ω2. Also the work done by the surrounding elastic medium can be written as

δW =
∫ L

0

∫ 2π

0

KwwδwR dθ dx. (16)

Now by substituting eq. (11), eq. (14), eq. (15) and eq. (16) into eq. (10), and integrating by parts, the equations of
motion and boundary conditions can be obtained as follows using the first-order shear deformation shell model and
modified couple stress theory:

δu :
∂Nxx

∂x
+

1
R

∂Nxθ

∂θ
+

1
2R2

(
−∂Yθθ

∂θ
+

∂Yzz

∂θ

)
+

1
2R

∂2Yzx

∂θ∂x
+

1
2R2

∂2Yθz

∂θ2

− Nh

(
1
R

∂2v

∂x∂θ
− 1

R2

∂2u

∂θ2

)
= I0

∂2u

∂t2
+ I1

∂2ψx

∂t2

δv :
∂Nxθ

∂x
+

1
R

∂

∂θ
Nθθ +

Qzθ

R
+

1
2

{
1
R

∂

∂x
(−Yxx + Yθθ) −

1
R2

∂Yθx

∂θ
− ∂2Yxz

∂x2
− Yxz

R2
− 1

R

∂2Yzθ

∂θ∂x

}

− Nh

(
1
R

∂2u

∂x∂θ
− ∂2v

∂x2
+

v

R2
− 1

R2

∂w

∂θ

)
= I0

[
∂2v

∂t2
+ 2

(
∂w

∂t

)
Ω − vΩ2

]
+ I1

{
∂2ψθ

∂t2
− ψθΩ

2

}

δw :
∂Qxz

∂x
+

1
R

∂Qzθ

∂θ
− Nθθ

R
− 1

2R2

∂2Yθx

∂θ2
− 1

2R2

∂Yzx

∂θ
+

1
2R

∂Yθz

∂x
+

∂2Yxθ

2∂x2

− 1
2R

∂2

∂θ∂x
(Yxx − Yθθ) − Nh

(
1

R2

∂v

∂θ
− 1

R2

∂2w

∂θ2

)
− Kww =

I0

(
∂2w

∂t2
− 2Ω

∂v

∂t
− Ω2w

)
− 2I1

{
Ω

∂ψθ

∂t

}

δψx :
∂Mxx

∂x
+

1
R

∂Mθθ

∂θ
− Qxz +

1
2

∂Yθx

∂x
− 1

2R

∂

∂θ
(Yzz − Yθθ) +

Yzz

R
+

1
2R

∂2Tzx

∂θ∂x
+

1
2R2

∂2Tθz

∂θ2
=

I1
∂2u

∂t2
+ I2

∂2ψx

∂t2

δψθ :
1
R

∂Mθθ

∂θ
+

∂Mxθ

∂x
− Qzθ +

1
2

∂

∂x

(
Yzz − Yxx +

Tθθ

R

)
− 1

2
∂Yθx

∂θ
+

Yxz

2R
− 1

2R

∂2Tθz

∂θ∂x
− 1

2
∂2Tzx

∂x2
=

I1

(
∂2v

∂t2
+ 2

(
∂w

∂t

)
Ω − vΩ2

)
+ I2

(
∂2ψθ

∂t2
− ψθΩ

2

)
. (17)
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Appendix A describes the parameters used in eq. (17). Non-classical boundary conditions are as follows:

δu = 0 or
(

Nxx +
1

4R

∂Yxz

∂θ

)
nx +

(
Nxθ −

Yθθ − Yzz

2R
+

1
4

∂Yxz

∂x
+

1
2R

∂Yθz

∂θ

)
nθ = 0,

δu,x = 0 or
(

∂Yxz

4

)
nθ = 0,

δu,θ = 0 or
(

∂Yxz

4

)
nx +

(
∂Yθz

2

)
nθ = 0,

δv = 0 or
(

Nxθ +
Yθθ − Yxx

2R
− 1

2
∂Yxz

∂x
− 1

4R

∂Yθz

∂θ

)
nx +

(
Nθθ −

1
4R

∂Yθz

∂x
− Yθx

2R

)
nθ = 0,

δv,x = 0 or
(

Yzx

2

)
nx +

(
Yzθ

4

)
nθ = 0,

δv,θ = 0 or
(

Yzθ

4

)
nx = 0,

δw = 0 or
(

Qxz +
Yzθ

2R
+

1
2

∂Yxθ

∂x
+

1
4R

∂(Yθθ − Yxx)
∂θ

)
nx +

(
Qθz −

Yzx

2R
− 1

2R

∂Yxθ

∂θ
+

1
4

∂(Yθθ − Yxx)
∂x

)
nθ = 0,

δw,x = 0 or
(

Yxθ

2

)
nx +

(Yθθ − Yxx)
4

nθ = 0,

δw,θ = 0 or
(Yθθ − Yxx)

