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Abstract. A modified Einstein-Gauss-Bonnet gravity in four dimensions where the quadratic Gauss-Bonnet
term is coupled to a scalar field is considered. The field equations of the model are obtained by variational
methods by making use of the constrained first-order formalism covering both pseudo-Riemannian and
non-Riemannian cases. In the pseudo-Riemannian case, the Lagrange multiplier forms, which impose the
vanishing torsion constraint, are eliminated in favor of the remaining fields and the resulting metric field
equations are expressed in terms of the double dual curvature 2-form. In the non-Riemannian case with
torsion, the field equations are expressed in terms of the pseudo-Riemannian quantities by a perturbative
scheme valid for a weak coupling constant. It is shown that, for both cases, the model admits a maximally
symmetric de Sitter solution with non-trivial scalar field. Minimal coupling of a Dirac spinor to the Gauss-
Bonnet modified gravity is also discussed briefly.

1 Introduction

Einstein’s general relativity (GR) theory, of which we are celebrating the 100th anniversary, passes all tests in the weak
gravity regime. However, research on alternative theories does not seem to come to an end. There are various reasons
for investigating alternative theories. On the observational side, the observations on the galactic scale, such as the
galaxy rotation curves, are explained by introducing dark matter whereas, on the other hand, on the cosmological scale,
the late time acceleration of the universe [1–3], concluded from the observations of type-Ia supernovae, leads to the
concept of dark energy, which behaves like a cosmological constant. With these dark components included, Einstein’s
theory perfectly explains the large-scale behaviour of the Universe with the so-called Λ-CDM model. Although these
dark components, especially dark matter, are awaiting their exploration by some high-energy experiments, the idea
that this large-scale behaviour can be explained by modifying GR becomes plausible. Moreover, on theoretical grounds,
several different ideas propose that the modifications of GR be taken into account. For example, in the string theory,
the inclusion of higher-order curvature components to the usual Einstein-Hilbert action, such as the Gauss-Bonnet
term [4–6], is implied by high-energy corrections [7]. There is enormous literature on modified gravity theories, hence
we refer the reader to the latest reviews [8–11] for further motivations and for the latest developments on this subject.

The Gauss-Bonnet (GB) Lagrangian, the second term of the Euler-Poincaré forms [4], is a natural generalization [5,
6] of Einstein’s theory into higher dimensions, where the first term is the Einstein-Hilbert term itself. Remarkable
properties of GR are also present in the Lagrangians involving these forms, such as being ghost free and having at
most second order in the metric. However, in four spacetime dimensions, the GB Lagrangian does not contribute to
the field equations, since it becomes a topological invariant. However, if coupled to a scalar field, it can contribute
to the equations. Another way of doing this is by considering a function of the GB term denoted as f(G) theories.
These modified Gauss-Bonnet gravities are well known and their properties and some exact solutions in four or higher
dimensions can be found in the literature [7, 12–34].
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Yet another minimal way to modify GR is to modify the differential geometric setting by considering a more
general non-Riemannian connection involving a non-vanishing torsion, as in the Einstein-Cartan (EC) theory [35–39].
Notice that in the EC theory, if there are no spinor matter fields having torsional contribution or in vacuum, the
field equations will be exactly the same as in GR. On the other hand, if we consider general scalar-tensor theories,
such as the Brans-Dicke theory, the non-minimal coupled scalar field generates torsion [40]. It is well known that the
torsion in this particular case is algebraic and can be eliminated in favor of the scalar field, and then the terms arising
from the torsion can be expressed in terms of pseudo-Riemannian quantities. Hence, the torsional contribution of the
scalar field can be encoded into a pseudo-Riemannian theory as an additional matter-energy source [40], which leads
to additional scalar interaction terms compared to the BD theory in the pseudo-Riemannian context. This point of
view is also extended to non-Riemannian f(R) theories in a similar manner, see, for example, [11,41].

The gravitational theories involving bare Gauss-Bonnet terms with torsion were discussed before [42] and some
exact solutions were obtained [43]. Therefore, it might be worthwhile to consider a similar approach for theories
involving some scalar field now coupling to powers of curvature in a GB Lagrangian 4-form.

The paper is organized as follows. After introducing the notation for the geometrical quantities in sect. 2, we
consider the first-order constrained variation technique to the modified GB theory with a non-minimally coupled
scalar field, obtain the Lagrange multiplier form and express the field equations in a compact way by using the
exterior algebra of differential forms in sect. 3. In the following section, we discuss the non-Riemannian theory with
non-vanishing torsion following from the same Lagrangian density considered. After presenting the field equations
involving a propagating torsion, we focus on the independent connection equations. In order to reduce the complicated
field equations with a dynamic torsion, we propose an approximation scheme to obtain the contribution of the torsion
in a perturbative manner and express the equations of the theory in terms of the pseudo-Riemannian quantities. In
sect. 5, we briefly discuss the Dirac spinor coupling to the Einstein-Gauss-Bonnet gravitational Lagrangian. In sect. 6,
we consider the maximally symmetric de Sitter spacetime, which is compatible with the past cosmological constant
dominated universe with exponential expansion during inflationary era and also present accelerated expansion epochs
of the Universe. We calculate the field equations for both pseudo-Riemannian and non-Riemannian cases and we see
a non-trivial but simple a solution of the pseudo-Riemannian theory that persists for the model with the torsion as
well. The paper ends with some brief comments on the results.

2 Notation and preliminaries

2.1 Notation and some geometric preliminary

We consider a four-dimensional manifold in which the spacetime metric can be defined in an orthonormal frame as

g = ηab θa ⊗ θb, (1)

where ηab = diag(−1, 1, 1, 1) is the Minkowski metric and θa, a = 0, 1, 2, 3 denote the orthonormal basis 1-forms. Most
of the time, the tensor product operator ⊗ is omitted following the common abuse of notation. In general these forms
satisfy Cartan’s first and second structure equations,

Dθa = dθa + Γ a
b ∧ θb ≡ Θa, (2)

Ωa
b = dΓ a

b + Γ a
c ∧ Γ c

b, (3)

respectively, where D = D(Γ ) is the covariant exterior derivative operator of a connection with torsion. d is the
exterior derivative operator, Γ a

b denote connection 1-forms. We shall assume that the connection 1-form is metric
compatible: Dηab = ηacΓ

c
b + ηbcΓ

c
a = 0. ∧ denotes the antisymmetric tensor product, Ωa

b denotes the curvature
2-forms in a Riemann-Cartan geometry. In place of the torsion 2-forms Θa, one can equivalently use the antisymmetric
tensor-valued contorsion 1-forms, Kab = −Kba ≡ Kabcθ

c, which can be defined by

Θa =
1
2
Θa

bc θb ∧ θc = Ka
b ∧ θb. (4)

For a vanishing torsion, we have a metric compatible and torsion-free connection 1-forms, namely the Levi-Civita
connection 1-forms ωa

b to satisfy the Cartan’s structure equations

Dθa = dθa + ωa
b ∧ θb = 0, (5)

Ωa
b = dωa

b + ωa
c ∧ ωc

b =
1
2
Ra

bcd θc ∧ θd, (6)
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where Ra
bcd are the components of the Riemann tensor relative to an orthonormal coframe. In order to distinguish

pseudo-Riemannian and non-Riemannian quantities, we shall use the boldface letters for the geometrical quantities in
the Riemannian-Cartan geometry. We also make use of the short-hand notation,

