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Abstract. In the present paper, two different theories (coupled theory and Green-Lindsay theory with
two relaxation times) are applied to study the deformation of a generalized piezothermoelastic rotating
medium under the influence of gravity. The normal mode analysis is used to obtain the expressions for the
displacement components, the temperature, the stress, the stress components, the electric potential and
the electric displacements. Numerical results for the field quantities are given in the physical domain and
illustrated graphically. Comparisons are made with the results predicted by coupled and Green-Lindsay
theories in the presence and absence of rotation as well as of gravity.

Nomenclature

ui mechanical displacement ϕ electric potential
T absolute temperature εij strain tensor
σij stress tensor βij thermal elastic coupling tensor
Ei electric field Di electric displacement
Cijkl elastic parameters tensor ekij piezoelectric moduli
∈ij dielectric moduli pi pyroelectric moduli
ρ mass density t0, t1 thermal relaxation time parameters
Kij heat conduction tensor T0 reference temperature
Ce specific heat at constant strain ε0, μ0 electric and magnetic permeability, respectively
α1, α3 coefficients of linear thermal expansion vp =

√
C11/ρ longitudinal wave velocity in the medium

1 Introduction

Piezoelectricity is the ability of some materials to generate an electric charge in response to mechanical stress. If the
material is not short-circuited, the applied charges induce a voltage across the material. The word piezoelectricity
means “electricity by pressure” and derives from the Greek piezein, which means to squeeze or press. Piezoelectric
substances are commercially produced in single-crystal form as well as ceramics and they belong to the second biggest
application of dielectric materials, just after semiconductors [1].

The phenomenon of piezoelectricity was discovered by the Curie brothers: Pierre and Jacques. In 1880, they found
that some crystals, when compressed in certain directions, show positive and negative charges on some portions of the
surface. These charges are proportional to the pressure and disappear when the pressure ceases. The first paper on
piezoelectricity was by Jacques and Pierre Curie [2]. Mason [3] studied piezoelectric crystals and their application to
ultrasonics. Redwood [4] studied the transient performance of a piezoelectric transducer. Chen [5] investigated further
correspondences between plane piezoelectricity and generalized plane strain in elasticity. Abd-alla et al. [6,7] studied
the reflection and refraction phenomena in piezoelectric media under initial stresses.
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Mindlin [8] was the first to develop the governing equations of a three-dimensional linear thermo-piezoelectric
medium. Nowacki [9] subsequently developed some general theorems and mathematical models of thermo-
piezoelectricity which can be viewed as the basis for various numerical methods. Chandrasekharaiah [10] has general-
ized Mindlin’s theory of thermo-piezoelectricity to account for the finite speed of propagation of thermal disturbances.
Dunn [11] studied micromechanics models for effective thermal expansion and pyroelectric coefficients of piezoelec-
tric composites. Sharma and Kumar [12] studied plane harmonic waves in piezothermoelastic materials. Youssef and
Bassiouny [13] used the state-space approach to study two-temperature generalized thermo-piezoelasticity for the
one-dimensional problem. Akbarzadeh et al. [14] used coupled theory to investigate the transient thermo-piezoelectric
behavior of a one-dimensional (1D) functionally graded piezoelectric medium subjected to a moving heat source.
Alshaikh [15] used the mathematical modeling for studying the influence of the initial stresses and relaxation times
on the reflection and refraction waves in piezothermoelastic half-space. The generalized theories of thermoelasticity
have been developed to overcome the infinite propagation speed of thermal signals predicted by the classical coupled
dynamical theory of thermoelasticity by Biot [16]. The subject of generalized thermoelasticity covers a wide range of
extensions of the classical theory of thermoelasticity. We recall the two earliest and well-known generalized theories
proposed by Lord and Shulman [17] and Green and Lindsay [18]. In the model of [17], the Fourier law of heat conduc-
tion is replaced by the Maxwell-Cattaneo law, which introduces one thermal relaxation time parameter in Fourier’s
law, whereas in the model of Green and Lindsay [18], two relaxation parameters are introduced in the constitutive
relations for the stress tensor and the entropy. Othman and Said [19] studied the effect of the mechanical force on
generalized thermoelasticity in a fibre-reinforcement by three theories. Chandrasekharaiah and Srikantiah [20] have
discussed the plane waves in a homogeneous isotropic unbounded thermoelastic solid rotating with uniform angular
velocity in the context of the G-L theory.

