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Abstract. We address the dynamics of decoherence and quantum correlations (entanglement and discord)
in a model of three non-interacting qubits, initially prepared in a maximally entangled pure Greenberger-
Horne-Zeilinger (GHZ) state and then subjected to classical environmental noise in common, different
and mixed environments. The noise is modeled by randomizing the single-qubit transition amplitudes. We
address both static and colored environmental noise. We find that the dynamics of quantum correlations
are strongly affected by the type of system-environment interaction and the kind of the noise considered.
On the one hand, our results clearly show that unlike what was found in the case of the two-qubit model
analogous to the one here investigated, quantum correlations are not totally destroyed when the qubits are
coupled to the noise in a common environment. On the other hand, the presence or absence of peculiar
phenomena, such as entanglement, revivals and sudden death are observed. Furthermore, we show that the
partial preservation of entanglement can be successfully detected by means of the suitable entanglement
witness. Finally, in the case of static noise we find that the decoherence becomes stronger as the disorder
of the environment increases whereas, for colored noise, it becomes stronger as the number of fluctuators
increases.

1 Introduction

In recent years, quantum correlations have become the main focus of fundamental research in the discipline of quantum
information theory [1]. At the very beginning of the foundation of quantum information science, how to classify and
quantify the quantum correlations encoded in a given state has attracted significant attention as one of the most
fundamental and central research topics. Entanglement is an important aspect of quantum systems which demonstrates
correlations that cannot be discussed classically [2]. This quantity plays a central role in many fields of research, such as
quantum computation [3], quantum information processing [4,5], cryptography [6], quantum dense coding [7], sensitive
measurements [8], quantum telecloning [9] and entanglement swapping [10], just to cite a few examples. However, the
major limitation of the use of entangled systems in practical applications is due to the unavoidable interaction of the
real quantum systems with their surroundings, resulting in the loss of their correlations and, consequently, of their
efficiency to perform quantum communication tasks [11–14]. Hence, noise represents one of the unavoidable physical
phenomena in the context of quantum information and computations [15] and it is therefore of great significance to
examine the effect of the various kinds of environmental noise on the dynamics of quantum correlations in realistic
quantum systems and to search for possible approaches to protect the quantum correlations from the influence of
its environments. Recently, the effect of different kinds of classical environmental noise on the dynamics of quantum
correlations for two non-interacting qubits has been investigated both theoretically [16–21] and experimentally [22,23].
Its extension to a tripartite system within the random telegraph noise (RTN) is proposed by Fabrizio Buscemi and Paolo
Bordone [24]. Practically speaking, while the quantification of bipartite quantum entanglement is well known [25–27],
no matter whether the state is pure or mixed, its extensions to the multipartite case is still much more complicated
and the difficulty grows up exponentially, even for the simplest tripartite case [28]. Therefore, only recently the time
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evolution of the entanglement has begun to be analyzed in multipartite open quantum systems. In literature, different
approaches, such as tripartite negativity [29] and concurrence [30], have been proposed to characterize the tripartite
and multipartite entanglement. However, many of these proposals are only eligible for pure states and none of them
could give a perfectly defined quantification. In addition, it is worth noting that tripartite negativity cannot distinguish
the entanglement of a genuine tripartite entangled state from that of a bi-separable state in a generalized sense.

A different tool for understanding entanglement of three and more qubits is the use of so-called entanglement
witness (EW), namely suitable observable that, at least in principle, can be experimentally implemented to detect the
presence of entanglement [31,32]. However, recent developments in the field of quantum information processing showed
that the entanglement is not the only kind of quantum correlations useful for quantum information processing [33–35].
It has shown both theoretically [36] and experimentally [37] that some tasks can be speed up over their classical
counterparts using fully separable and highly mixed states [38]. Thus, in order to take into account these correlations,
many quantifiers were proposed in recent years [39], among which the most used is certainly quantum discord (QD) [38]
which can be expressed in terms of the difference between the total and the classical correlations for a system when one
of its sub-parties is subject to an unobserved measure process. Recently, QD has been intensively investigated in the
literature and its definition has been generalized to multipartite systems according to different approaches. Note that
such a quantity, however, significantly depends upon both the subsystem chosen and the measurement performed on it;
in particular, if the measurement is carefully selected, we can minimize its disturbing effect on the system [40]. There
are, in general, two kinds of quantum discord: measurement-based discord and distance-based discord [38]. Under
suitable conditions, quantum discord has been proved to be more robust against decoherence than entanglement in
noisy environments [41–46].

The aim of this paper is to analyze the role played by a classical noisy environment in to the dynamics of the
quantum correlations and decoherence in a physical model consisting of three non-interacting qubits. The influence
of the classical environmental noise on the system is described by means of a stochastic Hamiltonian with a coupling
term mimicking a static signal or the 1/fα spectrum. It is worth noting that a noise with spectrum of the form
1/fα is among the main sources of decoherence in quantum solid-state devices, superconducting qubits, and magnetic
systems [47–49]. The exponent α appearing in the spectrum is a positive number. The cases with α = 1 and α = 2
are often called pink and brown noise, respectively. Environments characterized by 1/fα noise spectra usually arise
when a system is coupled to a large number of bistable fluctuators, with a specific distribution of their switching rates.
Upon considering a collection of fluctuators, the colored noise may be implemented by means of a linear combination
of sources of RTN, each characterized by a specific switching rate chosen from a suitable distribution [50].

The dynamics of the three qubits is evaluated by averaging the time-evolved states over the noise phase. In order
to fully characterize quantum correlations, we employ suitable measures for tripartite quantum discord, entanglement
and decoherence. In this work the entanglement is quantified in terms of tripartite negativity, which was shown to play
a key role in quantum information protocols since states exhibiting nonzero tripartite negativity are distillable to GHZ
states [24]. The other estimator is the use of the concept of entanglement witness. We employ the Von Neumann entropy
as a measure for decoherence. Note that, unlike tripartite negativity, in order to quantify the three qubits QD we need
to use numerical techniques apt to optimize, over positive-operator–valued measures (POVMs) and subsystems, the
conditional entropies appearing in the definition of discord. In this work, QD is numerically quantified by using the
approach developed in ref. [51].

The paper is organized as follows: In sect. 2 we introduce the genuine quantifiers for correlations and decoherence
in tripartite quantum systems. In sect. 3, we illustrate the physical model consisting of three non-interacting qubits
subject to a classical noisy environment within common, different and mixed environments. In sect. 4 we report the
time evolution of quantum correlations and decoherence for both static and colored noise in the case of common,
different and mixed system-environments coupling. Finally, in sect. 5 some conclusions are drawn.

2 Quantum correlation measures in tripartite systems

Here, we illustrate the correlation measures adopted in this work to quantify entanglement, decoherence, and tripartite
quantum discord.