4
nx +

(
Yxθ

2

)
nθ = 0,

δψx = 0 or
(

Mxx +
1

4R

∂Txz

∂θ
+

Yxθ

2

)
nx +

(
Mθx +

1
4

∂Txz

∂x
+

1
2R

∂Tθz

∂θ
+

(Yθθ − Yzz)
2

)
nθ = 0,

δψx,x = 0 or
(

Txz

4

)
nθ = 0,

δψx,θ = 0 or
(

Txz

4

)
nx +

(
Tθz

2

)
nθ = 0,

δψθ = 0 or
(

Mxθ −
(Yxx − Yzz)

2
− 1

4R

∂Tθz

∂θ
− 1

2
∂Txz

∂x
+

Tθθ

2R

)
nx +

(
Mθθ −

Yxθ

2
− 1

4
∂Tθz

∂x

)
nθ = 0,

δψθ,x = 0 or
(

Txz

2

)
nx +

(
Tθz

4

)
nθ = 0,

δψθ,θ = 0 or
(

Tθz

4

)
nx = 0. (18)

3 Solution procedure

Bellman et al. introduced the differential quadrature method (DQM) in the early 1970s [36,37] as a reliable and effective
method. The number of grid points controls the precision of weighting coefficients, and leads to the accuracy of DQM.
In the preliminary formulations of DQM, weighting coefficients were calculated by an algebraic equation system [38,
39]. This limits the number of grid points. Shu [40] devised an explicit formula for the weighting coefficients with
the infinite number of grid points, which led to GDQ. The early applications of GDQ have been generally applied
to regular domain problems. Shu and Richards [41] developed a domain decomposition technique to be used in the
multi-domain problems. By this method, the main domain is divided into a number of sub-domains or elements, before
discretizing each sub-domain for GDQ.

The r-th order derivatives of function f(xi) can be obtained as follows [40]:

∂rf(x)
∂xr

∣∣∣∣
x=xp

=
n∑

j=1

C
(r)
ij f(xi), (19)

where n is the number of grid points along the x-direction, and superscript r is the order of the derivative. Furthermore,
Cij is the weighing coefficient, which can be calculated by using the formulations below, for the first-order derivative
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along one (x-) direction:

C
(1)
ij =

M(xi)
(xi − xj)M(xj)

i, j = 1, 2, . . . , n and i �= j

C
(1)
ij = −

n∑
j=1,i �=j

C
(1)
ij i = j, (20)

where M(x) is developed as

M (xi) =
n∏

j=1,j �=i

(xi − xj) . (21)

In addition, C(r) is obtained by means of the following formulations:

C
(r)
ij = r

[
C

(r−1)
ij C

(1)
ij −

C
(r−1)
ij

(xi − xj)

]
i, j = 1, 2, . . . , n, i �= j and 2 ≤ r ≤ n − 1

C
(r)
ii = −

n∑
j=1,i �=j

C
(r)
ij i, j = 1, 2, . . . , n and 1 ≤ r ≤ n − 1. (22)

Owing to the geometrical periodicity of the cylindrical shell, displacement vector for free vibration analysis can be
described as follows: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(x, θ, t)

v(x, θ, t)

w(x, θ, t)

ψx(x, θ, t)

ψθ(x, θ, t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
∞∑

n=1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ū(x) cos(nθ)eiωt

v̄(x) sin(nθ)eiωt

w̄(x) cos(nθ)eiωt

ψ̄x(x) cos(nθ)eiωt

ψ̄θ(x) sin(nθ)eiωt

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (23)

A proper method to discretize the domain is applying Chebyshev polynomials as it is explained in [42]. Now the
following equation is obtained by substituting eq. (23) into eq. (17)

(
[M ]{ω2} + [C]{ω} + [K]

)(db

dd

)
= 0. (24)