Some research in the past has investigated different problems of rotating media. In a paper by Schoenberg and
Censor [21], the propagation of plane harmonic waves in a rotating elastic medium without a thermal field has been
studied. It was shown there that the rotation causes the elastic medium to be depressive and anisotropic. Othman [22]
studied the effect of rotation on plane waves in generalized thermoelasticity with two relaxation times. Sharma and
his coworkers [23,24] and Peng and Li [25] discussed the effect of rotation on different types of wave propagating in
a thermoelastic medium. Hayat and his coworkers [26–30], Ellahi and Asghar [31] investigated the effect of rotation
through different studies.

In the classical theory of elasticity, the gravity effect is generally neglected. The effect of gravity in the problem of
propagation of waves in solids, in particular on an elastic globe, was first studied by Bromwich in [32]. Subsequently,
an investigation of the effect of gravity was considered by Love in [33] who showed that the velocity of Rayleigh waves
is increased to a significant extent by the gravitational field when the wavelengths are large. De and Sengupta in [34,
35] studied the effect of gravity on the surface waves, on the propagation of waves in an elastic layer. Othman et al. [36]
studied the effect of phase lag and gravity field on a generalized thermoelastic medium in two and three dimensions.

Othman et al. [37] investigated the generalized thermoelastic medium with temperature-dependent properties for
different theories under the effect of gravity. Othman and Said [38] studied the effect of rotation on the two-dimensional
problem of a fibre-reinforced thermoelastic medium with one relaxation time.

The present paper is devoted to the investigations related to the effect of the gravitational field and rotation on a
generalized piezothermoelastic medium based on the CT and G-L theories by applying the normal mode analysis. Also,
the effects of rotation and the gravitational field on the physical quantities are discussed numerically and illustrated
graphically.

2 Formulation of the problem

2.1 Basic equations

The basic equations of generalized hexagonal piezothermoelastic medium for the two-dimensional motion in the x-z
plane are the following [12].

– Strain-displacement relation:

εij =
1
2
(ui,j + uj,i). (1)

– Stress-strain temperature:

σij = Cijklεkl − ekijEk − βij

(
1 + t1

∂

∂t

)
Tδij , (2)

where i, j, k, l = 1, 2, 3.
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– Gauss equation and electric field relation:

Di,i = 0, (3)

Di = eijkεjk+ ∈ij Ej + pi

(
1 + t1

∂

∂t

)
T, (4)

where Ei = −ϕ,i.
– Heat conduction equation:

KijT,ij = ρCe

(
1 + t0

∂

∂t

)
Ṫ + T0[βiju̇i,j − piϕ̇,i]. (5)

– Equation of motion:
Since the medium is rotating uniformly with an angular velocity Ω = Ωn, where n is a unit vector representing the
direction of the axis of the rotation, the equation of motion in the rotating frame of reference has two additional
terms (Schoenberg and Censor [21]): centripetal acceleration, Ω ∧ (Ω ∧ u), due to time-varying motion only and
Coriolis acceleration, 2Ω ∧ u̇; then the equation of motion in the rotating frame of reference is

σij,j = ρ[üi + {Ω ∧ (Ω ∧ u)}i + (2Ω ∧ u̇)i]. (6)

The constitutive relation and electric displacement of the hexagonal (6mm) crystals symmetry given by

σxx = C11εxx + C13εzz − e31Ez − β1

(
1 + t1

∂

∂t

)
T, (7)

σzz = C13εxx + C33εzz − e33Ez − β3

(
1 + t1

∂

∂t

)
T, (8)