θab...c = θa ∧ θb ∧ . . . ∧ θc, (7)

for the exterior products of the basis 1-forms for notational simplicity.
In four dimensions, the volume element with a particular orientation is given by the Hodge dual (equivalently the

left dual) of unity as
∗1 = θ0 ∧ θ1 ∧ θ2 ∧ θ3. (8)

The interior product with respect to the basis frame field ea will be denoted by ia ≡ iea
and it satisfies the following

computationally useful identities:

ik ∗ θab...c = ∗θab...ck, θa ∧ ∗θb1b2...bp = (−1)p+1 ∗ ia
(
θb1b2...bp

)
, (9)

where the indices of the (co)frame fields are raised/lowered by the metric ηab and ηab as well.
One can define the Ricci 1-forms Ra, Ricci scalar R and Einstein 1-forms Ga as the following contractions of the

curvature 2-forms:
Ra = Ra

bθ
b = ibΩ

ba, R = iaRa, Ga = Ga
bθ

b = Ra − 1
2
Rθa, (10)

respectively. We have also the convenient contraction identity, which follows simply from the coframe variational
derivative of the Einstein-Hilbert Lagrangian,

∗Ga = −1
2
Ωbc ∧ ∗θabc. (11)

Equation (11) expresses the Hodge dual of the Einstein 1-form Ga as a contraction of the curvature 2-forms with the
basis 3-forms. Moreover, formulas (10) and (11) are valid both in the pseudo-Riemannian and in Riemann-Cartan
geometries, where the corresponding non-Riemannian counterparts can be obtained by appropriately replacing non-
Riemannian curvature 2-forms (3) in the above equations.

Both the left and right duals of the curvature 2-form will be used in the expression of the metric field equations
that shall be derived in the following section. Note that the right dual pertains to four spacetime dimensions only.
The left dual of the curvature 2-form is simply defined to be identical to the definition of the Hodge dual as

∗Ωab =
1
2
Rab

cd ∗ θcd =
1
4
Rab

cdε
cd

mnθmn, (12)

whereas the right dual can be defined by the relation

Ωab∗ ≡ 1
2
εab

cdΩ
cd =

1
4
εab

mnRmn
cdθ

cd, (13)

in terms of the permutation symbol εabcd. In other words, the right dual is defined to act on the first pair of indices
of the Riemann tensor. These definitions are in accordance with the right/left duals defined, for example, in [44] with
respect to the indices of the Riemann tensor.

Likewise, by applying both duality definitions, the double dual of the curvature 2-form, denoted for simplicity by
Ω̃ab, is defined as

∗Ωab∗ =
1
8
εab

mnRmn
rsε

rs
cdθ

cd. (14)

The dual curvature tensors have some peculiar properties. For instance, the Einstein 3-form (11) can alternatively
be expressed in terms of left dual curvature as

∗Ga = −Ωa
b ∗ ∧θb (15)

and, consequently, the Einstein 3-form corresponding to the curvature 2-form satisfying Ωa
b∗ = ∓Ωa

b vanishes iden-
tically [45].

The field equations arising from a Gauss-Bonnet term, as we shall explicitly present in the next section, can be
written in a very convenient form in terms of the double-dual curvature tensor, which is particularly well suited to the
use of exterior algebra of forms. For further technical details and the interrelations involving the duals of the curvature
2-form in four dimensions, the reader is referred to [45,46].
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2.2 Dimensionally continued Euler-Poincaré forms

In order to introduce the Lagrangian density in a convenient form, we now briefly mention the Gauss-Bonnet terms
expressed also in terms of exterior algebra of forms in this section.

The famous Chinese differential geometer S-S. Chern used dimensionally continued Euler-Poincaré forms to gen-
eralize the Gauss-Bonnet theorem to higher dimensions [4]. The Euler characteristic χ(M) of a four-dimensional,
compact and oriented manifold M can be expressed in terms of the dimensionally continued Euler-Poincaré form of
second degree as

χ(M) =
1

32π2

∫

M

Ωab ∧ Ωcd ∗ θabcd, (16)

which can be considered as a direct generalization of the Gauss-Bonnet theorem in two dimensions relating the
Gaussian curvature of a two-dimensional closed manifold to one of its topological invariants. The generalized Euler
characteristic is defined for an even-dimensional manifold. However, the term “Gauss-Bonnet” is more commonly used
than, what one may call a more convenient term, the “Euler-Poincaré” in the literature.

According to the theorem by Lovelock [5, 6] bearing his name, the most general gravitational Lagrangian density
n-form leading to the field equations that are of second order in metric coefficients is of the form

L
(n)
EP =

[ n
2 ]∑

k=0

αk

2k
Ωa1b1 ∧ . . . ∧ Ωakbk

∧ ∗θa1b1...akbk , (17)

in n dimensions, where the square brackets in the upper limit of the summation denotes the integer value of the
quantity inside the brackets. αk is a coupling constant for the Euler-Poincaré form of k-th order. A general term in
the sum can also be rewritten in an alternate form,

1
2k

Ωa1b1 ∧ . . . ∧ Ωakbk
∧ ∗θa1b1...akbk =

1
22k

R c1d1
a1b1

. . . R ckdk

akbk
δa1b1...akbk

c1d1...ckdk
∗ 1, (18)

in terms of the product of the k number of Riemann tensor components and a generalized Kronecker symbol.
The first few terms, corresponding to k = 0, k = 1, k = 2 and k = 3 in the sum, can explicitly be rewritten in the

form
L

(n)
EP = λ0 ∗ 1 +

α1

2
Ωab ∧ ∗θab +

α2

4
Ωab ∧ Ωcd ∧ ∗θabcd +

α3

8
Ωab ∧ Ωcd ∧ Ωef ∧ ∗θabcdef + . . . . (19)

The term for k = 0 corresponds to a cosmological constant term, whereas the term k = 1 is the familiar Einstein-
Hilbert term. The term with k = 2, the Gauss-Bonnet term, is a topological term in four dimensions and it can be
expressed as an exact form as the total exterior derivative of a 3-form [28] in the form

L
(2)
EP = dK, (20)

with the 3-form K explicitly given by

K =
(

ωab ∧ Ωcd − 1
3
ωae ∧ ωe

b ∧ ωcd

)
εab

cd. (21)

Consequently, the exact differential term L
(2)
EP does not yield field equations for the metric coefficients in four spacetime

dimensions. Note, on the other hand, that it yields an equation of motion for the metric coefficients in spacetime
dimensions n > 4.