2.1 Measures for entanglement

2.1.1 Tripartite negativity

As we have pointed out in the introduction, there are several kinds of definitions of entanglement measure of the
three-qubit system. In this paper, we explore a valid measure of tripartite entanglement for mixed state ρ ≡ ρabc by
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means of the tripartite negativity [52], which is the geometric mean of the bipartite negativities of any bipartition of
the system given by

N (3)(ρabc) = 3

√
Na|bc + Nb|ac + Nc|ab, (1)

where NI|JK =
∑

ı |λı(ρTI )| − 1 is the bipartite negativity between the subsystem I and the compound system JK

with I ∈ {a, b, c} and JK ∈ {ab, ac, bc}. λı(ρTI ) denote the i-th eigenvalues of the density matrix ρ after taking partial
transpose with respect to subsystem I. Recently, tripartite negativity has also been used to estimate the entanglement
of tripartite system within the random telegraph noise [24]. For symmetrical tripartite quantum systems as in our case
of study, Na|bc = Nb|ac = Nc|ab and consequently N (3)(ρ) reduce to the bipartite negativity.

2.1.2 Entanglement witnesses

A different tool for understanding entanglement of three and more qubits is the use of so-called entanglement wit-
ness [53], namely suitable observable that, at least in principle, can be experimentally implemented to detect the pres-
ence of entanglement [31, 32]. An entanglement witness is an operator (W) which has the property that Tr(ρW) < 0
indicate the appearance of tripartite entanglement experimentally detectable in the system. However, Tr(ρW) > 0
do not guarantee the absence of entanglement. Note that, Tr(ρW) < 0 is a sufficient but not a necessary condition
for identifies the state ρ as an entangled state. It is worth noting that any given entanglement witness operator will
identify some but not all entangled states, and in general many different entanglement witness operators exist. For
the three-qubit GHZ-type states the relevant witnesses are [54]

WGHZ1 =
1
2

I −
∣∣GHZ

〉〈
GHZ

∣∣ (2)

and
WGHZ2 =

3
4

I −
∣∣GHZ

〉〈
GHZ

∣∣. (3)

Specifically, in this work we will use the witness operator WGHZ1 that permit to identify whether a state is in the W-B
class, namely a state with true tripartite entanglement either of the GHZ-type or W-type and not bi-separable [24].

2.2 Measure for decoherence

In quantum information processing, decoherence is another essential problem that deserves some attention. Generally,
decoherence is used to estimate the deviation from an ideal state [55]. To some extent, decoherence is an evaluator of
the degree of entanglement between the system and the noisy environment. In this paper, decoherence is estimated by
means of the Von Neumann entropy [56] of the time-evolved density matrix of the system:

εϑ(t) = −Tr [ρ(t) ln ρ(t)] . (4)

2.3 Measure for quantum discord

According to ref. [57] a state of n particles is said to possess genuine n-partite correlations when it is non-product in
every bipartite cut. From this point of view, we can define the genuine tripartite total correlations T (3)(ρ), of a mixed
state ρabc as [51]

T (3)(ρ) = T (ρ) − T (2)(ρ), (5)
where T (ρ) is the quantum extension of the Shannon classical mutual information,

T (ρ) = S(ρa) + S(ρb) + S(ρc) − S(ρ), (6)

and T (2)(ρ) is given by the maximum of the total bipartite correlations among two qubits of the system, namely

T (2)(ρ) = max
[
I(2)(ρa,b), I(2)(ρa,c), I(2)(ρb,c)

]
, (7)

In the previous equations, S(ρI) is the Von Neumann entropy of the corresponding reduced density matrix. I(2)(ρI,J ) =
S(ρI)+S(ρJ )−S(ρIJ ), I, J ∈ {a, b, c} denoting the bipartite quantum mutual information of the subsystem consisting
of the two qubits I and J . From eqs. (5), (6) and (7) we obtain

T (3)(ρ) = min
[
I(2)(ρa,bc), I(2)(ρb,ac), I(2)(ρc,ab)

]
, (8)

where I(2)(ρI,JK) is the mutual information between one-qubit part and the left two-qubit part.
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We can also define the genuine tripartite classical correlations J (3)(ρ) as

J (3)(ρ) = J (ρ) − J (2)(ρ), (9)

where
J (ρ) = max

I,J,K

[
S(ρI) + S(ρK) − S(ρI|J ) − S(ρK|IJ )

]
(10)

and
J (2)(ρ) = max

[
J (2)(ρa,b), J (2)(ρa,c), J (2)(ρb,c)

]
. (11)

In agreement with ref. [58] the tripartite quantum discord D(3) can be expressed as the difference between the genuine
tripartite total correlations and the genuine tripartite classical correlations,

D(3)(ρ) = T (3)(ρ) − J (3)(ρ). (12)

For symmetrical tripartite systems, i.e. systems whose state is invariant under the permutations of the three parties,
it can be shown that the genuine tripartite total and classical correlations can be regarded as

T (3)(ρ) = S(ρc) + S(ρab) − S(ρ) (13)

and
J (3)(ρ) = S(ρc) − S(ρc|ab). (14)

We can then easily compute that
D(3)(ρ) = S(ρab) + S(ρc|ab) − S(ρ), (15)

where S(ρab) is the Von Neumann entropy of the reduce density matrix ρab, S(ρc|ab) = min{Eab
ij }

∑
ij PijS(ρc|Eab

ij
)

is the relative entropy of the qubit “c”, when the projective measurement is carried out on the subsystem “ab”.

ρc|Eab
ij

= Trab[(I
c⊗Eab

ij )ρ]

Pij
is the density matrix of the system after the measurement has been performed on the subsystem

“ab”. and Pij = Tr[(Ic ⊗ Eab
ij )ρ] is the probability of obtaining the (i, j) outcomes. In the previous expressions, the

operators {Eab
ij } are positive-operator–valued measures (POVMs) that act on the subsystem “ab” and whose outcomes

are labeled with two indices (i, j). For sake of simplicity, we will replace the global POVM {Eab
ij } with the external

product of two local POVMs Ea
i ⊗Eb

j , acting separately on parties “a” and “b”. In our numerical approach the relative
entropy S(ρc|ab) has been estimated by using orthogonal-projection–valued measures (PVMs), since they are easier to
implement in the numerical minimization process. Hence, following Andrea Beggi et al. [59] we can define the external
product of two local POVMs acting separately on parties “a” and “b” as

Ea
i ⊗ Eb

j =
∣∣ai

〉〈
ai

∣∣⊗ ∣∣bi

〉〈
bi

∣∣, (16)

with {∣∣a1

〉
= cos θ1

∣∣0〉+ exp(iφ1) sin θ1

∣∣1〉, ∣∣a2

〉
= sin θ1

∣∣0〉− exp(iφ1) cos θ1

∣∣1〉
∣∣b1

〉
= cos θ2

∣∣0〉+ exp(iφ2) sin θ2

∣∣1〉, ∣∣b2

〉
= sin θ2

∣∣0〉− exp(iφ2) cos θ2

∣∣1〉
, (17)

where the angles θi and φi belong to the interval [0, 2π].

3 The physical model

In this section, we describe a model consisting of three non-interacting qubits subject to noisy classical environment.
The system-environment coupling is here analyzed in three different configurations as depicted in fig. 1. In the first
configuration, each qubit is coupled to its own local environment. In the second configuration, two of the qubits are
coupled in one common environment and the last one with its own local environment. In the third configuration all
the qubits are coupled with the same environment.