σxz = 2C44εzx − e15Ex, (9)
Dx = e15(u,z + w,x)+ ∈11 Ex, (10)

Dz = e31u,x + e33w,z+ ∈33 Ez + p3

(
1 + t1

∂

∂t

)
T. (11)

2.2 The boundary conditions

1) A mechanical boundary condition:

σzz(x, 0, t) = −f1(x, 0, t) = −f∗
1 eia(x−ct), σxz(x, 0, t) = 0,

∂ϕ

∂z
= 0. (12)

2) A thermal boundary condition that the surface of the half-space subjected to thermal shock:

T (x, 0, t) = f2(x, 0, t) = f∗
2 eia(x−ct), (13)

where f1(x, t) and f2(x, t) are arbitrary functions of x, t and f1
∗, f2

∗ are constant.
We consider a homogeneous, anisotropic, piezothermoelastic half-space of hexagonal type.
The basic field equations (3), (5), (6) for the temperature change, T (x, z, t), displacement vector, u(x, z, t) =

(u, 0, w), and electric potential, ϕ(x, z, t), under the effect of rotation and the gravitational field are given by

C11u,xx + C44u,zz + (C13 + C44)w,xz + (e31 + e15)ϕ,xz − β1

(
1 + t1

∂

∂t

)
T,x + ρgw,x = ρ(ü − Ω2u + 2Ωẇ), (14)

(C44 + C13)u,xz + C44w,xx + C33w,zz + e15ϕ,xx + e33ϕ,zz − β3

(
1 + t1

∂

∂t

)
T,z − ρgu,x = ρ(ẅ − Ω2w − 2Ωu̇), (15)

(e15 + e31)u,xz + e15w,xx + e33w,zz− ∈11 ϕ,xx− ∈33 ϕ,zz + p3

(
1 + t1

∂

∂t

)
T,z = 0, (16)

K1T,xx + K3T,zz − ρCe

(
1 + t0

∂

∂t

)
Ṫ = T0[β1u̇,x + β3ẇ,z − p3ϕ̇,z]. (17)
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To facilitate the solution, the following non-dimensional quantities are introduced:

x′ =
ω∗

vp
x, z′ =

ω∗

vp
z, u′ =

ρω∗vp

β1T0
u, w′ =

ρω∗vp

β1T0
w, T ′ =

T

T0
, σ

′

ij =
σij

β1T0
, ϕ

′
= εpϕ,

{t′, t′1, t′0} = ω∗{t, t1, t0}, D′
i =

Di

e
, Ω

′
=

Ω

ω∗ , g′ =
g

(1/t2)
, (18)

where ω∗ = CeC11
K11

, εp = ω∗e33
vpβ1T0

, β1 = (C11 + C12)α1 + C13α3, β3 = 2C13α1 + C33α3. In terms of the non-dimensional
quantities defined in eq. (18), the above governing equations (14)–(17) take the form (dropping the primes over the
non-dimensional variables for convenience)

δ1u,xx + δ2u,zz + δ3w,xz + δ4ϕ,xz −
(

1 + t1
∂

∂t

)
T,x + gw,x = ü − Ω2u + 2Ωẇ, (19)

δ3u,xz + δ2w,xx + δ5w,zz + δ6ϕ,xx + ϕ,zz + δ7

(
1 + t1

∂

∂t

)
T,z − gu,x = ẅ − Ω2w − 2Ωu̇, (20)

δ8u,xz + δ9w,xx + δ10w,zz + δ11ϕ,xx + δ12ϕ,zz + δ13

(
1 + t1

∂

∂t

)
T,z = 0, (21)

δ14T,xx + δ15T,zz −
(

1 + t0
∂

∂t

)
Ṫ = [δ16u̇,x + δ17ẇ,z + δ18ϕ̇,z]. (22)

3 The solution of the problem

In this section, we applied the normal mode analysis, which gives exact solutions without any assumed restrictions
on the displacement, stress distributions, and temperature. The solution of the considered physical quantities can be
decomposed in terms of the normal mode in the following form:

[u,w, ϕ, T ](x, z, t) = [u∗, w∗, ϕ∗, T ∗](z)eia(x−ct), (23)

where D = d
dz , c = ω

a , ω is the complex time constant (frequency), i is the imaginary unit, a is the wave number in
the x-direction, u∗, w∗, ϕ∗ and T ∗ are the amplitudes of the functions u, w, ϕ, T .