A way to make such a term yield some field equations in four spacetime dimensions is to couple this term with
a scalar field, or else consider a modified Lagrangian density of the form f(G), where the scalar invariant G can be
defined by the relation

G ∗ 1 =
1
4
Ωab ∧ Ωcd ∧ ∗θabcd. (22)

As a side remark, also note that it is possible to write the k = 2 term in an alternate form as

1
4
Ωab ∧ Ωcd ∧ ∗θabcd =

1
2
Ωab ∧ ∗Ωab − Ra ∧ ∗Ra +

1
4
R2 ∗ 1 (23)

=
1
4
(RabcdR

abcd − 4RabR
ab + R2) ∗ 1, (24)
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in terms of the contraction of the Riemann tensor components. This convenient relation implies that the quadratic
curvature Lagrangians in the expression on the right-hand side are related by a surface term and are not all indepen-
dent of one another in four dimensions. Consequently, in four spacetime dimensions the most general gravitational
Lagrangian involving quadratic curvature terms can be written, for example, in the form

Lqc = aR2 ∗ 1 + bRa ∧ ∗Ra, (25)

involving only the scalar curvature and Ricci tensor.
The Gauss-Bonnet Lagrangians defined above have also been studied in the context of teleparallel gravity theories

with vanishing curvature tensor but having a non-vanishing torsion by introducing a Weitzenböck connection. In
arbitrary spacetime dimensions, the teleparallel equivalent of the Einstein-Hilbert Lagrangian is extended to the case
of the Gauss-Bonnet Lagrangians in a remarkable paper by Kofinas and Saridakis [29].

3 The Gauss-Bonnet term in the pseudo-Riemmannian case

In this section, we shall consider a modified gravity theory with Gauss-Bonnet terms included in four spacetime
dimensions as given below. Here, the Einstein-Hilbert Lagrangian 4-form is extended by (the Euler-Poincaré form of
second degree) the Gauss-Bonnet term [13,14,16]

LEGB =
1

2κ2
Ωab ∧ ∗θab − 1

2
dφ ∧ ∗dφ − V (φ) ∗ 1 + f(φ)LGB , (26)

with
LGB =

α

4
Ωab ∧ Ωcd ∗ θabcd, (27)

where we have α2 ≡ α for simplicity in the GB Lagrangian and boldface or normal fonts will denote the terms
constructed from non-Riemannian or pseudo-Riemannian curvature 2-forms, respectively. Note that we assume at first
a general theory and impose the metric compatible torsion-free connection as a constraint. After taking the variation
and subsequently by imposing the constraint, the field equations of the theory will be expressed solely in terms of
pseudo-Riemannian quantities eventually. The model based on the Lagrangian 4-form (26) has two functions, the
potential term for the scalar field, V (φ) and a coupling function f(φ). For a dynamical scalar field φ, the presence of
a coupling function f(φ) will allow LGB to contribute to the coframe field equations despite the fact that it is a total
derivative in four dimensions.

In the constrained first-order formalism we consider, recall that the independent connection is metric compatible,
Γab+Γba = 0. The vanishing torsion constraint, which is a dynamical constraint on the independent connection 1-form,
can conveniently be implemented by introducing a vector-valued Lagrange multiplier 2-form λa. Thus, the original
Lagrangian (26) is extended to the form

L′[θa,Γ a
b, φ, λa] = LEGB [θa,Γ a

b, φ] + λa ∧
(
dθa + Γ a

b ∧ θb
)
. (28)

In the calculation, we make essential use of the following variational formulas:

δ ∗ θa...b = δθc ∧ ∗θa...b
c, δΩab = DδΓ ab, (29)

to obtain the total variational derivative, where δ denotes the variation of a quantity. The total variational derivative
of the extended Lagrangian (28) with respect to its independent variables can be written in the form

δL′ = δθa ∧
(

1
2κ2

Ωbc ∧ ∗θabc + ∗T a[φ] − V (φ) ∗ θa + Dλa

)

+ δΓab ∧
[
−1

2
(θa ∧ λb − θb ∧ λa) +

α

2κ2
D ∗ θab +

1
2
D(fΩcd ∗ θabcd)

]

+ δφ (d ∗ dφ − V ′(φ) ∗ 1 + f ′LGB) + δλa ∧ Θa, (30)

where prime denotes the differentiation with respect to the scalar field and the energy-momentum form ∗T a[φ] for the
scalar field can explicitly be written as

∗Ta[φ] =
1
2
(iadφ ∗ dφ + dφ ∧ ia ∗ dφ). (31)

Considered as an equation for the Lagrange multiplier forms, the connection equation δL′/δΓab = 0 can be solved
for λa subject to the constraint Θa = 0, which follows from the field equations δL′/δλa = 0. The constraint Θa = 0
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then implies that the independent connection 1-form Γab is the Levi-Civita connection. Consequently, it is possible
to assume that D corresponds to the covariant exterior derivative of the Levi-Civita connection 1-forms, D = D, and
thus the connection equations reduce to

1
2
(θa ∧ λb − θb ∧ λa) =

α

2
f ′dφ ∧ Ωcd ∗ θabcd. (32)

Furthermore, the expression on the right-hand side of (32) can be rewritten in a more convenient form by using,
for example, the symmetry properties of the indices of the Riemann tensor Rabcd = Rcdab. Explicitly, one can readily
derive the identity

1
2
Ωcd ∗ θabcd = ∗

[
Ωab − (θa ∧ Rb − θb ∧ Ra) +

1
2
Rθab

]
. (33)

On the other hand, by the definition of the left dual of the curvature 2-form (13), one obtains the identity

Ωab∗ = ∗
[
Ωab − (θa ∧ Rb − θb ∧ Ra) +

1
2
Rθab

]
. (34)

In other words, the curvature expression on the right-hand side in (32) is the right dual of the double-dual curvature
denoted by Ω̃ab

Ω̃ab = −Ωab + (θa ∧ Rb − θb ∧ Ra) − 1
2
Rθab. (35)

Now, returning to the independent connection equations (32), one can obtain a unique solution to the Lagrange
multiplier 2-form expressed in terms of the double dual curvature 2-forms. Explicitly, calculating two successive
contractions of the connection equation (32) by taking the zero torsion constraint into account, one finds that the
expression for the Lagrange multiplier 2-form is of the form

λb = −2α f ′(φ)(iadφ) ∗ Ω̃ab. (36)

The expression (36) is now to be used to eliminate the Lagrange multiplier term from the coframe variational
derivative. By using the second Bianchi identity in the form DΩab = 0 in the pseudo-Riemannian case and inserting (36)
into the coframe equations, the equations δL′/δθa ≡ ∗Ea can explicitly be rewritten in terms of the pseudo-Riemannian
quantities. Eventually, they take the compact form

∗Ea = − 1
κ2

∗ Ga + ∗T a[φ] − V (φ) ∗ θa + 2α [f ′′dφ(ibdφ) + f ′D(ibdφ)] ∧ ∗Ω̃ab = 0. (37)

In comparison with the previous work of Gasperini and Giovannini [16], we note that up to this point we have
not resorted to an approximation method to derive the metric (equivalently, the coframe) field equations and that
the Lagrange multiplier forms can successfully be eliminated from the metric equations by finding a unique solution
to the connection equations in terms of the double dual curvature 2-form. We also note that the term of the form
Ωbc ∧ Ωde ∧ ∗θabcde is absent in four spacetime dimensions since this term survives only for the spacetime dimensions
n > 4.