Stiffness matrix [K], damping matrix [C] and mass matrix [M ] are obtained by applying GDQ into the equations of
motion and the boundary conditions. Moreover, d and b indices denote the domain and boundary, respectively, and d
also is the shape of the mode. It is noteworthy that the parameters used in eq. (24) are described in appendix B. For
solving eq. (24) and reducing it to the standard form of eigenvalue problem, a convenient way is to rewrite eq. (24) as
the following the first-order variable: {

Ż
}

= {A}{Z}, (25)

in which, state vector Z and state matrix [A] are defined as

Z =

{
dd

ḋd

}
and [A] =

[
[0] [I]

−
[
M−1K

]
−
[
M−1C

]
]

. (26)

In eq. (26), [0] and [I] are the zero and unit (identity) matrices, respectively. Eventually the natural frequency and its
mode shape are obtained.

4 Results

The numerical results of the vibration behavior of rotary SWCNT are investigated based on the MCST with considering
the initial hoop tension effects for the various boundary conditions. Sufficient number of grid points is necessary to
achieve accurate results in GDQ method. As it is shown in table 1, for good results, fifteen grid points are appropriate.
The results are shown and analyzed in two sections. The first one compares the proposed model with existing literature.
The second section shows the effect of some factors on critical speed and natural frequency of the rotating SWCNT. The
said factors are length-to-radius ratio, radius-to-thickness ratio, initial hoop tension, the constant of spring, frequency
mode number, angular velocity, material length scale parameter and boundary conditions.
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Table 1. The effect of the number of grid points on the results convergence for the non-dimensional natural frequency of the
SWCNT with respect to different dimensionless angular velocity and boundary conditions (BCs) when L/R = 5, h/R = 0.2,
l = R/3.

Boundary Coefficient Angular N = 7 N = 9 N = 11 N = 13 N = 15 N = 17 N = 19

condition of elastic velocity

foundation

Simply- KW = 1018 Φ = 0.01 0.22195 0.22193 0.22193 0.22193 0.22193 0.22193 0.22193

Simply KW = 5 × 1018 Φ = 0.03 0.24348 0.24345 0.24345 0.24345 0.24345 0.24345 0.24345

Simply- KW = 1018 Φ = 0.1 0.24939 0.24939 0.24939 0.24939 0.24939 0.24939 0.24939

Clamp KW = 5 × 1018 Φ = 0.3 0.26363 0.26363 0.26363 0.26363 0.26363 0.26363 0.26363

Clamp- KW = 1018 Φ = 0.1 0.29491 0.29561 0.29550 0.29543 0.29543 0.29543 0.29543

Clamp KW = 5 × 1018 Φ = 0.3 0.30018 0.30090 0.30079 0.30074 0.30074 0.30074 0.30074

Clamp- KW = 1018 Φ = 0.1 0.13889 0.13850 0.13877 0.13882 0.13882 0.13882 0.13882

Free KW = 5 × 1018 Φ = 0.3 0.17868 0.17839 0.17858 0.17861 0.17862 0.17862 0.17862

Table 2. The material properties of single-walled carbon nanotubes.

E ν H ρ

1.1 Tpa 0.3 0.34 nm 2300 kg/m3

Table 3. The comparison of the dimensionless first natural frequencies of non-rotating isotropic homogeneous nanoshells, with
simply supported boundary condition and for different thicknesses.

h/R N MD Present Present Present Present

simulation [45] GDQM (l = 0) Analytical (l = 0) GDQM (l = h) Analytical (l = h)

0.02 1 0.1968 0.1953621557 0.1953621467 0.19543206 0.1954320689

0.05 1 0.2004 0.1954230464 0.1954230557 0.1958578181 0.1958578259

Table 4. The comparison of the dimensionless first three natural frequencies of isotropic homogeneous nanoshells, with simply
supported boundary condition and for different thicknesses.

h/R n
ref. [46]

Present study
ref. [46]

Present study

(l = 0)
(GDQM)

(l = h)
(GDQM)

(l = 0) (l = h)