Substituting from eq. (23) in eqs. (19)–(22), we get

(D2 + A1)u∗ + (A2D + A3)w∗ + A4Dϕ∗ + A5T
∗ = 0, (24)

(A6D + A7)u∗ + (D2 + A8)w∗ + (A9D2 + A10)ϕ∗ + A11DT ∗ = 0, (25)

A12Du∗ + (D2 + A13)w∗ + (A14D2 + A15)ϕ∗ + A16DT ∗ = 0, (26)

A17u
∗ + A18Dw∗ + A19Dϕ∗ + (D2 + A20)T ∗ = 0, (27)

where Aj , j = 1–20 are given in appendix A. Equations (24)–(27) have a non-trivial solution if the determinant
coefficients of the physical quantities are equal to zero. Then we get

[D8 − AD6 + BD4 − CD2 + E]{u∗(z), w∗(z), ϕ∗(z), T ∗(z)} = 0, (28)

where A, B, C, E are given in appendix A. Equation (28) can be factored as

(D2 − k2
1)(D

2 − k2
2)(D

2 − k2
3)(D

2 − k2
4){u∗(z), w∗(z), ϕ∗(z), T ∗(z)} = 0. (29)

The solution of eq. (29), bound as z → ∞, is given by

u∗ =
4∑

n=1

Mne−knz, (30)

w∗ =
4∑

n=1

H1nMne−knz, (31)

ϕ∗ =
4∑

n=1

H2nMne−knz, (32)

T ∗ =
4∑

n=1

H3nMne−knz, (33)



Eur. Phys. J. Plus (2016) 131: 358 Page 5 of 12

where k2
n(n = 1, 2, 3, 4) are the roots of the characteristic equation of eq. (29). Taking non-dimension and the normal

mode to eqs. (7)–(11), then substituting from eqs. (30)–(33), we obtain

σ∗
xx =

4∑

n=1

H4nMne−knz, (34)

σ∗
zz =

4∑

n=1

H5nMne−knz, (35)

σ∗
xz =

4∑

n=1

H6nMne−knz, (36)

D∗
x =

4∑

n=1

H7nMne−knz, (37)

D∗
z =

4∑

n=1

H8nMne−knz, (38)

where Hjn, j = 1 − 8, n = 1, 2, 3, 4 are given in appendix B.
By applying the boundary conditions (12) and (13) to determine the coefficients Mn(n = 1, 2, 3, 4), we obtain

4∑

n=1

H5nMn = −f∗
1 , (39)

4∑

n=1

H6nMn = 0, (40)

4∑

n=1

knH2nMn = 0, (41)

4∑

n=1

H3nMn = f∗
2 . (42)

Let us solve the above system of equations (39)–(42) of Mn(n = 1, 2, 3, 4), by using the inverse of matrix method
as follows: ⎛

⎜
⎝

M1

M2

M3

M4

⎞

⎟
⎠ =

⎛

⎜
⎝

H51 H52 H53 H54

H61 H62 H63 H64

k1H21 k2H22 k3H23 k4H24

H31 H32 H33 H34

⎞

⎟
⎠

−1 ⎛

⎜
⎝

−f∗
1

0
0
f∗
2

⎞

⎟
⎠ . (43)

4 Numerical results and discussion

The material chosen for the purpose of numerical calculations is cadmium selenide (CdSe) having hexagonal symmetry
(6mm class)