The trace of the coframe equations can be calculated by taking the wedge product of (37) from the left with the
basis coframe 1-form θa. One explicitly finds

1
κ2

R ∗ 1 +
1
2
dφ ∧ ∗dφ − 4V (φ) ∗ 1 − d(θa ∧ λa) = 0. (38)

The last term can be simplified by noting that by the definition of the double dual curvature (35), one has iaΩ̃ab = Gb,
where Gb is the Einstein 1-form, and therefore the trace can be written as

1
κ2

R ∗ 1 − 1
2
dφ ∧ ∗dφ − 4V (φ) ∗ 1 + 2α[f ′′dφ(iadφ) + f ′D(iadφ)] ∧ ∗Ga = 0. (39)

Finally, the field equation for the scalar field obtained from the expression for the total the variational derivative (30)
is of the form

d ∗ dφ − V ′(φ) ∗ 1 + f ′LGB = 0. (40)

Thus, without the kinetic term in the total Lagrangian 4-form (26), the field equation for the scalar field becomes
more of an equation constraining the value of the Gauss-Bonnet terms and φ evidently is not a dynamic field in this
case.
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3.1 A constrained f(φ) case

We note that the coframe field equations (37) can be rewritten in terms of left dual curvature 2-form as

∗Ea = −Ωa
b ∗ ∧

[
1
κ2

θb + αD(ibdf ′)
]

+ ∗T a[φ] − V (φ) ∗ θa = 0. (41)

With the coframe equations written in the form (41), it is easy to construct an additional constraint on the
function f that leads to a possible simplification in the resulting field equations. Explicitly, if one assumes that the
term involving the second derivatives of the function f satisfies the constraints

2αD(ibdf ′) = Λ1(φ)θb, (42)

for an arbitrary scalar field Λ1, the coframe equations (37) reduce to the following equation:

∗Ea =
[
Λ1(φ) − 1

κ2

]
∗ Ga + ∗T a[φ] − V (φ) ∗ θa = 0. (43)

The additional assumption (42) has recently been introduced by by Gürses in [27], where he also made use of such sim-
plifiying assumption to find exact solutions to the GB extended gravitational model (26) in four spacetime dimensions
by adopting a conformally flat metric ansatz. A further simplification occurs if one sets Λ1 to a constant as

Λ1 =
1
κ2

(λ2 − 1), (44)

for some dimensionless constant λ. Then the coframe equations (37) reduce to the following equation for the metric
for an Einstein-scalar system:

∗Ea = − 1
κ′2 ∗ Ga + ∗T a[φ] − V (φ) ∗ θa = 0, (45)

with a shifted gravitational coupling constant κ′ ≡ κ/λ. Thus, the above considerations show that the GB extended
model reduces to the Einstein-scalar model under some relaxed assumptions. In particular, eq. (45) is obtained imposing
a constraint on the metric only indirectly through the connection involved in eqs. (42) and (44). It is interesting to
investigate whether it is possible to construct solutions to eqs. (45) by using the known solutions of the Einstein-scalar
gravity theory either with a potential term or without potential by discarding the potential term. However, the scalar
field equation (40) prevents this, due to the last term in the scalar field equation, unless the last term vanishes. This
is possible if either i) f ′ = 0 or ii) LGB = 0. In case i), we have a constant scalar and therefore the GB term does
not contribute to the field equations, and therefore theory reduces to GR. In case ii), we have a non-trivial scalar field
but the GB invariant vanishes identically and the theory becomes Einstein-scalar theory with a potential. Note that
under the assumptions specified above, the modified GB model we consider reduces to some other theories, and hence
shares some solutions but, in a perturbative treatment, they may have contrasting properties.

3.2 Modified GB extended model with a constrained f(G)

The additional constraint (42) for the function f(φ) can also be extended to the modified Gauss-Bonnet Lagrangian
involving an algebraic function of the GB scalar of the form f(G). The modified GB model is of considerable interest
because it is a good candidate to emulate the dark energy in a cosmological context.

For simplicity, to discuss this point of view in connection with the constraint of type (42) qualitatively, let us briefly
consider the modified GB Lagrangian [20] of the form

LmGB =
1

2κ2
R ∗ 1 + f(G) ∗ 1, (46)

which has been studied by Nojiri and Odintsov to introduce a model featuring what one may call “gravitational dark
energy”.

In the notation of the current work the metric field equations ∗Ea = 0 that follow from the coframe variational
derivative, δLmGB/δθa ≡ ∗Ea, can be written in terms of the 3-form ∗Ea of the explicit form [20,47]

∗Ea = − 1
κ2

∗ Ga + 2D(ibdf ′) ∧ ∗Ω̃ba − (f ′G − f) ∗ θa, (47)
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where prime denotes a derivative with respect to the scalar G and the terms involving the second-order derivatives
of the function f(G) arise, as in the previous cases from the Lagrange multiplier term imposing the vanishing torsion
constraint. f(G) in this case acts like a scalar field lacking a corresponding kinetic term.

Similarly to the previous case, now assume that the second-order derivative of f(G) satisfies

2D(ibdf ′) =
1
κ2

h(G)θb, (48)

for some function h(G). Consequently, the metric field equations (47) then reduce to

1
κ2

[1 + h(G)] ∗ Ga + V (G) ∗ θa = 0, (49)

where V (G) = f ′G − f is the Legendre transform of the function f(G). The reduced field equations (49) in this case
correspond to a particular scalar-tensor model involving two independent functions V (G) and h(G). In the subcase
where h(G) is a constant as in the preceding subsection, the modified GB model then simply reduces to GR with a
variable cosmological constant-like term.

4 The case with non-vanishing torsion

The field equations that follow from (26) can be considered as a kind of generalization of the Brans-Dicke gravity to
the Gauss-Bonnet gravity involving scalar field coupled non-minimally to the GB scalar. As in the original Brans-
Dicke field equations, it is possible to study the field equations assuming, for example, that the connection is metric
compatible but not torsion-free. This case can be recovered from the independent variational derivative expression (30)
by dropping the vanishing torsion constraint by setting λa = 0. Recall that we use the symbol Γab for the independent
non-Riemannian connection with torsion relative to an orthonormal coframe. In accordance with this convention, the
exterior covariant derivative with respect to the non-Riemannian connection, and the curvature 2-form corresponding
to this connection will be denoted by the boldface letters D and Ωab, respectively, whereas for pseudo-Riemannian
ones we use normal letters. By making these arrangements, the field equations of the Lagrangian (26) for the non-
Riemannian case can be expressed by considering (30) as

1
κ2

∗ Ga(Γ ) = ∗T a[φ] − V (φ) ∗ θa, (50)

D ∗ θab = −κ2αD
[
f Ωcd ∗ θabcd

]
, (51)

d ∗ dφ − V ′(φ) ∗ 1 +
α

4
f ′ Ωab ∧ Ωcd ∗ θabcd = 0. (52)

These are the field equations of the non-Riemannian with torsion expressed in terms of the non-Riemannian quantities
for the metric field, the independent connection 1-forms with torsion and the scalar field, respectively.

