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Abstract. Fractional calculus has been used to model physical and engineering processes that are best
described by fractional differential equations. Therefore designing efficient and reliable techniques for the
solution of such equations is an important task. In this paper, we propose an efficient and accurate Galerkin
method based on the fractional-order Legendre functions (FLFs) for solving the fractional sub-diffusion
equation (FSDE) and the time-fractional diffusion-wave equation (FDWE). The time-fractional derivatives
for FSDE are described in the Riemann-Liouville sense, while for FDWE are described in the Caputo sense.
To this end, we first derive a new operational matrix of fractional integration (OMFI) in the Riemann-
Liouville sense for FLFs. Next, we transform the original FSDE into an equivalent problem with fractional
derivatives in the Caputo sense. Then the FLFs and their OMFI together with the Galerkin method are
used to transform the problems under consideration into the corresponding linear systems of algebraic
equations, which can be simply solved to achieve the numerical solutions of the problems. The proposed
method is very convenient for solving such kind of problems, since the initial and boundary conditions are
taken into account automatically. Furthermore, the efficiency of the proposed method is shown for some
concrete examples. The results reveal that the proposed method is very accurate and efficient.

1 introduction

Fractional differential equations have recently attracted increasing attention [1–4], due to the fact that they have many
applications in various fields of science and engineering. For example, they can describe many physical and chemical
processes, biological systems, etc. In fact, a realistic model of a physical phenomenon which depends not only on the
time instant, but also on the previous time history, can be successfully achieved by using fractional calculus. It is worth
noting that analytic solutions of most fractional differential equations cannot be obtained explicitly [5], so that new
methods, to find numerical solutions of these equations, have practical importance. Due to this fact, in recent years
several numerical methods have been proposed for the solution of fractional differential equations (see, e.g., [6–15]).

Fractional partial differential equations (FPDEs) are generalizations of classical partial differential equations
(PDEs). Two important classes of FPDEs, widely studied in recent years, are the fractional diffusion equation (FDE)
and the fractional diffusion-wave equation (FDWE). The main physical purpose for investigating FDE is describing the
phenomena of anomalous diffusion in transport processes through complex and/or disordered systems including fractal
media, and fractional kinetic equations have proved particularly useful in the context of anomalous slow diffusion, see,
for instance, the review paper [16].

The FSDE is a class of anomalous diffusive systems which is obtained by replacing the time derivative of the
ordinary diffusion, by a fractional derivative of order α, with 0 < α < 1, and is given [17–19] as

∂u(x, t)
∂t

= 0D
1−α
t

[
Kα

∂2u(x, t)
∂x2

]
+ f(x, t). (1)
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Here 0D
1−α
t denotes the Riemann-Liouville fractional derivative of order 1−α with respect to the variable t, 0 < α < 1

is the anomalous diffusion exponent, Kα is the generalized diffusion constant, and f is a given known function.
Equation (1) is the evolution equation for the probability density function that describes particles diffusing with

mean square displacement 〈x2(t)〉 ∼ tα [19,20]. For the case 0 < α < 1, the diffusion is anomalously slow (sub-diffusion)
compared to the normal diffusion behavior with α = 1 [20].