C11 = 7.41 × 1010 Nm−2, C12 = 4.52 × 1010 N m−2, C13 = 3.93 × 1010 Nm−2,

C33 = 8.36 × 1010 Nm−2, C44 = 1.32 × 1010 N m−2, T0 = 298K, ρ = 5504Kg m−3,

e13 = −0.160Cm−2, e33 = 0.347Cm−2, e15 = −0.138Cm−2, β1 = 0.621 × 106 NK−1 · m−2,

β3 = 0.551 × 106 NK−1 · m−2, p3 = −2.94 × 10−6 CK−1 · m−2, K1 = K3 = 9W m−1 · K−1,

∈11 = 8.26 × 10−11 C2 N−1 · m−2, ∈33= 9.03 × 10−11 C2 N−1 · m−2, Ce = 260 J · Kg−1K−1, μ0 = 4π × 10−7.

The numerical technique, outlined above, was used for the distribution of the real part of the displacement compo-
nent u, the temperature T , the stress components σzz and σxz, the electric potential ϕ and the electric displacement
Dz, for the problem. The results are shown in figs. 1–12. The graphs show the four curves predicted by two different
theories of thermoelasticity (CT and G-L). In these figures, the solid lines represent the solution in the generalized
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Fig. 1. Horizontal displacement distribution u in the absence and in the presence of rotation.
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Fig. 2. Temperature distribution T in the absence and in the presence of rotation.

CT theory and the dashed lines represent the solution using the G-L theory; here all the variables are taken in
non-dimensional form. Comparisons were carried out for x = 1.9, t = 1.6, f∗

1 = 10, f∗
2 = 10.

Figures. 1–6 show the comparison between the considered variables in the absence and in the presence of rotation
(i.e. Ω = 0, 0.5) at g = 9.8. Figure 1 shows that the distribution of the horizontal displacement u, in the context of
the CT theory for Ω = 0, 0.5, decreases and then converges to zero. However, in the context of G-L theory, the values
of u increase and then converge to zero for Ω = 0, 0.5. It is observed that the horizontal displacement u, in the context
of the CT for Ω = 0, 0.5, is higher than that in the context of the G-L for Ω = 0, 0.5. It is clear that rotation acts to
decrease the values of u. Figure 2 shows that the distribution of the temperature T , in the context of the CT theory
for Ω = 0, 0.5, decreases, then increases and converges to zero. However, in the context of G-L theory for Ω = 0, 0.5,
it increases to the maximum value, then decreases and converges to zero. Figure 3 shows the distribution of the stress
components σzz, in the context of the (CT and GL) theories for Ω = 0, 0.5. It is clear that rotation acts to decrease
the values of σzz. Figure 4 shows that the distribution of the stress component σxz, in the context of the (CT and G-L)
theories, begins from zero and satisfies the boundary conditions at z = 0. In the context of the CT theory, the values
of σxz increase and then decrease for Ω = 0, 0.5. However, in the context of the G-L theory, the values of σxz decrease
in the range 0 ≤ z ≤ 0.1, then increase for Ω = 0, 0.5. It is observed that the values of the stress components σxz, in
the context of the CT theory, are higher than those in the context of the G-L theory for Ω = 0, 0.5. Figure 5 shows
that the distribution of the electric potential ϕ, in the context of the (CT and GL) theories for Ω = 0, 0.5, decreases,
then increases and converges to zero at z ≥ 1. Figure 6 shows that the distribution of the electric displacement Dz, in
the context the (CT and G-L) theories, always begins from positive values for Ω = 0, 0.5. It shows that the values of
Dz, in the context of the (CT and G-L) theories, decrease then increase and finally converge to zero for Ω = 0, 0.5.
It is clear that rotation acts to decrease the values of Dz.

Figures 7–12 show the comparisons between the considered variables in the absence and in the presence of a
magnetic field (i.e. g = 0, 9.8) at Ω = 0.5.