In the similar non-Riemannian Brans-Dicke case, the field equations can also be expressed in terms of pseudo-
Riemannian quantities, thanks to the torsion being algebraic. Now we follow the same route and try to express the
torsion forms in terms of the Riemannian quantities. To this end, we need to put eq. (51) in a more convenient form.
By using the expression for the covariant exterior derivatives of the Hodge duals of the basis p-forms expressed in the
form

D ∗ θab = Θc ∧ ∗θabc, (53)

it is possible to find the equation satisfied by the torsion 2-form as

Θc ∧ ∗θab
c = −κ2α df ∧ Ωcd ∗ θabcd. (54)

By using the contraction identity θd ∧ ∗θabcd = ∗θabc in four dimensions, the above equation can be put into the form

θa ∧ Θb − θb ∧ Θa = 2κ2α df(φ) ∧ Ωab. (55)

By contracting this equation with first ib and then ia and using the identity θa ∧ iaQ = pQ for the p-form Q, we
obtain the following useful equation:

Θa = 2κ2α

[
ib

(
df ∧ Ωba

)
+

1
4
θa ∧ icid

(
df ∧ Ωcd

)
]

. (56)
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From the equation above, we can also obtain an expression for the contorsion 1-forms. By making use of the equation

Kab = −1
2
iaib (Θc ∧ θc) + iaΘb − ibΘa, (57)

and the torsion expression (56), one finds

Kab = κ2α

{
iaibic

(
df ∧ Ωcd ∧ θd

)
+ 2iaic (df ∧ Ωc

b) − 2ibic (df ∧ Ωc
a)

+
1
2
(θa ∧ ib − θb ∧ ia)

[
icid

(
df ∧ Ωcd

)]
}

. (58)

The next step is to express the non-Riemannian curvature 2-form, Ωab, in terms of the Riemannian one, Ωab, and
the contorsion 1-form. It is a convenient and practical custom to decompose the non-Riemannian connection Γ into a
pseudo-Riemannian part and a part coming from torsion as

Γ a
b = ωa

b + Ka
b, (59)

in a Riemann-Cartan geometry. The decomposition (59) allows one to decompose any geometrical expression involving
curvature into Riemannian parts and the parts originating from the non-vanishing torsion. For example, the curvature
2-form can be decomposed as

Ωa
b = Ωa

b + DKa
b + Ka

c ∧ Kc
b. (60)

However, one can observe that the connection equations yield a set of dynamical equations for the torsion 2-
form (56), or equivalently the contorsion 1-forms (58). Unfortunately, the resulting equations are not a set of algebraic
equations for the contorsion 1-forms owing to the presence of the terms

DKa
b = dKa

b + ωa
c ∧ Kc

b − ωc
b ∧ Ka

c. (61)

The resulting field equations thus allow a propagating torsion as they stand in general. Moreover, note also that
Kab = 0 is not a solution to the connection equations and consequently it is not consistent to set the contorsion
1-forms to zero in the coframe equations as well.

As a consequence of the above results for the pseudo-Riemannian cases one can conclude that the non-minimally
coupled scalar field in the Gauss-Bonnet case poses some additional technical difficulties in the case with non-vanishing
torsion due to the presence of the curvature terms arising in the variational derivatives of the independent connection
1-forms. Thus, one can resort to an approximation method [16] to study the field equation that follows from (26) in the
context of the Riemann-Cartan case with non-vanishing torsion. We start the approximation scheme with that of the
first order in the GB coupling constant α in the next section. The technical details of the more involved calculations
leading to metric equations that are the to second order in the coupling constant are relegated to the appendix.

4.1 The field equations in the O(α) approximation

In order to see the effect of the torsion we can use an approximation by assuming that it has an expansion into a
series in the powers of the coupling constant α. The first-order approximation is then obtained by keeping the linear
terms in the coupling constant α in eqs. (56). This can be done in the linear order in α and by assuming that the
approximation Ωa

b � Ωa
b can legitimately be inserted into the field equations. Applying this approximation scheme,

the torsion equation (56) satisfies Θa = Θa(1) + higher-order terms in α, where, to first order in α, one has

Θa(1) = 2κ2α

[
ib

(
df ∧ Ωba

)
+

1
4
θa ∧ icid

(
df ∧ Ωcd

)
]

, (62)

and this expression consequently yields the interesting result

Θa(1) = 2κ2α (ibdf)
(

Ωba − θb ∧ Ra +
1
2

θa ∧ Rb − 1
4
Rθa ∧ θb

)
. (63)

Likewise, the contorsion forms can be found by making use of the expression (58) and to first order in α they
become

K
(1)
ab = 2κ2α

{
iaic (df ∧ Ωc

b) − ibic (df ∧ Ωc
a) +

1
4
(θa ∧ ib − θb ∧ ia)

[
icid

(
df ∧ Ωcd

)]
}

. (64)
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This expression can be simplified further to a convenient form as

K
(1)
ab = 2κ2α (icdf)

[
icΩab + Ra δc

b − Rb δc
a +

1
2
θa Gc

b −
1
2

θb Gc
a

]
. (65)

The expression for the contorsion obtained above is now to be inserted into the non-Riemannian field equation (50).
Since the right-hand side is free of torsion terms, we only have to calculate the Einstein 3-form term ∗Ga on the
left-hand side. In the approximation to the first order, we have

∗Ga = −1
2

[
Ωbc + DKbc + K d

a ∧ Kdc

]
∧ ∗θabc

� ∗Ga + DK
(1)
bc ∧ ∗θabc. (66)

Now, we calculate the second term above. Note that the terms of the form K ∧ K above have been discarded, since
they are second order in α. In order to simplify this term, we first calculate the following:

K
(1)
bc ∧ ∗θabc = 4κ2α (iddf) ∗

[
−Ωad + θa ∧ Rd − θd ∧ Ra − 1

2
R θad

]

= 4κ2α (iddf) ∗ Ω̃ad, (67)

where Ω̃ab is the double dual curvature form defined in (35). Hence, by considering (66), in the first-order approximation
in α, the coframe equations (50) become

1
κ2

∗ Ga = ∗T a[φ] − V (φ) ∗ θa + 2α [f ′′dφ ib(dφ) + f ′D(ibdφ)] ∧ ∗Ω̃ab. (68)

If one compares the coframe equations (68) above to those of the pseudo-Riemannian case given in (37), one
concludes that in the linear approximation the field equations turn out to be the same. Consequently, the effect of
a non-vanishing torsion generated cannot affect the field equations to be distinguished from Riemannian one at this
order and that such effects emerge at higher-order terms. Note that this fact is in accordance with the EC theory
having a spinning matter source, since when the quadratic terms due to spin are neglected, EC and GR governed by
identical metric field equations [48].

One can show that the field equations for the scalar field (52) for in the first order in α is of the form

d ∗ dφ − V ′(φ) ∗ 1 +
α

4
f ′Ωab ∧ Ωcd ∗ θabcd = 0, (69)

and this is also the same as the corresponding expression in the Riemannian case as well. These results are compatible
with the work [16], in which they were also made a first-order variation of a similar Lagrangian without a potential
term in n dimensions with torsion but they keep their calculation at the linear order as in this subsection and they
found that the field equations agree with the pseudo-Riemannian case given in [14].

The interesting result to the order O(α) also calls for an expression to order O(α2) to have a tangible effect of a
non-vanishing torsion to emerge through the approximation scheme above.