In each of these configurations, the dynamics of the system is ruled by the stochastic Hamiltonian [24]

H(t) = Ha(t) ⊗ Ibc + Hb(t) ⊗ Iac + Hc(t) ⊗ Iab, (18)

where IJK is the identity operator acting in the subspace of the two qubits I and J , and HL(t) denotes the single-qubit
Hamiltonian [16],

HL(t) = εLIL + λΔL(t)σx
L. (19)



Eur. Phys. J. Plus (2016) 131: 380 Page 5 of 18

Fig. 1. Schematic of the system of three-qubit in different (left), mixed (center) and common (right) environments. The blue,
yellow and green dotted lines represent the entanglement among the qubits, while the red wavy lines show the interaction of
each subsystem with the classical environment.

IL and σx
L indicating the identity operator and the Pauli matrix of the subspace of the qubit L. εL is the single-qubit

energy in the absence of noise (energy degeneracy is assumed), λ is the system-environment coupling constant and
ΔL(t) is a random parameter which is use to introduce the classical noise. Note that, this model has already been used
to evaluate the time behavior of entanglement and quantum discord for a system of three qubits subject to random
telegraph noise [24].

Upon assuming t0 = 0, the evolution operator for a given realization of the process ΔL is expressed as

UL(ΔL, t) = exp
[
−i

∫ t

0

H(s) ds

]
, (20)

with L ∈ {a, b, c}. Since the three qubits are non-interacting, the corresponding evolution operator is given by

U(ϕa, ϕb, ϕc, t) = exp {−i [εatIa + λϕa(t)σx
a ]} ⊗ exp {−i [εbtIb + λϕb(t)σx

b ]}
⊗ exp {−i [εctIc + λϕc(t)σx

c ]} , (21)

where we have introduced the noise phases ϕL(t) = λ
∫ t

0
ΔL(s) ds. When the latter is applied to the initial state the

specific system dynamics is obtained

ρ({ϕ}, t) = U({ϕ}, t)ρ(0)U({ϕ}, t)†, (22)

with {ϕ} = {ϕa, ϕb, ϕc}. Finally, the time-evolved density matrix describing the three qubits is evaluated by performing
an average over the different noise configurations. As initial state, we consider a system prepared in pure GHZ state
ρ0 = |ψabc〉〈ψabc|, with |ψabc〉 = 1√

2
(|0a0b0c〉 + |1a1b1c〉). In appendices A and B the explicit evaluations of the time-

evolved states for the various cases considered are reported: static and colored noise; different, common, and mixed
environments.

3.1 Static noise

The static noise has already been used to study the dynamics of quantum correlations of two non-interacting qubits [16].
In agreement with this work, to model the static noise the adimensional parameters ΔL(t) are assumed to be time-
independent random variables following the flat probability distribution given by

P (ΔL) =

⎧⎪⎨
⎪⎩

1
Δm

−→ |ΔL − Δ0| ≤
Δm

2

0 −→ otherwise
, (23)

where Δ0 denotes the mean value of the distribution and Δm quantifies the disorder of the environment; in fact, when
Δm goes to zero, the noise effect vanishes. The autocorrelation function of Δ is given by 〈δΔ(t)δΔ(0)〉 = Δ2

m/12. The
static disorder represents an environment, whose memory effect cannot be neglected at any finite time, and therefore,
the characteristic time of its correlations is always larger than the one of the environment-system coupling. Thus, this
kind of noise is classify as non-Markovian noise [60]. On the other hand, for the case of local coupling to different
environments, the time-evolved density matrix of the system at time t can be expressed as

ρde(t) =
∫ β

α

∫ β

α

∫ β

α

ρde({Δ}, t)P (Δa)P (Δb)P (Δc) dΔa dΔb dΔc, (24)
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where ρde({Δ}, t) = U({Δ}, t)ρ0U({Δ}, t)† with {Δ} = Δa,Δb,Δc. For the case of qubits interacting in mixed
environments, we assume that Δa = Δb and thus the time-evolved density matrix of the system at time t reads

ρmix(t) =
∫ β

α

∫ β

α

ρmix(Δa,Δc, t)P (Δa)P (Δc) dΔa dΔc, (25)

where ρmix(Δa,Δc, t) = U(Δa,Δa,Δc, t)ρ0U(Δa,Δa,Δc, t)†. Finally, when the qubits are coupled to a common
environment, we assume that Δa = Δb = Δc and thus the time-evolved density matrix of the system at time t
is given by

ρce(t) =
∫ β

α

ρce(Δa, t)P (Δa) dΔa, (26)

where ρce(Δa, t) = U(Δa,Δa,Δa, t)ρ0U(Δa,Δa,Δa, t)†. In these expressions, we have: α = Δ0−Δm

2 and β = Δ0+ Δm

2 .

3.2 Colored noise

The other kind of noise we examine is the 1/fα noise, which is ubiquitous in solid state devices. In agreement with
ref. [47], in order to reproduce the 1/fα spectrum, the single RTN frequency power density must be integrated over
the switching rates γ with a proper distribution,

S1/fα(ω) =
∫ γ2

γ1

SRTN(ω, γ)Pα(γ) dγ, (27)

where SRTN(ω, γ) = 4γ
(2γ)2+ω2 is the random telegraph noise spectrum and we have explicitly wrote its dependency

on the switching rate γ, Pα(γ) is the switching rate distribution and takes a different form depending on the kind of
noise,

Pα(γ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
γ ln(γ2/γ1)

−→ α = 1

(α − 1)
γα

[
(γ1γ2)α−1

γα−1
2 − γα−1

1

]
−→ 1 < α ≤ 2

. (28)

3.2.1 1/fα noise from a single fluctuator

Here, the random parameters ΔL(t) can only flip between two values ±1 with a switching rate γ chosen from a
distribution Pα(γ). The difference with the RTN case is that here the switching rate is not known a priori, but the
fluctuator is described by a statistical mixture whose elements are taken from the ensemble {γ, Pα(γ)} with γ ∈ [γ1, γ2].
The qubits are affected only by one source of noise, and therefore only one decoherence channel is present. In order to
describe the time-evolved density matrix of the three-qubit system, two ensemble averages are required.