1 0.1954 0.19536215 0.1955 0.19543206

0.02 2 0.2532 0.25271274 0.2575 0.25731258

3 0.2772 0.27580092 0.3067 0.30621690

1 0.1959 0.19542305 0.1963 0.19585782

0.05 2 0.2623 0.25884786 0.2869 0.28543902

3 0.3220 0.31407326 0.4586 0.45457555

4.1 Results verification with MD simulation

Carbon nanotubes are often modeled as isotropic elastic cylindrical shells. The anisotropies due to the intrinsic discrete
nature of CNTs and imperfections can be neglected because they give a marginal contribution [23]. The material
properties of single-walled carbon nanotubes are presented in table 2. The achieved results of MD simulation have
been compared with those of GDQ and exact analytical method. Moreover, from tables 3 and 4, it can be clearly
seen that by setting l = h, the achieved results of the classical theory of cylindrical nanoshells are very close to MD
simulation results. Some researchers [43,44] show, as l = R/3, the results of the current research based on FSDT are
very similar to those of MD simulation. Furthermore, here, dimensionless frequency, is approximated by the equation
Ω = ωR

√
ρ
E .
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Table 5. The comparison of fundamental natural frequency of simply supported SWCNT, for different lengths and elastic
foundations when L/R = 5, h = .2R, l = R/3, n = 1.

L Exact solution GDQ solution Exact solution GDQ solution Exact solution GDQ solution

(nm) Kw = 1018 Kw = 1018 Kw = 3 × 1018 Kw = 3 × 1018 Kw = 6 × 1018 Kw = 6 × 1018

1 22.89482103 22.89481960 23.11315206 23.11315064 23.43635032 23.43634892

2 11.50213925 11.50213854 11.71817516 11.71817446 12.03401480 12.03401412

3 7.704384021 7.704383548 7.918192404 7.918191944 8.227111504 8.227111064

4 5.805362478 5.805362125 6.017007402 6.017007062 6.319400017 6.319399696

5 4.665836012 4.665835731 4.875378273 4.875378005 5.171600544 5.171600293

6 3.906058386 3.906058153 4.113555752 4.113555532 4.403930929 4.403930725

7 3.363281181 3.363280990 3.568788612 3.568788426 3.853611243 3.853611073

8 2.956130190 2.363280990 3.159700008 3.159699848 3.439239455 3.439239310

9 2.639397468 2.639397315 2.841079577 2.841079436 3.115582988 3.115582862

10 2.385958257 2.385958114 2.585800272 2.585800147 2.855495111 2.855494999

4.2 The verification of achieved results by using the results of an analytical method

Table 5 shows the GDQ results in comparison with analytical results for different elastic foundations and the lengths
of SWCNT. It can be seen, from table 5, that the GDQ results are in accord with analytical results, so the GDQ
method with N = 15 can be used instead of an analytical solution. Moreover, it can be seen clearly from table 5
that, by increasing the length, natural frequency tends to decrease and it increases when elastic foundation stiffness
increases. The comparison of natural frequencies, presented in table 5, shows that an increase in shell length leads to
a decrease in the stiffness and, therefore, a decrease in the natural frequency.

4.3 Parametric results

This section investigates the effect of different parameters on the critical speed of rotation and the natural frequency
of SWCNT using GDQM and MCST.

4.3.1 The effect of circumferential wave number on natural frequency for different boundary conditions, elastic foundation,
and the different values of angular velocity

Table 6 gives a presentation of circumferential wave numbers, angular velocity, and elastic foundation effect on natural
frequency under the various boundary conditions. As it can be seen from table 6, an increase in Winkler foundation
leads to an increase in the frequency of all modes. This trend is observed under all types of boundary conditions. This
is because increasing the Winkler foundation is eventuated to increase in stiffness and natural frequency of the rotating
SWCNT. In addition, the increase in the modes of the frequency results in considerable increase in natural frequency.
Clamped-Free boundary condition has the lowest frequency because of its particular condition, and Clamp-Clamp
boundary condition has the highest frequency. Also it can be seen from the table 6 that in fundamental frequency, the
increase in angular speed leads to the decrease in the frequency. A surprising result is that unlike C-C, C-S, and S-S
boundary, under C-F boundary condition, an increase in rotational speed results in a decrease in the second frequency
mode as the same as first frequency mode. In the third frequency, an increase in rotational speed leads to an increase
in frequency. This happens under all types of boundary condition.