4.2 Field equations to order O(α2)

We extend our approximation to include the correction terms up to the factor α2 in the field equations as follows. To
do this we have to recalculate eqs. (56) or (58) but the Ωab term in those equations is now to be replaced by

Ωab � Ωab + DKab(1), (70)

where Kab(1) is the contorsion 1-forms first order in α and given by (64). If we replace the above equation into eq. (58),
the second-order correction to the contorsion 1-forms becomes

K
(2)
ab = κ2α

{
iaibic

(
df ∧ DKcd(1) ∧ θd

)
+ 2iaic

(
df ∧ DK

c(1)
b

)
− 2ibic

(
df ∧ DKc(1)

a

)

+
1
2
(θa ∧ ib − θb ∧ ia)

[
icid

(
df ∧ DKcd(1)

)] }
. (71)
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After calculating these Kab(2) terms, we have to feed them into the field equations (50) and (52). Hence we have to
calculate the Einstein 1-forms ∗Ga. Note that the K ∧K terms that we have discarded in the previous subsection will
contribute to the field equations at this order. Thus, if we label the correction terms in the order α2 which must be
added to the right-hand side of the field equation (68) expressed conveniently in terms of a vector-valued perturbation
1-forms Ha(2), then the metric field equations (50) become

1
κ2

∗ Ga = ∗T a[φ] − V (φ) ∗ θa + 2α [f ′′dφ ib(dφ) + f ′D(ibdφ)] ∧ ∗Ω̃ab + ∗Ha(2), (72)

where we have
∗Ha(2) =

1
2κ2

[
K

(1)
bd ∧ Kd(1)

c ∧ ∗θabc + DK
(2)
bc ∧ ∗θabc

]
. (73)

The expressions for these terms are long and not particularly illuminating, the explicit expressions for them are given
in the appendix for convenience of the reader.

In this order, scalar field equation (40) also gets a modification. As a consequence of the expression (70), one can
show that eq. (40) takes the form

d ∗ dφ − V ′(φ) ∗ 1 +
α

4
f ′Ωab ∧

(
Ωcd + 2DK

(1)
cd

)
∗ θabcd = 0, (74)

where the DK
(1)
ab term is given in (A.4) below in appendix.

4.3 O(αn)-order approximation

Iterating the above approximation scheme by a desired number of times, and also by using an expansion for the
non-Riemannian curvature 2-forms of the form

Ωab = Ωab +
n∑

k=1

[
DKab(k) +

(
Ka

c ∧ Kcb
)(k)

]
, (75)

we can, in principle, calculate the metric field equation (50) to O(αn) as given by

1
κ2

∗ Ga = ∗T a[φ] − V (φ) ∗ θa + 2α [f ′′dφ ib(dφ) + f ′D(ibdφ)] ∧ ∗Ω̃ab +
n∑

k=2

∗Ha(k), (76)

with
∗Ha(k) =

1
2κ2

[(
Kbd ∧ Kd

c

)(k) ∧ ∗θabc + DK
(k)
bc ∧ ∗θabc

]
, (77)

where the first term above can be constructed from the terms of the form K ∧K in the order αk. Note that the K
(k)
bc

terms must be constructed recursively from the equation

K
(k)
ab = κ2α

{
iaibic

(
df ∧ DKcd(k−1) ∧ θd

)
+ 2iaic

(
df ∧ DK

c(k−1)
b

)

− 2ibic

(
df ∧ DKc(k−1)

a

)
+

1
2
(θa ∧ ib − θb ∧ ia)

[
icid

(
df ∧ DKcd(k−1)

)] }
, (78)

with the help of the K
(k−1)
ab terms. Moreover, the scalar field equation (52) must also be handled to include such

correction terms in the Gauss-Bonnet Lagrangian by using eq. (75).

5 Minimally coupled Dirac field

Besides the torsion generated by the non-minimal couplings of matter field arising, for example, from the scalar
fields coupling to a curvature tensor components, the spinor fields are also known to generate torsion in a perhaps
more natural way by the well-known minimal coupling prescription in the context of Riemann-Cartan geometry. We
briefly discuss spinor couplings starting from the Lagrangian governing the field equations for the Dirac spinor ψ after
introducing the basic notation required to write out the Lagrangian and the corresponding field equations in a form
convenient to the notation used above.
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The exterior algebra of tensor-valued forms, which are adopted in the current work, can naturally be extended
to the Clifford algebra-valued forms [49, 50] to discuss the spinor couplings to (modified) gravity. We shall use the
notation introduced in ref. [51] which discusses the spinor coupling to the geometry in the context of the Brans-Dicke
theory with torsion induced by the BD scalar field.

For the Dirac spinor ψ (spinor-valued 0-form), the Lagrangian density can be written in the form

LD[ψ, ψ̄, θa,Γab] =
1
2

(
ψ̄ ∗ θa ∧ γaDψ + Dψ ∧ ∗θaγaψ

)
− mψ̄ ∗ ψ, (79)

where m stands for the mass of the Dirac particle, whereas a bar over a field refers to the conjugate 4-component
Dirac spinor. The prescription of the minimal coupling to the gravity simply requires dψ and dψ̄ terms on the flat
Minkowski background are to be replaced by the SL(2, C)-covariant exterior derivatives Dψ and Dψ, respectively, for
the curved background spacetime. In terms of the Riemann-Cartan connection 1-forms Γab, the action of the covariant
exterior derivative on a Dirac spinor ψ has the explicit form

Dψ = dψ +
1
2
Γ abσabψ, Dψ = dψ̄ − 1

2
Γ abψ̄σab, (80)

with the generators σab defined in terms of the commutator of the 4 × 4 gamma-matrices as

σab ≡
1
4
[γa, γb]−. (81)

Thus, by definition D acting on a Dirac spinor ψ yields a matrix-valued 1-form, whereas D2ψ = 1
2Ωabσabψ. The set

of the gamma matrices {γa} with the indices referring to an orthonormal coframe generates the Clifford algebra. The
indices of the gamma-matrices are raised/lowered by the flat metric ηab and they have the defining anti-commutation
relations expressed explicitly in of the form

[γa, γb]+ = γaγb + γbγa = 2ηabI4×4, (82)

where I4×4 is the unit 4 × 4 matrix. With the metric signature assumed to be mostly plus, we have γ† = γ0γμγ0 and
ψ̄ = iψ†γ0. The Clifford algebra generators σab satisfy the same commutation relations as the generators of the Lie
algebra of the Lorentz group SO(1, 3) � SL(2, C).

One can show that the variational derivative of the SL(2, C) gauge covariant Lagrangian (79) with respect to the
independent field variables yields

δLD = δψ̄

[
∗θa ∧ γaDψ − 1

2
(D ∗ θa)γaψ − m ∗ ψ

]
+

[
Dψγa ∧ ∗θa − 1

2
ψ̄γaD ∗ θa − m ∗ ψ̄

]
δψ

+ δθa ∧
[
1
2
∗ θb

a ∧
(
ψ̄γbDψ − Dψγbψ

)
− mψ̄ψ ∗ θa

]
+ δΓ ab ∧ 1

2
∗ θcψ̄ [γc, σab]+ ψ, (83)

up to an omitted exact form.
In the context of the Riemann-Cartan geometry, we first note that the field equation for ψ is to be modified by

a torsion term involving D ∗ θa = Θb ∧ ∗θa
b coupled to the gravity as well. Unfortunately, in the case of a dynamic

torsion obtained, for example, from the total Lagrangian of the form Ltot. = LEGB + LD leads to a set of fairly
complicated, coupled field equations rendering an analytical treatment to find an exact solution difficult. The field
equations that follow from Einstein-Hilbert Lagrangian supplemented by LD can be expressed in terms of pseudo-
Riemannian quantities, since in this case the algebraic torsion leads to quartic spinor-spinor and spinor-gravitational
interaction terms. Similar considerations have also been introduced in the Brans-Dicke theory [40]. On the other
hand, in the case of gravitational part involving LEGB leads to a dynamic torsion field. Explicitly, by combining the
variational derivatives of the Lagrangians calculated above, one can readily obtain from the variation with respect to
an independent connection δLtot./δΓab = 0 an equation involving torsion 2-form similar to eq. (55) as