Figure 7 shows that the distribution of the horizontal displacement u, in the context of CT theory, increases with
the increase of gravity. However, in the context of the G-L theory, gravity has a decreasing effect on u. Figure 8 displays
the distribution of temperature T . In the context of the CT theory, gravity has a decreasing effect on T , while in the
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Fig. 4. Distribution of stress component σxz in the absence and in the presence of rotation.
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context of G-L theory, it has an increasing effect. Figure 9 shows that the distribution of the stress component σzz, in
the context of the (CT and G-L) theories, always begins a negative value for g = 0, 9.8. In the context of the (CT and
G-L) theories gravity has a decreasing effect on σzz. Figure 10 shows that the distribution of the stress component σxz,
in the context of the (CT and G-L) theories, begins from zero and satisfies the boundary conditions at z = 0. In the
context of the CT theory, gravity has an increasing effect, while in the context of the G-L theory, it has a decreasing
effect on σxz. Figure 11 shows that gravity has a decreasing effect on the variation of the electric potential ϕ, in the
context of the (CT and G-L) theories. Figure 12 shows that gravity has an increasing effect on the distribution of the
electric displacement Dz, in the context of the (CT and G-L) theories.



Eur. Phys. J. Plus (2016) 131: 358 Page 9 of 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-16

-14

-12

-10

-8

-6

-4

-2

0

2

z

zz

 

 

CT(g=0)

CT(g=9.8)

GL(g=0)

GL(g=9.8)

g=0

g=9.8

σ

Fig. 9. Distribution of stress component σzz in the absence and in the presence of gravity.
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5 Conclusions

From comparing the figures, which were obtained for the three thermoelastic theories, important phenomena are
observed.

1) The values of all physical quantities converge to zero with increasing distance z, and all functions are continuous.
2) All the physical quantities satisfy the boundary conditions.
3) The phenomenon of finite speed of propagation is manifested in all figures.
4) The analytical solutions based upon the normal mode analysis of the thermoelastic problem in solids have been

developed and used.



Page 10 of 12 Eur. Phys. J. Plus (2016) 131: 358

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

z

D z

 

 

CT(g=0)

CT(g=9.8)

GL(g=0)

GL(g=9.8)

g=9.8

g=0

Fig. 12. Distribution of electric displacement component Dz in the absence and in the presence of gravity.

5) The comparisons of two different theories of thermoelasticity, (CT and G-L) theories are carried out.
6) The gravity and rotation have an obvious effect on the magnitude of the real part of the physical quantities.

Appendix A.

δ1 =
C11

ρv2
p

, δ2 =
C44

ρv2
p

, δ3 =
C13 + C44

ρv2
p

, δ4 =
(e31 + e15)

e33
, δ5 =

C33

ρv2
p

, δ6 =
e15

e33
, δ7 = −β3

β1
,

δ8 =
(e15 + e31)

ρv2
p

, δ9 =
e15

ρv2
p

, δ10 =
e33

ρv2
p

, δ11 = −∈11

e33
, δ12 = −∈33

e33
, δ13 =

p3

β1
,

δ14 =
K1ω

∗

ρCev2
p

, δ15 =
K3ω

∗

ρCev2
p

, δ16 =
β2

1T0

ρ2Cev2
p

, δ17 =
β1β3T0

ρ2Cev2
p

, δ18 = −p3β1T0

ρCee33
.

A1 = − (a2δ1 − a2c2 − Ω2)
δ2

, A2 =
iaδ3

δ2
, A3 =

iag + 2iacΩ

δ2
, A4 =

iaδ4

δ2
, A5 = − ia(1 − iact1)

δ2
,

A6 =
iaδ3

δ5
, A7 = − (iag + 2iacΩ)

δ5
, A8 = − (a2δ2 − a2c2 − Ω2)

δ5
, A9 =

1
δ5

, A10 = −a2δ6

δ5
,

A11 =
δ7(1 − iact1)

δ5
, A12 =

iaδ8

δ10
, A13 = −a2δ9

δ10
, A14 =

δ12

δ10
, A15 = −a2δ11

δ10
, A16 =

δ13(1 − iact1)
δ10

,

A17 = −a2cδ16

δ15
, A18 =

iacδ17

δ15
, A19 =

iacδ18

δ15
, A20 = − (a2δ14 − iac − a2c2t0)

δ15
.