4.3.2 The effect of different Winkler foundations on the natural frequency and the critical speed of rotation for different
boundary conditions

Figure 3 demonstrates natural frequency versus angular velocity for a nanotube on different Winkler foundations.
The figure shows that an increase in Winkler stiffness coefficient increases the critical speed of rotation and causes an
increase in stability of carbon nanotube. This is because of the fact that an increase in Winkler stiffness coefficient
leads to an increase in the stiffness of carbon nanotube, and causes natural frequency and stability to increase. Figure 4
to 6 present a similar trend. When one draws a comparison between figs. 3, 4, 5, and 6, it can be inferred that while
a boundary condition changes from free to simply and from simply to clamp both natural frequencies and angular
velocities increase. This results in an increase in the stability of carbon nanotubes.
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Table 6. The variation of the fundamental, the second and the third frequency (THz), versus different Winkler stiffness of
a rotating carbon nanotube for different angular velocities (THz) and boundary conditions when L/R = 5, h/R = 0.2 and
l = R/3.

Fundamental frequency Second frequency Third frequency

φ = 0 0.3 0.5 φ = 0 0.3 0.5 φ = 0 0.3 0.5

Simply-Simply

Kw

0 1.96420 1.92414 1.85033 4.95947 4.96075 4.96296 12.4342 12.4488 12.4749

1 × 1018 2.07125 2.03346 1.96405 5.02470 5.02596 5.02815 12.4625 12.7472 12.5031

3 × 1018 2.26824 2.23408 2.17162 5.15238 5.15362 5.15577 12.5190 12.5336 12.5594

5 × 1018 2.44695 2.41559 2.35844 5.27657 5.27780 5.27991 15.5751 12.5896 12.6153

Simply-Clamp

Kw

0 2.34960 2.31363 2.25292 5.13716 5.13853 5.14094 12.5145 12.5291 12.5552

1 × 1018 2.44026 2.40841 2.35039 5.20087 5.20223 5.20461 12.5428 12.5575 12.5835

3 × 1018 2.61532 2.58587 2.53237 5.32573 5.32706 5.32941 12.5994 12.6139 12.6398

5 × 1018 2.77725 2.74977 2.69994 5.44736 5.44868 5.45098 12.6556 12.6700 12.6957

Clamp-Clamp

Kw

0 2.78211 2.75371 2.70227 5.37941 5.38090 5.38356 12.9229 12.9376 12.9637

1 × 1018 2.86646 2.83899 2.78928 5.44165 5.44312 5.44577 12.6514 12.6661 12.6922

3 × 1018 3.02698 3.00114 2.95444 5.56382 5.56528 5.56788 12.7083 12.7229 12.7489

5 × 1018 3.17796 3.15350 3.10937 5.68309 5.68452 5.68709 12.7649 12.7794 12.8053

Clamp-Free

Kw

0 1.18091 1.1010 0.94691 4.92642 4.92341 4.92247 12.3212 12.3326 12.3570

1 × 1018 1.36092 1.29186 1.16324 4.99503 4.99198 4.99101 12.3508 12.3622 12.3865

3 × 1018 1.66123 1.60475 1.50318 5.12926 5.12615 5.12512 12.4098 12.4211 12.4452

5 × 1018 1.91235 1.86327 1.77667 5.25978 5.25660 5.25550 12.4684 12.4797 12.5036
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Fig. 3. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Simply-Simply SWCNT with
different Winkler foundations when l = R/3, L = 10 ∗ R and h = 0.1R.
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Fig. 4. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Simply SWCNT with
different Winkler foundations when l = R/3, L = 10 ∗ R and h = 0.1R.
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Fig. 5. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Clamp SWCNT with
different Winkler foundations when l = R/3, L = 10 ∗ R and h = 0.1R.
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Fig. 6. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Free SWCNT with
different Winkler foundations when l = R/3, L = 10 ∗ R and h = 0.1R.
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Fig. 7. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Simply-Simply SWCNT with
different length-to-radius ratios when h/R = 0.1 and l = R/3.
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Fig. 8. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Simply SWCNT with
different length-to-radius ratios when h/R = 0.1 and l = R/3.

4.3.3 The effect of different length-to-radius ratios on the natural frequency and the critical speed of rotation for different
boundary conditions

Figure 7 shows natural frequency versus angular velocity for different length-to-radius ratios. It can be seen from the
graph that as the length-to-radius ratio increases, the critical speed of rotation decreases, this leads to an increase in
the instability of carbon nanotube. This effect is more significant in lower angular velocities. This trend also is deduced
from figs. 8 to 10. When figs. 7 to 10 are compared with each other, it can be inferred that while a boundary condition
changes from free to simply and from simply to clamp both natural frequencies and angular velocities increase. This
results in an increase in the stability of carbon nanotubes.