αdf ∧ Ωab +
1
κ2

θa ∧ Θb − i ∗ θbψ̄γ5γ
aψ = 0, (84)

after some algebra of the gamma matrices and making use of the definition γ5 ≡ iγ0γ1γ2γ3 (i2 = −1).
Although it is technically more involved, one can proceed in the same manner as the approximation scheme intro-

duced above to include the Dirac spinor field starting from the independent connection equations (84). Consequently,
one can obtain an approximate set of field equations in a reduced form with now involving scalar-spinor interactions
as well.
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6 A de Sitter-type cosmological solution

As an application of the results obtained in sect. 4, in this section we consider an exact solution of the modified
Gauss-Bonnet gravity models defined by Lagrangian (26) that we consider for both torsionless case and the case with
torsion. Most of the earlier works on the modified GB theory [16, 19–23, 25, 30, 32, 33] focused on the cosmological
implications of this theory to discuss the late time acceleration of the Universe and employed a power-law scale factor.
The late time expansion asymptotically approaches to a de Sitter universe, and the issues related to the existence
and stability of de Sitter universe having an exponential scale factor for various modified GB-extended theories are
studied, for example, in [24, 31]. Similar to these works, for the sake of simplicity, we fix the spacetime metric as the
de Sitter metric and obtain the field equations for arbitrary functions f(φ) and V (φ). The maximally symmetric de
Sitter metric has the form

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2), (85)

with H being a constant. We shall also assume that the scalar field depends only on the time coordinate as φ = φ(t).

6.1 Pseudo-Riemannian case

Let us first consider the torsion-free theory. We can employ the following coframe 1-forms:

θ0 = dt, θi = eHtdxi, (86)

where i = 1, 2, 3. For this Riemannian case, the connection, curvature, dual curvature, Ricci and Einstein forms and
Ricci scalar read

ω0i = Hθi, ωij = 0, Ωab = −Ω̃ab = H2θab, Ra = 3H2θa, (87)

Ga = −3H2θa, R = 12H2, ∗T 0[φ] = −1
2
φ̇2 ∗ θ0, ∗T i[φ] =

1
2
φ̇2 ∗ θi, (88)

respectively. Using these expressions, the field equations (37) and (40) become

3H2

κ2
− 1

2
φ̇2 − V (φ) + 6αH3 f ′ φ̇ = 0, (89)

3H2

κ2
+

1
2
φ̇2 − V (φ) + 2αH2

(
f ′′φ̇2 + f ′φ̈ + 2Hf ′φ̇

)
= 0, (90)

φ̈ + 3Hφ̇ + V ′(φ) − 6αH4f ′ = 0. (91)

In order to solve eqs. (89), (90), (91), one needs to specify the arbitrary function f(φ) and potential V (φ). We here
consider the most simple case, i.e., f(φ) = φ and V = V0 = constant and able to find the following solution:

φ(t) = 2αH3 t + b, V0 =
3H2

κ2
+ 10α2H6. (92)

This is an exact solution of a pseudo-Riemannian modified GB gravity model describing an exponential expansion
of the universe and having maximally symmetric spacetime geometry given by the metric (85). Note that, de Sitter
solutions of modified GB model with φ linear in t as given above are known [24,31]. Thus, it is interesting to explore
whether such simple solutions are also admitted by the model with torsion as well.

6.2 The case with torsion

We apply the perturbative approach to obtain the field equations in this case. Since the first-order case yields the
same equations, namely the equations given in (89), (90) and (91) with the same particular solution (92), we consider
the field equations to the O(α2) order. However, in order to calculate field equations in this order, we first need the
expressions of the torsion and the contorsion terms to the first order. Hence, by inserting Ωab = Ωab into (62), we
obtain

Θa(1) = ακ2f ′φ̇H2 θa ∧ θ0, (93)

which yields
Ki0 = ακ2f ′φ̇H2θi, Kij = 0. (94)
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We will also need the following terms:

DK
(1)
0i = ακ2H2

(
f ′′φ̇2 + f ′φ̈ + Hf ′φ̇

)
θ0 ∧ θi, (95)

DK
(1)
ij = 2ακ2H3f ′φ̇ θi ∧ θj . (96)

Consequently, the calculation the field equations to the first-order case leads exactly to the field equations (89), (90)
and (91). Next, we can calculate the field equations to second order in α, hence one needs the torsion and contorsion
form expressions to second order in α. To this end, by using (70) in (56), we find

Θa(2) = 2α2 κ4 f ′2 φ̇2 H3θa ∧ θ0, (97)

which yields
K

(2)
i0 = 2α2 κ4 f ′2φ̇2 H3 θi, K

(2)
ij = 0. (98)

From (98), we have

DK
(2)
0i = 2α2 κ4H3f ′φ̇

(
2f ′′φ̇2 + 2f ′φ̈ + f ′φ̇H

)
θ0 ∧ θi, (99)

DK
(2)
ij = 4α2κ4 H4f ′2φ̇2 θi ∧ θj (100)

and we also have

K
(1)
bd ∧ Kd(1)

c ∗ θ0bc = 6α2κ4H4f ′2φ̇2 ∗ θ0, (101)

K
(1)
bd ∧ Kd(1)

c ∗ θibc = 2α2κ4H4f ′2φ̇2 ∗ θi (102)

and, by using eqs. (99), (100), (101), (102), the metric field equations (72) become

3H2

κ2
− 1

2
φ̇2 − V (φ) + 6αH3f ′φ̇ + 15α2κ2H4f ′2φ̇2 = 0, (103)

3H2

κ2
+

1
2
φ̇2 − V (φ) + 2αH2

(
f ′′φ̇2 + f ′φ̈ + 2Hf ′φ̇

)
+ 8α2κ2H3f ′φ̇

(
f ′′φ̇2 + f ′φ̈ +

9
8
Hf ′φ̇

)
= 0. (104)

Moreover, the scalar equation (74) becomes

φ̈ + 3Hφ̇ + V ′(φ) − 6αf ′H4 − 6α2κ2H4
(
f ′f ′′φ̇2 + f ′2φ̈ + 3Hf ′2φ̇2

)
= 0. (105)

The last terms proportional to α2 in the last three eqs. (103), (104), (105) are due to the presence of torsion, which
makes the Riemann-Cartan case different from the corresponding pseudo-Riemannian case. In order to be able to solve
these equations, the form of f(φ) and V (φ) must be specified. Similarly to the previous subsection, we are able to find
the solution with the same choice of f and V , namely, f(φ) = φ, V (φ) = V0 = constant with

φ(t) =
2αH3

1 − 6α2κ2H4
t + b, V0 =

3H2 − 26α2H6κ2 + 96α4κ4H10

(1 − 6α2κ2H4)2κ2
. (106)

Thus, we have seen that the maximally symmetric de Sitter metric given in (85) actually solves the modified
Gauss-Bonnet gravity in four spacetime dimensions for both the torsionless case as well as the case with torsion up to
second-order correction terms included, for a particular non-trivial but simple choice of the scalar field φ. To compare
the solutions we series expand (106) in α as

φ(t) ≈
[
2αH3 + 12α3κ2H7 + O(α5)

]
t + b,

V0 ≈ 3H2

κ2
+ 10α2H6 + 108α4κ2H10 + O(α6) (107)

and see that the above solution (106) successfully include Riemannian one (92) and the second term in φ and third
term in V0 are the leading-order correction terms due to the presence of torsion in the solution.