The first average is over all the possible realizations of the noise phase:

ρde(γa, γb, γc, t) =
〈〈〈

U(ϕa, ϕb, ϕc, t)ρ(0)U(ϕa, ϕb, ϕc, t)†
〉

ϕa

〉
ϕb

〉

ϕc

, (29)

ρmix(γa, γc, t) =
〈〈

U(ϕa, ϕa, ϕc, t)ρ(0)U(ϕa, ϕa, ϕc, t)†
〉

ϕa

〉
ϕc

, (30)

and
ρce(γa, t) =

〈
U(ϕa, ϕa, ϕa, t)ρ(0)U(ϕa, ϕa, ϕa, t)†

〉
ϕa

, (31)

where ρ(0) is the initial state of the three qubits, 〈· · · 〉ϕL
denote the average over the possible values of the noise

parameters and corresponds to the integral 〈· · · 〉ϕL
=
∫

(· · · )P (ϕL, t) dϕL, where P (ϕL, t) is the phase distribution
and has the form [61,62]

P (ϕL, t) =
1
2

e−γLt
{

[δ(ϕL − λt) + δ(ϕL + λt)] +
γL

λ
[Θ(ϕL + λt) + Θ(ϕL − λt)]

}

×
[

I1

(
γLt

√
1 − (ϕL/λt)2

)
√

1 − (ϕL/λt)2
+ I0

(
γLt

√
1 − (ϕL/λt)2

)]
, (32)

where δ(x) is the Dirac delta function, Ik(x) is the modified Bessel function and Θ(x) is the Heaviside step function.
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The second average is over the possible choices for the switching rates γ in a range [γ1, γ2]

ρde(t) =
∫ γ2

γ1

∫ γ2

γ1

∫ γ2

γ1

ρde(γa, γb, γc, t)Pα(γa)Pα(γc)Pα(γc) dγa dγb dγc (33)

ρmix(t) =
∫ γ2

γ1

∫ γ2

γ1

ρmix(γa, γc, t)Pα(γa)Pα(γc) dγa dγc (34)

and
ρce(t) =

∫ γ2

γ1

ρce(γa, t)Pα(γa) dγa. (35)

Once the average over γ is performed, the time-evolved density matrix, ρde(t), ρmix(t) and ρce(t) can be expressed in
terms of time-dependent coefficients Hde(t) and Hce(t). With

Hde(t) =
[∫ γ2

γ1

Φ2λ(γ, t)Pα(γ) dγ

]2

, Hce(t) =
∫ γ2

γ1

Φ4λ(γ, t)Pα(γ) dγ, (36)

where the function Φnλ(γ, t) corresponds to the average phase factor 〈exp(inλϕ)〉 and can be expressed as [62,63]

Φnλ(γ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−γt

[
cosh(δnλt) +

γ

δnλ
sinh(δnλt)

]
→ γ > nλ

e−γt

[
cos(δnλt) +

γ

δnλ
sin(δnλt)

]
→ γ < nλ

, (37)

with δnλ =
√

|γ2 − (nλ)2|, n ∈ {1, 2}.

3.2.2 1/fα noise from a collection of fluctuators

We already stated that 1/fα noise may be obtained from a collection of N bistable fluctuators, each characterized by
a switching rate γj and a Lorentzian power spectrum. In this case the random parameter in eq. (19) describes a linear
combination of bistable fluctuators ΔL(t) =

∑N
j=1 ΔL,j(t) where N is the number of fluctuator. Each ΔL,j(t) has a

Lorentzian power spectrum, whose sum gives the power spectrum of the noise [17]

S1/fα =
N∑

j=1

Sj(ω, γj) =
N∑

j=1

4γj

(2γj)2 + ω2
. (38)

Here, we assume that all the fluctuators have the same coupling constant with the environment, that is λj ≡ λ. The
global phase describes a linear combination of bistable fluctuators,

ϕL =
N∑

j=1

ϕL,j , (39)

with ϕL,j = −λ
∫ t

0
ΔL,j(s) ds. The global evolution operator UT ({ϕ}, t) for fixed values of the parameters associated

to each fluctuator reads
UT ({ϕ}, t) = Ua(ϕa, t) ⊗ Ub(ϕb, t) ⊗ Uc(ϕc, t), (40)

with UL(ϕL, t) = exp[−i(εLtIL −ϕL(t)σx
L)]. Once more, the dynamics of the system density matrix can be written as

ρ({γj}, t) =
〈
UT ({ϕ}, t)ρ(0)UT ({ϕ}, t)†

〉
{ϕ} . (41)

The evaluation of the global system density matrix ρ({γj}, t) requires an estimate of the averaged terms of the type
〈cos(nϕL(t))〉ϕL

and 〈sin(nϕL(t))〉ϕL
, which can be computed in terms of the coefficient Φnλ as follows:

⎧⎪⎨
⎪⎩

〈cos(nϕL(t))〉ϕL
=

N∏
j=1

Φnλ(γL,j , t)

〈sin(nϕL(t))〉ϕL
= 0

. (42)
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Now, the dynamics is evaluated by averaging the three-qubit density matrix ρ({γj}, t) for specific values of the switching
rates γ in a range [γ1, γ2] as follows:

ρde(t) =
∫ γ2

γ1

∫ γ2

γ1

∫ γ2

γ1

ρde({γj}, t)Pα({γa,j})Pα({γb,j})Pα({γc,j}) d{γa,j}d{γb,j}d{γc,j}, (43)

ρmix(t) =
∫ γ2

γ1

∫ γ2

γ1

ρmix(γa,j , γc,j , t)Pα({γa,j})Pα({γc,j}) d{γa,j}d{γc,j}, (44)

and
ρce(t) =

∫ γ2

γ1

ρce(γj , t)Pα({γj}) d{γj}, (45)

with Pα({γL,j}) ≡
∏N

j=1 Pα(γL,j) and d{γL,j} ≡
∏N

j=1 dγL,j . Once the average over γ is performed, the time-evolved
density matrix ρde(t), ρmix(t) and ρce(t) also in this configuration can be expressed in terms of time-dependent
coefficient Γde(t) and Γce(t) with

Γde,ce(t) = [Hde,ce(t)]
N

, (46)

where Hde,ce(t) are given in eq. (36).

4 Results

In this section, we present the analytical expressions and the time evolution of tripartite negativity, entanglement
witness and decoherence in the physical model introduced in the previous section. The dynamics of quantum correla-
tions is investigated for the GHZ state in the cases of different, mixed and common system-environment interaction
as depicted in fig. 1. It is important to note that the analytical expressions for quantum discord are not presented
because unlike other measures, we need to use numerical techniques to optimize the conditional entropies appearing
in its definition.

4.1 Static noise

4.1.1 Different environments

Performing the calculation starting from the definitions given in eqs. (1), (2) and (4), the tripartite negativity N (3), the
expectation value of WGHZ1 and the time evolution of decoherence εϑ(t) can be expressed in term of time-dependent
coefficient ξde(t) as

N (3) = ξde +
1
2

(|1 + ξde| + |1 − ξde|) − 1, (47)

Tr [WGHZ1ρde(t)] =
1
4
[
1 − 3ξde cos2(2λtΔ0)

]
, (48)

and
εϑ(t) = −3

4
(1 − ξde) ln

1
4

(1 − ξde) −
1
4

(1 + 3ξde) ln
1
4

(1 + 3ξde) , (49)

where ξde =
[ sin(λtΔm)

λtΔm

]2. It is important to note that such a result clearly shows a non-monotonic time decay of
quantum correlations as expected from the non-Markovian nature of the static noise. In fig. 2, we have plotted the
time evolution of N (3), the opposite of the expectation value of WGHZ1, the decoherence εϑ(t) and quantum discord
for different values of Δm.