There have been various numerical methods for studying and solving the FSDE (see, e.g., [18–29]). Yuste and
Acedo [11] combined the forward-time centered-space method and the Grünwald-Letnikov discretization of the
Riemann-Liouville derivative to obtain an explicit scheme for fractional diffusion equations. In [13, 21], Chen, Liu
and their coworkers have constructed the difference scheme using the Grünwald-Letnikov formula and also presented
the Fourier method to show the stability and convergence of the difference scheme for the fractional sub-diffusion and
reaction sub-diffusion equations, respectively. Murio [22] developed an implicit finite-difference method for solving the
FSDE and also used Fourier method to show the stability. Langlands and Henry [23] developed an implicit difference
scheme with convergence order O(τα+1 + h2) based on L1 approximation and numerically verified the unconditional
stability of difference scheme but without global convergence analysis. Zhuang, Liu and their coworkers [9, 24] intro-
duced a new way to solve linear and non-linear FSDEs. They first integrated the original differential operator on both
sides, then approximated the obtained identity numerically with the idea of numerical integrals. The stability and con-
vergence analyzed in discrete L2 norm by using the energy method. Two-dimensional anomalous FSDE was treated
numerically in [25], where the two methods (explicit and implicit) were proposed by using the relationships between
the fractional Grünwald-Letnikov definition and Riemann-Liouville definition. In [17], Cui considered a high-order
finite-difference scheme for solving fractional anomalous sub-diffusion equation. The Grünwald formula was used for
direct approximation of the Riemann-Liouville fractional derivative in temporal direction and fourth-order compact
difference scheme for the spatial discretization, with the convergence order O(τ + h4) in discrete L2 norm. In [26],
Chen et al. have studied some high accurate numerical methods. By a similar discretization approach, a scheme with
convergence order O(τ + h4) in L2 norm was also obtained for the variable-order anomalous differential equation
and was analyzed using Fourier method. Gao and Sun [18] have proposed a compact difference scheme for the time
fractional sub-diffusion equation, and proved that the scheme was unconditionally stable and convergent in maximum
norm with the convergence order O(τ2−α +h4). Zhang et al. [27] constructed a Crank-Nicolson–type difference scheme
and a compact difference scheme for solving the time FSDE with Riemann-Liouville fractional derivative, respectively.
They proved that the two difference schemes were unconditionally stable and the numerical solution was convergent
in the maximum norm. Zhang et al. [28] and Cui [29] constructed alternating direction implicit scheme and compact
alternating direction implicit scheme for solving the two-dimensional time FSDE, respectively. Zhao and Sun [20]
proposed a Box-type scheme for solving a class of the FSDE with Neumann boundary conditions. Ren et al. [19] have
proposed a compact difference scheme for the FSDE with Neumann boundary conditions. We also advise the reader
to see recent papers [30–32] about FSDE.

The time FDWE is a mathematical model of a wide class of important physical phenomena. This equation is a
linear integro-partial differential equation that is obtained from the classical diffusion-wave equation by replacing the
second-order time derivative term by a fractional derivative of order 1 < α ≤ 2 [33], and is given in [34] by

∂αu(x, t)
∂tα

+ λ
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2

+ f(x, t), (2)

where the parameter α denotes the order of the fractional derivative in the Caputo sense, which will be described in
the next section, λ > 0 is a constant and f is a given known function.

Several numerical methods have been successfully used in the last few years for solving the FDWE, e.g., [33–44].
In [33], Bhrawy et al. have proposed a spectral tau method based on the Jacobi operational matrix for numerical
solution of time FDWE. Chen et al. [34] used the method of separation of variables and implicit finite difference
for solving time FDWE with damping. The fundamental solutions for the fractional diffusion-wave equation are
obtained in [35] by Mainardi. Wess [36], and Sun and Wu [39] have proposed a fully discrete difference scheme for a
diffusion-wave system. Hu and Zhang [41] proposed a compact finite-difference scheme for the fourth-order fractional
diffusion-wave system. In [42], Hu and Zhang proposed and investigated finite-difference methods for fourth-order
fractional diffusion-wave and sub-diffusion systems. Godinho et al. [43] extended the d’Alembert method to space-
time modified Riemann-Liouville fractional wave equations. The authors of [44] proposed Sumudu transform method
for solving fractional differential equations and fractional diffusion-wave equation.

An usual way to solve functional equations is to express the solution of the problem, under study, as a linear
combination of the so-called basis functions. These basis functions can be orthogonal or non-orthogonal. Approximation
by orthogonal families of basis functions has found wide applications in sciences and engineering [45]. The main idea of
using an orthogonal basis is that the problem under consideration reduces to a system of linear or non-linear algebraic
equations [45], which can be simply solved to achieve an approximate solution of the problem. This can be done by
truncated series of orthogonal basis functions for the solution of the problem and by using the operational matrices of
these basis functions [45].
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Depending on their structure, the orthogonal functions may be mainly classified into three families [46]. The first
one includes sets of piecewise constant orthogonal functions such as the Walsh functions, block pulse functions, etc.
The second one consists of sets of orthogonal polynomials such as Laguerre, Legendre, Chebyshev, etc. It is well known
that we can approximate any smooth function by the eigenfunctions of certain singular Sturm-Liouville problems such
as Legendre or Chebyshev orthogonal polynomials. In this way, the truncation error approaches zero faster than any
negative power of the number of basis functions used in the approximation [46]. This phenomenon is usually referred
to as “The spectral accuracy” [46]. The third is the widely used sets of sine-cosine functions in Fourier series.