A = −
(

1
A14 − A9

)
(A14A20 + A15 − A16A19 + A8A14 − A9A13 − A9A20 + A9A16A18 − A10

+ A11A19 − A11A14A18 + A1A14 − A1A9 − A2A6A14 + A2A9A12 + A4A6 − A4A12)

B =
(

1
A14 − A9

)
(A15A20 + A8A14A20 + A8A15 − A8A16A19 − A9A13A20 − A10A13 − A10A20

+ A10A16A18 + A11A13A19 − A11A15A18 + A1A14A20 + A1A15 − A1A16A19 + A1A8A14

− A1A9A13 − A1A9A20 + A1A9A16A18 − A1A10 + A1A11A19 − A1A11A14A18 − A2A6A14A20

− A2A6A15 + A2A6A16A19 + A2A9A12A20 − A2A9A16A17 + A2A10A12 − A2A11A12A19

+ A2A11A14A17 − A3A7A14 + A4A6A13 + A4A6A20 − A4A6A16A18 − A4A12A20 + A4A16A17

− A4A8A12 + A4A11A12A18 − A4A11A17 − A5A6A19 + A5A6A14A18 + A5A12A19 − A5A14A17

− A5A9A12A18 + A5A9A17)
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C = −
(

1
A14 − A9

)
(A8A15A20 − A10A13A20 + A1A15A20 + A1A8A14A20 + A1A8A15 − A1A8A16A19

− A1A9A13A20 − A1A10A13 − A1A10A20 + A1A10A16A18 + A1A11A13A19 − A1A11A15A18

− A2A6A15A20 + A2A10A12A20 − A2A10A16A17 + A2A11A15A17 − A3A7A14A20 − A3A7A15

+ A3A7A16A19 + A4A6A13A20 − A4A8A12A20 + A4A8A16A17 − A4A11A13A17 − A5A6A13A19

+ A5A6A15A18 − A5A15A17 + A5A8A12A19 − A5A8A14A17 + A5A9A13A17 − A5A10A12A18

+ A5A10A17)

E =
(

1
A14 − A9

)
(A1A8A15A20 − A1A10A13A20 − A3A7A15A20 − A5A8A15A17 + A5A10A13A17)

Appendix B.

H1n = −s1n

s2n
,H2n = − (q1n + q2nH1n)

q3n
,H3n = − 1

A5
[(k2

n + A1) + (−A2kn + A3)H1n − A4knH2n],

H4n = r1 − l1knH1n − l2knH2n + r2H3n, H5n = r3 − δ5knH1n − knH2n + r4H3n,

H6n = −δ2kn + r5H1n + r6H2n, H7n = −l3kn + r7H1n + r8H2n,

H8n = r9 − l6knH1n − l7knH2n + r10H3n, n = 1, 2, 3, 4.

q1n = A11k
3
n + (A1A11 − A5A6)kn + A5A7, q2n = (−A2A11 + A5)k2

n + A3A11kn + A5A8,

q3n = (−A4A11 + A5A9)k2
n + A5A10, q4n = A16k

3
n + (A1A16 − A5A12)kn,

q5n = (A5 − A2A16)k2
n + A3A16kn + A5A13, q6n = (A5A14 − A4A16)k2

n + A5A15,

s1n = q1nq6n − q3nq4n, s2n = q2nq6n − q3nq5n, l1 =
C13

ρv2
p

, l2 =
e31

e33
, l3 =

e15β1T0

eρv2
p

,

l4 = −∈11 β1T0

e33e
, l5 =

e31β1T0

eρv2
p

, l6 =
e33β1T0

eρv2
p

, l7 = −∈33 β1T0

e33e
, l8 =

P3T0

e
,

{r1, r3, r5, r6, r7, r8, r9} = ia{δ1, l1, δ2, δ6, l3, l4, l5}, r2 = −(1 − iact1), r4 = δ7(1 − iact1),
r10 = l8(1 − iact1).
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