As shown in fig. 2, entanglement is a damped oscillating function of time, thus showing peculiar phenomena as
sudden death and revivals whereas QD decays exponentially to zero and finally vanishes. Such behaviours are in good
agreement with the results described in ref. [16]. Note that the presence of peculiar phenomena of entanglement sudden
death (ESD) and sudden birth (ESB) indicating that there is a back-flow of information from the environment to the
system and vice versa. As there is not interaction between three independent qubits, this revival phenomenon is due to
single qubit non-Markovian dynamics, which takes memory effect of the environment into account [64]. Decoherence
as shown in fig. 2 is a monotonic function of time, and reaches asymptotic value. As expected, when the disorder of the
environment, here quantified by the parameter Δm, increases, quantum correlations, quantified in terms of tripartite
negativity and quantum discord, decay faster. The same qualitative behaviour is shown by decoherence as displayed
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Fig. 2. Time evolution of tripartite negativity (a), opposite of the expectation value of WGHZ1 (b), the decoherence (c) and
quantum discord (d) for different values of Δm, when the three qubits are subjected to a static noise in different environments.

in the panel (c) of fig. 2, where the decoherence speed of the system increases as Δm increases. In fact, by increasing
the parameter the revivals amplitude of N (3) decreases and the oscillations tend to disappear while the saturation
value of the decoherence remains constant. Furthermore, quantum entanglement quantified by the tripartite negativity
result to be higher than the one detected by means of tripartite entanglement witness. On the other hand, the time
behaviour exhibited by the entanglement witness shows that the witness operator given in eq. (2) is inefficient to
detect the revivals of entanglement. Specially speaking, the residual amount of entanglement quantified by tripartite
negativity is not detectable by means of the entanglement witness when the expectation value of WGHZ1 becomes
zero.

4.1.2 Mixed environments

In this configuration, the analytical expressions of the time-evolved tripartite negativity N (3), the expectation value
of WGHZ1 and the time evolution of decoherence εϑ(t) can be expressed as

N (3)(t) =
1
4

(|1 + ξce + η| + |1 + ξce − η|) +
1
2

(|1 − ξde| + |1 + ξde|) − 1, (50)

Tr [WGHZ1ρmix(t)] = −1
8

(ξce + 4ξde − 1) (51)

and

εϑ(t) = −1
4

(1 − ξce) ln (1 − ξce) −
1
8

(3 + ξce + η′) ln (3 + ξce + η′) (52)

− 1
8

(3 + ξce − η′) ln (3 + ξce − η′) +
1
4

(11 + ξde) ln 2, (53)

where ξce(t) = sin(2λtΔm)
2λtΔm

, η(t) =
√

ξ2
ce + 4ξ2

de − 2ξce + 1 and η′(t) =
√

ξ2
ce + 16ξ2

de − 2ξce + 1.
Such result clearly shows that the tripartite negativity expressed in terms of time-dependent coefficients ξde(t) and

ξce is not totally destroyed for a sufficiently long period of time. Indeed at the limit of a sufficiently long period of
time, both ξde(t) and ξce tend to zero. As a consequence, the tripartite negativity reaches its saturation value, which
is 1/2.

In fig. 3, the dynamics of N (3), opposite of the expectation value of WGHZ1, and quantum discord are shown for
different values of Δm. We find that both N (3) and the opposite of the expectation value of WGHZ1 decay monotonically
with time and exhibit damped oscillations after reaching their corresponding saturation values, whereas QD decays
monotonically with time to zero and no sudden death and revivals phenomena are observed. Unlike the case of local
system-environment interaction, here quantum entanglement can survive the decohering effects due to the static
noise. Indeed, in agreement with ref. [16] when two of the qubits are coupled with a common environment, the latter
can be interpreted as a sort of interaction mediator between the qubits themselves. Such an interaction somehow
contributes to build up quantum correlations even if decohering effects of the environment are still dominant and lead
to a power-like decaying profile of entanglement [16]. Also for this configuration we can see that quantum correlations,
quantified in terms of tripartite negativity, D(3) and WGHZ1, decay faster when the disorder of environment is increased
while the speed of decoherence of the system increases. It is important to note that the local minima of decoherence
correspond to the local maxima of entanglement, thus suggesting a strict connection between the two quantities.
On the other hand, quantum entanglement detected by the tripartite entanglement witness is lower than the one
quantified by means of tripartite negativity. Furthermore, the behavior exhibited by the witness operator given in
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Fig. 3. Time evolution of tripartite negativity (a), opposite of the expectation value of WGHZ1 (b), the decoherence (c) and
quantum discord (d) for different values of Δm, when the qubits are subjected to a static noise in mixed environments.
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Fig. 4. Time evolution of tripartite negativity (a), opposite of the expectation value of WGHZ1 (b), the decoherence (c) and
quantum discord (d) for different values of Δm, when the qubits are coupled to a static noise in a common environment.

eq. (2) clearly demonstrates its inability to detect the long time preservation of entanglement as shown by tripartite
negativity.

4.1.3 Common environment

Once more, the analytical expression of the time-evolved tripartite negativity N (3), the expectation value of WGHZ1

and the time evolution of decoherence εϑ(t) can be expressed in terms of time-dependent coefficient ξce as

N (3)(t) =
1
2

√
2 (1 + ξ2

de) +
1
4

(|1 + ξce| + |1 − ξce|) −
1
2
, (54)

Tr [WGHZ1ρce(t)] = −1
8

[1 + 3ξce cos(4λtΔ0)] (55)

and

εϑ(t) = −
(

1
2

+ χ

)
ln
(

1
2

+ χ

)
−
(

1
2
− χ

)
ln
(

1
2
− χ

)
, (56)

where χ = 1
4

√
(1 + 3ξ2

ce). By analysing the analytical expressions obtained in this section one can immediately see
that in the limit of a sufficiently long period of time, the entanglement is not completely destroyed. Indeed in the limit
of the sufficiently long period of time, ξce(t) goes to zero and N (3)(t) reaches its saturation value while the expectation
value of WGHZ1 becomes negative. In fig. 4, the dynamics of N (3), the opposite of the expectation value of WGHZ1,
the decoherence εϑ(t) and quantum discord are shown for different values of Δm.