The derivatives of the basis functions, and their evaluation at some collocation points, give rise to the so-called
operational matrices. The operational matrices of fractional derivative and integration have widely been used to solve
various types of fractional differential equations in the last decade. In [47], Saadatmandi and Dehghan have proposed
a numerical method based on the fractional Caputo operational matrix of Legendre polynomials to numerically solve
multi-term FDEs. Doha et al. [48] derived the Jacobi operational matrix of the Caputo fractional derivative for solving
linear multi-term FDEs. The Chebyshev [49] and Legendre [47] operational matrices were obtained as special cases of
Jacobi operational matrix. The operational matrices of fractional derivatives and fractional integrals for generalized
Laguerre polynomials were used to solve multi-term FDEs on a semi-infinite interval in [50]. Heydari et al. [51] proposed
an efficient computational method based on the operational matrix of fractional derivatives of the shifted Chebyshev
polynomials to solve fractional biharmonic equation. Bhrawy et al. [52] have proposed a space-time Legendre spectral
tau method for the two-sided space-time Caputo fractional diffusion-wave equation. Their proposed method is based
on shifted Legendre tau procedure in conjunction with the shifted Legendre operational matrices of Riemann-Liouville
fractional integral, left-sided and right-sided fractional derivatives. In [53], the authors proposed a numerical technique
based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. The author of [53]
proposed a new spectral collocation algorithm for solving time-space fractional partial differential equations with sub-
diffusion and super-diffusion. In their algorithm, the shifted Legendre Gauss-Lobatto collocation scheme and the shifted
Chebyshev Gauss-Radau collocation approximations are used for spatial and temporal discretizations, respectively.

In [45], Heydari et al. derived a new operational matrix of fractional derivative for the Legendre wavelets and
employed it to obtain a numerical solution for the fractional Poisson equation with Dirichlet boundary conditions.
The authors of [54] proposed a computational method based on the operational matrices of fractional integration
and derivative of the Legendre wavelets for solving fractional partial differential equations with Dirichlet boundary
conditions. In [55], the authors used both of the operational matrices of fractional integration and derivative to get
a numerical solution for the time-fractional telegraph equation. In [56], the authors proposed a numerical method
based on the Legendre wavelets with their operational matrix of fractional integration to solve the time FDWE. The
authors of [57] developed the Chebyshev wavelets to solve systems of non-linear singular fractional Volterra integro-
differential equations. Recently, Heydari et al. [58] have proposed an accurate numerical method based on the Legendre
wavelets and their operational matrix of fractional integration for solving fractional optimal control problems. Complex
wavelets and operational matrices for such kind of wavelets have been proposed by Cattani in [59, 60]. In [61], this
operational matrix was used to solve some integral equations. Other kinds of continously differentiable wavelets, also
known as Shannon wavelets, were considered by Cattani in [62, 63] and their operational matrix was used in [64, 65]
to solve some integro-differential equation and fractional differential equations. It is worth noting that solutions of
fractional equations can contain some fractional-power terms that the classical orthogonal polynomials and the above
mentioned classical bases functions can not cope with. Also, the fractional derivatives of a classical polynomial are
not polynomials. So, in these cases the rate of convergence of the numerical approximation is not reasonable when the
classical polynomial bases and the above-mentioned bases are used. Therefore, we think that a new family of basis
functions should be used to eliminate such difficulties in solving fractional functional equations.

In this paper, our main purpose is to apply the FLFs as a generalization of the Legendre polynomials for solving
the FSDE (31) and time FDWE (2). In particular, we first derive a new operational matrix of fractional integration in
the Riemann-Liouville sense for these basis functions. Next a Galerkin method based on these bases functions together
with their operational matrix of fractional integration is proposed to transform the problems under consideration into
the corresponding linear systems of algebraic equations, which can be simply solved for achieving the solutions of these
problems.

The paper is organized as follows: In sect. 2, some necessary definitions and mathematical preliminaries of the
fractional calculus are reviewed. In sect. 3, the FLFs and some of their properties are investigated. In sect. 4, the
proposed method is described for solving the FSDE (1). The proposed method is described for solving the time
FDWE (2) in sect. 5. In sect. 6, some numerical examples are provided to show the efficiency and accuracy of the
proposed method. The conclusion is drawn in sect. 7.