4.3.4 The effect of different material length scale parameters on the natural frequency and the critical speed of rotation for
different boundary conditions

Figure 11 presents natural frequency versus angular velocity for different material length scale parameters. It can
be seen from the graph that an increase in the material length parameter leads to an increase in the critical speed
of rotation. This increase is more significant in lower angular velocities. This increases the stability of the carbon
nanotube. Figures 12 to 14 show the same behavior as in fig. 11. When the comparison between figs. 11, 12, 13, and 14
is taken into account, it can be deduced that while a boundary condition changes from free to simply and from simply
to clamp both natural frequencies and angular velocities increase. This results in an increase in the stability of carbon
nanotubes.
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Fig. 9. The variation of fundamental frequency (THz) versus theangular velocity of a rotating Clamp-Clamp SWCNT with
different length-to-radius ratios when h/R = 0.1 and l = R/3.
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Fig. 10. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Free SWCNT with
different length-to-radius ratios when h/R = 0.1 and l = R/3.
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Fig. 11. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Simply-Simply SWCNT with
different length scale parameters when h/R = 0.1 and L = 10 nm.
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Fig. 12. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Simply SWCNT with
different length scale parameters when h/R = 0.1 and L = 10 nm.
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Fig. 13. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Clamp SWCNT with
different length scale parameters when h/R = 0.1 and L = 10 nm.
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Fig. 14. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Free SWCNT with
different length scale parameters when h/R = 0.1 and L = 10 nm.
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Fig. 15. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Simply-Simply SWCNT with
different initial hoop tensions and thickness-to-radius ratio parameters when l = R/3, L = 10 ∗ R and L = 10 nm.
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Fig. 16. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Simply SWCNT with
different initial hoop tensions and thickness-to-radius ratio parameters when l = R/3, L = 10 ∗ R and L = 10 nm.

4.3.5 The effect of different initial hoop tensions and thickness-to-radius ratios on the natural frequency and the critical
speed of rotation for different boundary conditions

Figure 15 illustrates natural frequency versus angular velocity for different thickness-to-radius ratios. It can be seen,
from fig. 15, that an increase in the thickness-to-radius ratio causes an increase in the critical speed of rotation and
increases the stability of carbon nanotubes. Moreover, when the initial hoop tension changes from zero to ρhR2ω2, the
critical speed of rotation decreases and leads to a decrease in the stability of carbon nanotubes. This change plays a
more noticeable role at a higher speed of rotation. This trend is also deduced from figs. 16 to 18. When figs. 15 to 18
are compared with each other, it can be inferred that while a boundary condition changes from free to simply and
from simply to clamp, both natural frequencies and angular velocities increase, so carbon nanotubes become more
stable.

5 Conclusion

This article presents the size-dependent vibration analysis of a rotating SWCNT, and obtains the critical angular
velocity of the rotating SWCNT. Modified couple stress theory introduces size-dependent effects. The equations of
motion and non-classic boundary conditions are derived using the Hamilton principle. The natural frequency of the
rotating SWCNT is investigated regarding material length scale parameter, angular velocity, length, length-to-radius
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Fig. 17. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Clamp SWCNT with
different initial hoop tensions and thickness-to-radius ratio parameters when l = R/3, L = 10 ∗ R and L = 10 nm.
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Fig. 18. The variation of fundamental frequency (THz) versus the angular velocity of a rotating Clamp-Free SWCNT with
different initial hoop tensions and thickness-to-radius ratio parameters when l = R/3, L = 10 ∗ R and L = 10 nm.

ratio, radius-to-thickness ratio, initial hoop tension, and boundary conditions on critical speed of a rotating SWCNT.
In this study, the following main results can be achieved:

1) With an increase in the length-to-radius ratio and material length scale parameter, the natural frequency tends
to increase while an increase in the angular velocity results in a decrease in the natural frequency of the rotating
SWCNT.

2) Clamp-Free boundary condition has the lowest natural frequency because of its particular condition, while the
Clamp-Clamp boundary condition has the highest natural frequency.

3) The results show that an increase in the material length scale parameter leads to an increase in the critical speed,
while an increase in the length-to-radius ratio of the rotating SWCNT.

4) The results show that the initial hoop tension plays an important role in the critical speed of a rotating SWCNT
so that, by ignoring this effect, the critical velocity increases.
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