For this configuration, we find that both QD and tripartite negativity decay monotonically with time and exhibit
damped oscillations after they reach their corresponding saturation values. Decoherence, unlike in the different- and
mixed-environment interactions cases, presents evident oscillations before reaching the saturation value, thus suggesting
an oscillatory decay of N (3). The survival of D(3) and tripartite negativity at a sufficiently long period of time represents
the major discrepancy with what was found in the two-qubit model, analogously to the one here investigated [16]. Also
in this configuration quantum correlation decays faster when Δm is increased. In agreement with previous findings [24],
the partial preservation of the entanglement and QD can be, in this case, ascribed to the indirect interaction among
the qubits stemming from the coupling of the global system to a common noisy environment. Unlike the different-
environment interaction, here the environment no longer is only the source of decohering effects, but it also represents a
sort of interaction mediator between the subsystems. Such an interaction somehow hinders the destruction of quantum
correlations [24]. Finally, the time behavior exhibited by the opposite of 〈WGHZ1〉, in this configuration, shows that
the partial preservation of entanglement at a sufficiently long period of time can be successfully revealed by means of
tripartite entanglement witness.
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Fig. 5. Time evolution of negativity (a), opposite of the expectation values of WGHZ1 (b), the decoherence (c) and QD (d) for
three qubits interacting with a single random bistable fluctuator with 1/f spectrum in different (De), common (Ce) and mixed
(Me) environments when [γ1, γ2]/λ = [10−4, 104].
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Fig. 6. Time evolution of negativity (a), opposite of the expectation values of EW (b), the decoherence (c) and QD (d) for
three qubits interacting with a single random bistable fluctuator with 1/f2 spectrum in different (blue solid line), common (red
solid line) and mixed (black solid line) environments when [γ1, γ2]/λ = [10−4, 104].

4.2 Colored noise

4.2.1 Single fluctuator

Here, the dynamics depends upon the selected range [γ1, γ2] of the switching rate. Using again the definitions of
eqs. (1), (2) and (4), we find that the tripartite negativity, the expectation value of WGHZ1 and the decoherence εϑ(t)
for different-, mixed- and common-system-environment interaction, has the same analytical expressions as in the case
of static noise (here after taking Δ0 = 0) but with different time-dependent coefficients. Indeed, we have

ξde,ce(t) −→ Hde,ce(t), (57)

where the time-dependent coefficients Hce(t) and Hde(t) are given in eq. (36).
The dynamics of N (3), D(3), εϑ(t) and the opposite of the expectation value of WGHZ1 for the cases of pink and

brown noise are, respectively, shown in figs. 5 and 6. The range of integration is [γ1, γ2]/λ = [10−4, 104].
Note that the integrals Hce(t) and Hde(t) appearing in the analytical expressions of quantum correlations have

been computed numerically. We can clearly see from fig. 5 that quantum correlations can exhibit peculiar phenomena,
such as sudden death, revivals and long-time survival. Indeed, we find that, when the qubits are coupled to the noise
in different environments, both the entanglement quantifies in terms of tripartite negativity, as stated above, and QD
decays monotonically to zero displaying revivals and sudden death phenomena with damped amplitude. On the other
hand, when the qubits are coupled to the noise in a common environment or in mixed environments, we find that entan-
glement decays monotonically with time until it reaches its saturation value and exhibits damped oscillations. In other
words, both entanglement and QD are not totally destroyed when the subsystems are coupled to a common source of
noise whereas both are totally destroyed when the qubits are coupled to the noise in different environments. As there
is no interaction between the three independent qubits, this revival phenomenon is due to single qubit non-Markovian
dynamics, which takes memory effect of the environment into account [64]. Note that the long time preservation of both
quantum discord and entanglement has already been observed in bipartite systems interacting with quantum environ-
ments [65,66] and tripartite systems interaction with classical RTN [24]. It is worth noting that the survival of quantum
correlation in the long time limit represents the major discrepancy with the corresponding result described in the two-
qubit model analogously to the one here investigated [17,50]. There, both bipartite entanglement and discord disappear
at long times, regardless of the local or non-local character of the interaction among the qubits and the environment.
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Furthermore, the entanglement and quantum discord quantify in terms of tripartite negativity and D(3) is higher than
the one detected by the tripartite entanglement witness. For all environmental situations, decoherence is a monotonic
function of time, and presents damped oscillations after reaching the asymptotic value. These oscillations constitute a
sufficient condition to signify the presence of memory effect of the environment.

Unlike the 1/f noise spectrum, here quantum correlations and decoherence are oscillating functions of time for
all the analyzed configurations. We see that the entanglement exhibits the intriguing phenomena of entanglement
sudden disappearance (ESD) and sudden birth (ESB), corresponding to an oscillating behavior of the decoherence
curve (different environments). The periodicity of oscillations can be computed by analyzing the analytical expressions
of the quantifiers of quantum correlations. In particular we can analyze the time-dependent coefficients, Φ2λ and Φ4λ,
appearing in the integral of eq. (36). Once more, quantum correlations are partially preserved when the qubits are
coupled in a common environment. Furthermore, we note that, even if the analytical expressions of N (3)

ce and D(3)
de is

different from those of N (3)
mix and D(3)

mix, we find after numerical simulation that the curves of N (3)
ce and D(3)

de coincide
with those of N (3)

mix and D(3)
mix, respectively.

4.2.2 Collection of fluctuators

In the case of qubits interacting with a collection of fluctuators with fixed switching rates, the dynamics is very
different, depending on the spectrum of the noise. Once again, following the definition of tripartite negativity given
in eq. (1) and the one of entanglement witness and decoherence given in eqs. (2) and (4), we find that the tripartite
negativity and the entanglement witness, for different-, mixed- and common-system-environment interaction, the same
mathematical expressions as in the case of single fluctuator but with different time-dependent coefficients. Indeed, we
have

Hce,de(t) −→ Γce,de = [Hce,de(t)]
N

. (58)

The dynamics of negativity, quantum discord, decoherence and EW for three qubits interacting with environments,
consisting in a collection of N bistable fluctuators with 1/f spectrum are shown in fig. 7.

In agreement with previous investigations [47], we consider 20 sources of RTN as the minimum number of fluctuator
needed to obtain both a reliable profile of the frequency spectrum and a representative sample of the P (γ) distribution.
In fig. 4, we report the behaviors of quantum correlations in the case of 20 and 150 fluctuators. Depending on the
type of system-environment interaction, we find that all the quantifiers of quantum correlations decay exponentially
with time either to a certain saturation value or to zero. Such a behaviors compared to the one displayed in fig. 5,
clearly demonstrates that the mere knowledge of the spectrum is not sufficient to determine the dynamical evolution of
quantum correlations. Indeed, we find that when the three-qubit system interacts with only one decoherence channel,
intriguing phenomena of revival appear because the system is affected only by one source of classical noise and the
information can flow back. As it can be clearly seen, when the number of decoherence channels is increased, the
quantum correlation decays faster. We find that the same qualitative behavior is found for both entanglement and
discord; this is due to the fact that the idea of quantum discord is to quantify all types of quantum correlations
including entanglement. Thus, quantum discord is a function of entanglement. Note that it is also possible to obtain
a pink noise spectrum even with a smaller number of fluctuators, but the problem is that this approximation does
not describe a sample of 1/γ-distributed switching rates. Unlike what was found in the two-qubit model, analogously
to the one here investigated, both entanglement and QD are not totally destroyed when the qubits are coupled in
a common environment. On the other hand, we find that quantum correlations are completely destroyed when the
subsystems are coupled to the noise in different environments. The long-time preservation of quantum correlations
can here be ascribed to the indirect interaction among the qubits. Furthermore, in the case of mixed environmental
noise, we find that QD is totally destroyed while entanglement is preserved. The smaller is the number of fluctuator,
the less degraded are the quantum correlations. Such a result allows us to conclude that entanglement in this work
appears to be more robust against decoherence than QD.