2 Preliminaries and notations

In this section, we give some necessary definitions and mathematical preliminaries of the fractional calculus which are
required for establishing our results.
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Definition 1. A real function u(x), x > 0, is said to be in the space Cυ, υ ∈ R if there exists a real number p (> υ)
such that u(x) = xpu1(x), where u1(x) ∈ C[0,∞] and it is said to be in the space Cn

υ if u(n) ∈ Cυ, n ∈ N.

Definition 2. The Riemann-Liouville fractional integration operator of order α ≥ 0 of a function u ∈ Cυ, υ ≥ −1, is
defined as [1]

(Iαu) (x) =

⎧⎪⎨
⎪⎩

1
Γ (α)

∫ x

0

(x − t)α−1u(t)dt, α > 0,

u(x), α = 0.

(3)

It has the following properties [1]:

(
IαIβu

)
(x) =

(
Iα+βu

)
(x), Iαxν =

Γ (ν + 1)
Γ (α + ν + 1)

xα+ν , (4)

where α, β ≥ 0 and ν > −1.

Definition 3. The fractional derivative operator of order α > 0 in the Caputo sense is defined as [1]

(Dα
∗ u) (x) =

⎧⎪⎪⎨
⎪⎪⎩

dnu(x)
dxn

, α = n ∈ N,

1
Γ (n − α)

∫ x

0

(x − t)n−α−1u(n)(t)dt, n − 1 < α < n,

(5)

where n is an integer, x > 0 and u ∈ Cn
1 .

The useful relation between the Riemann-Liouville operator and Caputo operator is given by the following expres-
sion [1]:

(IαDα
∗ u) (x) = u(x) −

n−1∑
k=0

u(k)(0+)
xk

k!
, x > 0, n − 1 < α ≤ n, (6)

where n is an integer, x > 0 and u ∈ Cn
1 .

For more details about fractional calculus see [1].

3 The FLFs and their properties

The fractional Legendre functions (FLFs) FLϑ
n(x), are a practical solution of the normalized eigenfunctions of the

following singular Sturm-Liouville problem [66]:

((
x − x1+ϑ

)
FL′ϑ

n (x)
)′

+ ϑ2n(n + 1)xϑ−1FLϑ
n(x) = 0, ϑ > 0. (7)

The set {FLϑ
n(x)}∞n=0 forms a complete set of orthogonal functions with respect to the weight function wϑ(x) = xϑ−1

on the interval [0, 1]. They can be computed with the aid of the following recurrence relation [66]:

(n + 1)FLϑ
n+1(x) = (2n + 1)(2xϑ − 1)FLϑ

n(x) − nFLϑ
n−1(x), n ∈ N, (8)

where FLϑ
0 (x) = 1 and FLϑ

1 (x) = 2xϑ − 1.
It is worth nothing that, for ϑ = 1, the FLFs will reduce to the shifted Legendre polynomials on the interval [0, 1].
The orthogonality condition for these basis functions is given in [66] by

∫ 1

0

FLϑ
m(x)FLϑ

n(x)wϑ(x)dx =
1

(2n + 1)ϑ
δmn, (9)

where δmn is the Kroneker delta.
The analytic form of the FLϑ

n(x) of degree nϑ is given by

FLϑ
n(x) =

n∑
i=0

bni xiϑ, n = 0, 1, 2, . . . , (10)
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where

bni =
(−1)n+i(n + i)!

(n − i)!(i!)2
. (11)

Any arbitrary function u(x) defined over [0, 1] may be expanded by the FLFs as

u(x) =
∞∑

n=0

cnFLϑ
n(x), (12)

where the coefficients cn are given by

cn = (2n + 1)ϑ
∫ 1

0

u(x)FLϑ
n(x)wϑ(x)dx. (13)

If the infinite series in eq. (12) is truncated, then it can be written as

u(x) �
N∑

n=0

cnFLϑ
n(x) = CT Ψϑ(x), (14)

where T indicates transposition, C and Ψϑ(x) are (N + 1) column vectors given by

C � [c0, c1, . . . , cN ]T ,

Ψϑ(x) �
[
FLϑ

0 (x), FLϑ
1 (x), . . . , FLϑ

N (x)
]T

. (15)