The solutions above for the modified GB-modified gravity model is important for the viability of these theo-
ries/models and the compatibility of such theories with the observations. This is because the past inflationary epoch
described in GR by de Sitter geometry in the presence of a cosmological constant. Also, the present accelerated expan-
sion can be attributed to the dominant dark energy asymptotically approaches to a de Sitter spacetime. Note also that
in the GR case, the relation of expansion rate H with the cosmological constant Λ is of the form H ∼

√
Λ, whereas

the corresponding relation with V0 in the modified GB model that in the pseudo-Riemannian case and the case with
torsion are different and they are explicitly given by eqs. (92) and (106), respectively. The above solutions are not in
conflict with the results obtained prevously by Gasperini and Giovanini [16] because there is no potential term in their
analysis.
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7 Concluding remarks

In this paper a modified Gauss-Bonnet gravity is investigated in four spacetime dimensions where the Gauss-Bonnet
action term is coupled with a function of an arbitrary scalar field. First, by making use of the first-order formalism,
the Riemannian theory following form the model is studied where the torsion-free condition is imposed via a Lagrange
multiplier 2-form. After obtaining the Lagrange multiplier form, the field equations were presented in a compact
form with the help of double dual curvature form in a convenient form. In the pseudo-Riemannian case, the additional
condition on the scalar function introduced by Gürses [27] is considerably simplifies field equations and the use of double
dual curvature 2-form in expressing the coframe field equations elucidates the choice of the particular constraint (42)
on the scalar function.

Previously, Gasperini and Giovannini [16] derived the field equations in the pseudo-Rimenannian case by inde-
pendent connection and coframe variational derivatives with respect to independent connection and coframe forms.
Slightly more rigorous treatment given above, with the help of a Lagrange multiplier imposing the torsion-free condi-
tion on a metric compatible connection 1-form, shows that the field equations governing the lagrangian LEGB in the
Riemann-Cartan case can only approximately be identified with the corresponding equations of the pseudo-Riemannian
case, which also confirms their method to derive the field equations in the pseudo-Riemannian case. To discuss the
effect of a non-vanishing torsion to some extent, a perturbative scheme is introduced to express the field equations in
powers of a weak constant α. In the approximation scheme, the field equations to first order turn out to be identical
to those of the pseudo-Riemannian case and the effect of non-vanishing terms arise in the second order in powers of
the coupling constant α. We also note that the discussion above is confined to four spacetime dimensions and in the
spacetime with dimensions n > 4, there will be an additional 4-form term of the explicit form

α

4
Ωbc ∧ Ωde ∗ θabcde, (108)

in the metric (coframe) equations, in accordance with the results originally obtained by Gasperini and Giovannini.
This issue, nicely pointed out by De Felice and Tsujikawa [52], also persists in the modified GB gravity with the
Lagrangian density of the form f(G). To be mathematically more precise, in spacetime dimensions n > 4, the 4-forms
∗Ea obtained by a coframe variational derivative given in eq. (47), acquire an additional 4-form of the explicit form

1
4
f ′(G)Ωbc ∧ Ωde ∧ ∗θabcde = −f ′(G)

(
RRa

b − 2RacRcb + 2RcdR
cad

b + RacdeRbcde − δa
bG

)
∗ θb, (109)

which is sometimes overlooked in the literature [53, 54]. It is evident from the expression on the left-hand side of
eq. (109) that a basis 5-form is not defined in four spacetime dimensions, hence, such a term is absent in four spacetime
dimensions. It is less obvious, however, to draw the same conclusion from the equivalent (coordinate) expression on
the right-hand side of eq. (109) in terms of the components of the curvature tensor.

As an application of the results mentioned above, we also considered the maximally symmetric spacetime metric
in a particular form, calculate the field equations and solve them in both of the theories. This solution has a non-
trivial, albeit simple, scalar field which has a linear dependence on the time coordinate. It is interesting to see that
the modified Gauss-Bonnet model we have considered in this work admits exponentially expanding de Sitter universe
as a solution for both the pseudo-Riemannian case, discussed by previously in [24,31] and also in the non-Riemannian
case with torsion as well.

One future direction for the current work is to consider the effects of torsion generated by a non-minimally coupled
scalar field towards a cosmological application in the presence of matter sources in this non-Riemannian modified
GB extended model. Likewise, it is possible to extend the brief discussion of the minimally coupled spinorial matter
couplings presented in sect. 5.

We would like to thank the anonymous referee for the constructive comments and criticism that helped to improve the
manuscript.

Appendix A. Calculational details for the derivation of O(α2)-order terms

We present the explicit expression for eq. (73) which are of O(α2) correction terms due to the presence of a dynamic
torsion.

Let us start with the first term in this equation. For calculational convenience, with the help of antisymmetrization
brackets A[ab] = 1/2(Aab − Aba), we can express first-order contorsion equation (65) in a compact form as

K
(1)
ab = 2κ2α ic(df)

[
icΩab + 2R[a δc

b] + θ[aG c
b]

]
. (A.1)
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Then, after a straightforward but somewhat tedious exterior algebra manipulations, the first term turns out to have
the form

K
(1)
bd ∧ K

d(1)
c ∗ θbca

= 4κ4α2(iedf)(igdf)
{ [

ieΩbd + 2R[b δe
d] + θ[bG

e
d]

]
∧

[
igΩdc + 2R[d ηc]g + θ[dGc]g

] }
∗ θb a

c

= 4κ4α2(iedf)(igdf) ∗
{[

− R e
bd cR

dcgb + 2R ge
b cR

bc + Rbc Rbc ηeg − 7
2
R e

b Rbg +
5
2
RgeR − 5

8
ηegR2

]
θa

+
[
4RceR ga

cb + 2R ea
cd Rd gc

b + 2R gea
b R − 2R ge

b cR
ac +

(
R aec

b + R cea
b

)
G g

c

]
θb

− 3GgeRa +
(
ηeaG g

b − 2R gea
b − 2ηegRa

b

)
Rb + 2G g

b Rabθe + GaeGg + 2Rag Re

}
. (A.2)

To find the second term in ∗Ha(2) we first calculate K
(2)
bc ∧ ∗θabc and subsequently calculate its covariant exterior

derivative with K
(2)
bc is given in (71). The resulting expression can be written in the form

DK
(2)
bc ∧ ∗θabc = 2κ2α D ∗

{
(iddf) ib

[
DK

d(1)
b

]
∧ θa − id

[
df ∧ DKda(1)

]

+ 3
(
θb ∧ ia − θa ∧ ib

) [
id

(
df ∧ DK

d(1)
b

)] }
, (A.3)

with
DK

(1)
ab = 2κ2α D

{
(icdf)

[
icΩab + 2R[a δc

b] + θ[aG c
b]

]}
. (A.4)
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