The dynamics of negativity, discord and EW for three qubits interacting with environments, consisting in a col-
lection of N bistable fluctuators with 1/f2 spectrum are shown in fig. 8. It can be clearly seen, from this figure, that
a very different behavior arises when the qubits are coupled to environments, consisting in a collection of N bistable
fluctuators with 1/f2 spectrum. Indeed, we find that quantum correlations decay exponentially with smooth damped
oscillations. We find that, when the subsystems are coupled to a common source of noise, peculiar phenomena of
sudden death and revivals appear for both entanglement and discord. We observe in all analyzed system-environment
configurations that the heights of the oscillation peaks decrease when the number of fluctuators is increased. Once
more, the long-time preservation of entanglement is found when the qubits are coupled either in a common envi-
ronment or in mixed environments. Unlike 1/f spectrum, here we find that the witness, irrespective of the type of
system-environment interaction, is able to detect the presence of tripartite entanglement at sufficiently long but finite
time and that the ability of the tripartite entanglement witness to detect entanglement is weaker than that of tripartite
negativity.
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Fig. 7. Upper panels: Time evolution of tripartite negativity (a), opposite of the expectation value of WGHZ1 (b), the decoherence
(c) and quantum discord (d) for three qubits interacting in different environments, consisting in a collection of N = 20 (black
solid line) and N = 150 (red solid line) bistable fluctuators with 1/f spectrum. Middle panels: the same but with qubits subject
to a common environment. Lower panels: the same but with qubits subject to mixed environments.

5 Conclusions

In this paper we have analyzed in detail the decoherence and the dynamics of quantum correlations (entanglement
and discord), for a system of three non-interacting qubits initially prepared in a maximally entangled GHZ state
and then subjected to classical environmental noise modeled through a stochastic process. We computed the time-
evolved density matrix of the three qubits by performing the ensemble average over the stochastic process, in the
case of different, common and mixed environments. Negativity, decoherence, QD and entanglement witness have been
computed, using both analytical and numerical techniques.

We showed that, starting from a maximally entangled GHZ state, the quantum correlations display different
decaying behaviors, depending on the type of the system-environment interaction and the considered noise.

In particular, for static environmental noise, we found that the decay speed of quantum correlations and the speed
of decoherence of the system are strongly affected by the disorder of the environment quantified by the parameter
Δm. Indeed we showed that when the parameter Δm is increased, quantum correlations display a faster decay and
the speed of decoherence of the system increases.

In the other kind of noise, that is colored noise, the dynamics of quantum correlations have been investigated for
two different configurations of the environment. In the first configuration we have addressed, the three qubits interact
with a single bistable fluctuator, which has a random switching rate leading to an overall 1/fα spectrum. In the
second configuration, the three qubits interact with a collection of bistable fluctuators, each one with fixed switching
rate, selected from a specific distribution Pα(γ). In the first configuration we found that quantum correlations display
oscillation behavior with sudden death and revivals phenomena for both pink and brown noise. But in the case of
pink noise, the oscillation amplitude of quantum correlations decays faster than in the case of brown noise. In the
second configuration we found that the dynamics of quantum correlations depends upon the color of the noise and the
number of fluctuators used to model the environment. Indeed, we find that quantum correlations show a monotonic
decay when α = 1 (pink noise), while peculiar phenomena of sudden death and revivals occur when α = 2 (brown
noise) and that the speed of disentanglement (loss of entanglement) and decoherence increases faster when the number
of fluctuators used to model the environment is increasing.
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Fig. 8. Upper panels: Time evolution of tripartite negativity (a), opposite of the expectation value of WGHZ1 (b), the decoherence
(c) and quantum discord (d) for three qubits interacting in different environments, consisting in a collection of N = 20 (black
solid line) and N = 150 (red dashed line) bistable fluctuators with 1/f2 spectrum. Middle panels: the same, but with qubits
subject to a common environment. Lower panels: the same, but with qubits subject to mixed environments.

For both static and colored noises, our results highlight that quantum correlations can survive the decohering
effects due to the noise when the qubits are coupled in a common environment, while they are completely destroyed
when the qubits are coupled in different environments. We also found that both entanglement and QD display the
same qualitative behavior demonstrating that there is a strict connection between the two quantities. On the other
hand, our results clearly show that the action of different, common or mixed environments has different effects on the
robustness of quantum correlations. Indeed we show that common environment followed by mixed environment degrade
quantum correlations more weakly than different environments. Finally, we find that the survived entanglement can be
efficiently detected by means of the entanglement witness when the qubits are affected by a common source of noise.

We believe that our analysis is helpful for a better understanding of the effects of classical environmental noise on
the dynamics of quantum correlations in open tripartite quantum systems.

Appendix A. Evaluation of the time-evolved density matrix of the system: the case of static
noise

Here, we give the explicit forms of the time-evolved density matrix, for different, mixed and common environments.

Appendix A.1. Different environments

We find that when the subsystems are coupled to the noise in different environments, the time-evolved density matrix
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of the system, as defined in eq. (24), takes the following form:

ρde(t) =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ12 ρ12 ρ12 ρ12 ρ12 ρ11

ρ21 ρ22 ρ23 ρ23 ρ23 ρ23 ρ22 ρ21

ρ21 ρ23 ρ22 ρ23 ρ23 ρ22 ρ23 ρ21

ρ21 ρ23 ρ23 ρ22 ρ22 ρ23 ρ23 ρ21

ρ21 ρ23 ρ23 ρ22 ρ22 ρ23 ρ23 ρ21

ρ21 ρ23 ρ22 ρ23 ρ23 ρ22 ρ23 ρ21

ρ21 ρ22 ρ23 ρ23 ρ23 ρ23 ρ22 ρ21

ρ11 ρ12 ρ12 ρ12 ρ12 ρ12 ρ12 ρ11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.1)

with

ρ11 =
1
4

+ 3
(

sin(λtΔm) cos(2λtΔ0)
2λtΔm

)2

, ρ22 =
1
4
−
(

sin(λtΔm) cos(2λtΔ0)
2λtΔm

)2

,

ρ23 =
(

sin(λtΔm) sin(2λtΔ0)
2λtΔm

)2

,

ρ12 = −
(

sin(λtΔm)
2λtΔm

)2 [
i sin(4λtΔ0) + sin(2λtΔ0)2

]
and ρ21 = −

(
sin(λtΔm)

2λtΔm

)2 [
i sin(4λtΔ0) − sin(2λtΔ0)2

]
.

Appendix A.2. Mixed environments

When all the three qubits are coupled to mixed source of static noise, the explicit evaluation of the time-evolved
density matrix of the system takes the form

ρmix(t) =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ13 ρ13 ρ13 ρ12 ρ11

ρ21 ρ22 ρ24 ρ24 ρ24 ρ24 ρ22 ρ21

ρ31 ρ32 ρ33 ρ33 ρ33 ρ33 ρ32 ρ31

ρ31 ρ32 ρ33 ρ33 ρ33 ρ33 ρ32 ρ31

ρ31 ρ32 ρ33 ρ33 ρ33 ρ33 ρ32 ρ31

ρ31 ρ32 ρ33 ρ33 ρ33 ρ33 ρ32 ρ31

ρ21 ρ22 ρ24 ρ24 ρ24 ρ24 ρ22 ρ21

ρ11 ρ12 ρ13 ρ13 ρ13 ρ13 ρ12 ρ11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.2)

with

ρ11 =
sin(2λtΔm) cos(4λtΔ0)

16(λtΔm)
+

1
2

(
cos(2λtΔ0) sin(λtΔm)

λtΔm

)2

+
3
8

,

ρ12 =
−i sin2(λtΔm) sin(4λtΔ0)

(2λtΔm)2
+

sin(2λtΔm) cos(4λtΔ0)
16(λtΔm)

− 1
8

,

ρ22 =
sin(2λtΔm) cos(4λtΔ0)

16(λtΔm)
− 1

2

(
cos(2λtΔ0) sin(λtΔm)

λtΔm

)2

+
3
8

, ρ33 = − sin(2λtΔm) cos(4λtΔ0)
16(λtΔm)

+
1
8

,

ρ21 =
i sin2(λtΔm) sin(4λtΔ0)

(2λtΔm)2
+

sin(2λtΔm) cos(4λtΔ0)
16(λtΔm)

− 1
8

,

ρ13 =
i

4

[
− sin(2λtΔm)

4(λtΔm)
− 1

2

(
sin(λtΔm)

λtΔm

)2
]

sin(4λtΔ0) −
(

sin(λtΔm) sin(2λtΔ0)
(2λtΔm)

)2

,

ρ24 =
i

4

[
− sin(2λtΔm)

4(λtΔm)
+

1
2

(
sin(λtΔm)

λtΔm

)2
]

sin(4λtΔ0) +
(

sin(λtΔm) sin(2λtΔ0)
(2λtΔm)

)2

,
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ρ31 =
i

4

[
sin(2λtΔm)
4(λtΔm)

+
1
2

(
sin(λtΔm)

λtΔm

)2
]

sin(4λtΔ0) −
(

sin(λtΔm) sin(2λtΔ0)
(2λtΔm)

)2

,

ρ13 =
i

4

[
sin(2λtΔm)
4(λtΔm)

− 1
2

(
sin(λtΔm)

λtΔm

)2
]

sin(4λtΔ0) +
(

sin(λtΔm) sin(2λtΔ0)
(2λtΔm)

)2

.

Appendix A.3. Common environment

On the other hand, when the subsystems are coupled with the same source of noise, i.e. in common environment, the
time-evolved density matrix can be written as

ρce(t) =
1
16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ12 ρ12 ρ12 ρ12 ρ12 ρ11

ρ21 ρ22 ρ22 ρ22 ρ22 ρ22 ρ22 ρ21

ρ21 ρ22 ρ22 ρ22 ρ22 ρ22 ρ22 ρ21

ρ21 ρ22 ρ22 ρ22 ρ22 ρ22 ρ22 ρ21

ρ21 ρ22 ρ22 ρ22 ρ22 ρ22 ρ22 ρ21

ρ21 ρ22 ρ22 ρ22 ρ22 ρ22 ρ22 ρ21

ρ21 ρ22 ρ22 ρ22 ρ22 ρ22 ρ22 ρ21

ρ11 ρ12 ρ12 ρ12 ρ12 ρ12 ρ12 ρ11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.3)

with

ρ11 = 5 +
3 sin(2λtΔm) cos(4λtΔ0)

2λtΔm
, ρ22 = 1 − sin(2λtΔm) cos(4λtΔ0)

2λtΔm
,

ρ12 =
sin(2λtΔm)

λtΔm

[
1
2

cos(4λtΔ0) − i sin(4λtΔ0)
]
− 1,

and ρ21 =
sin(2λtΔm)

λtΔm

[
1
2

cos(4λtΔ0) + i sin(4λtΔ0)
]
− 1.

Appendix B. Evaluation of the time-evolved density matrix of the system: the case of
colored noise

Here, we give the explicit forms of the time-evolved density matrix, for different, mixed and common environments.
In order to evaluate the dynamics of the system, firstly, we calculate the evolution of the initial state for a given

choice of noise parameter, the obtained density matrix is averaged over all the possible realizations of the noise phase
and finally the resulting density matrix is averaged over the possible choices for the switching rates.

Appendix B.1. Different environments

We find that, in the case of local system-environment coupling, the time-evolved density matrix of the system takes
the form

ρde(t) =
1
8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄11 0 0 0 0 0 0 ρ̄11

0 ρ̄22 0 0 0 0 ρ̄22 0

0 0 ρ̄22 0 0 ρ̄22 0 0

0 0 0 ρ̄22 ρ̄22 0 0 0

0 0 0 ρ̄22 ρ̄22 0 0 0

0 0 ρ̄22 0 0 ρ̄22 0 0

0 ρ̄22 0 0 0 0 ρ̄22 0

ρ̄11 0 0 0 0 0 0 ρ̄11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.1)

where 〈ρ11〉 = 1 + 3Hde(t) and 〈ρ22〉 = 1 − Hde(t).
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Appendix B.2. Mixed environments

When the three qubits are coupled to mixed sources of noise, the time-evolved density matrix of the system can be
written as

ρmix(t) =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄11 −ρ̄33 0 0 0 0 −ρ̄33 ρ̄11

−ρ̄33 ρ̄22 0 0 0 0 ρ̄22 −ρ̄33

0 0 ρ̄33 ρ̄33 ρ̄33 ρ̄33 0 0

0 0 ρ̄33 ρ̄33 ρ̄33 ρ̄33 0 0

0 0 ρ̄33 ρ̄33 ρ̄33 ρ̄33 0 0

0 0 ρ̄33 ρ̄33 ρ̄33 ρ̄33 0 0

−ρ̄33 ρ̄22 0 0 0 0 ρ̄22 −ρ̄33

ρ̄11 −ρ̄33 0 0 0 0 −ρ̄33 ρ̄11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.2)

with 〈ρ11〉 = Hce
8 + Hde

2 + 3
8 , 〈ρ22〉 = Hce

8 − Hde
2 + 3

8 and 〈ρ33〉 = −Hce
8 + 1

8 .

Appendix B.3. Common environment

On the other hand, for the case of non-local qubit-environment interaction, the time-evolved density matrix of the
system results in

ρce(t) =
1
16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄11 −ρ̄22 −ρ̄22 −ρ̄22 −ρ̄22 −ρ̄22 −ρ̄22 ρ̄11

−ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 −ρ̄22

−ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 −ρ̄22

−ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 −ρ̄22

−ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 −ρ̄22

−ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 −ρ̄22

−ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 ρ̄22 −ρ̄22

ρ̄11 −ρ̄22 −ρ̄22 −ρ̄22 −ρ̄22 −ρ̄22 −ρ̄22 ρ̄11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.3)

with 〈ρ11〉 = 5 + 3Hde and 〈ρ22〉 = 1 − Hde.
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