Similarly, an arbitrary function of two variables u(x, t) defined over [0, 1] × [0, 1], may be expanded by the FLFs as
follows:

u(x, t) �
N∑

n=0

M∑
m=0

unmFLϑ
n(x)FLμ

m(t) = Ψϑ(x)T UΨμ(t), ϑ, μ > 0, (16)

where Ψϑ(x) and Ψμ(t) are (N + 1)- and (M + 1)-dimensional FLF vectors, respectively, and U = [unm] is an
(N + 1) × (M + 1) matrix with entries

unm = (2n + 1)(2m + 1)ϑμ

∫ 1

0

∫ 1

0

u(x, t)FLϑ
n(x)FLμ

m(t)wϑ(x)wμ(t)dx dt. (17)

Theorem 1. Let Ψϑ(x) be the FLFs vector defined in eq. (15) and β be a positive constant. The fractional integration
of order β in the Riemann-Liouville sense of the vector Ψϑ(x) can be expressed as

(IβΨϑ)(x) � xP β
ϑ Ψϑ(x), (18)

where xP β
ϑ is the (N + 1) × (N + 1) OMFI of order β for FLFs, and is given as follows:

xP β
ϑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ωβ
ϑ(0, 0) Ωβ

ϑ(0, 1) . . . Ωβ
ϑ(0, N)

Ωβ
ϑ(1, 0) Ωβ

ϑ(1, 1) . . . Ωβ
ϑ(1, N)

...
... . . .

...

Ωβ
ϑ(n, 0) Ωβ

ϑ(n, 1) . . . Ωβ
ϑ(n,N)

...
...

...
...

Ωβ
ϑ(N, 0) Ωβ

ϑ(N, 1) . . . Ωβ
ϑ(N,N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where

Ωβ
ϑ(n, j) =

n∑
i=0

(−1)n+i+jϑ(2j + 1)(n + i)!Γ (iϑ + 1)Γ
(

(i+2)ϑ+β
ϑ

)
Γ

(
(j−i)ϑ−β

ϑ

)

((i + 1)ϑ + β) (n − i)!(i!)2Γ (iϑ + β + 1)Γ
(
− iϑ+β

ϑ

)
Γ

(
(i+j+2)ϑ+β

ϑ

) , n = 0, 1, . . . , N.
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Proof. From the analytic form of the FLFs expressed in eq. (10), using eq. (4) and since the Riemann-Liouville’s
fractional integration is a linear operation, we have

(
IβFLϑ

n

)
(x) =

n∑
i=0

bniI
βxiϑ =

n∑
i=0

bniΓ (iϑ + 1)
Γ (iϑ + β + 1)

xiϑ+β . (20)

Now, by expressing xiϑ+β in terms of the FLFs, we obtain

xiϑ+β �
N∑

j=0

cijFLϑ
j (x), (21)

where cij is given by eq. (13) with u(x) = xiϑ+β , that is

cij = (2j + 1)ϑ
∫ 1

0

xiϑ+βFLϑ
j (x)wϑ(x)dx.

By using the expansion of the FLϑ
j (x), we have

cij = (2j + 1)ϑ
j∑

r=0

bjr

∫ 1

0

x(i+r)ϑ+βwϑ(x)dx = (2j + 1)ϑ
j∑

r=0

bjr

(i + r + 1)ϑ + β
. (22)

Now, by substituting eqs. (21) and (22) into eq. (20), we get

(
IβFLϑ

n

)
(x) �

N∑
j=0

Ωβ
ϑ(n, j)FLϑ

j (x), (23)

where Ωβ
ϑ(n, j) =

∑n
i=0 Θnji, and

Θnji =
bniΓ (iϑ + 1)
Γ (iϑ + β + 1)

× ϑ(2j + 1)
j∑

r=0

bjr

(i + r + 1)ϑ + β
. (24)

After some simplifications Θnji can be expressed in the following form:

Θnji =
(−1)n+i+jϑ(2j + 1)(n + i)!Γ (iϑ + 1)Γ

(
(i+2)ϑ+β

ϑ

)
Γ

(
(j−i)ϑ−β

ϑ

)

((i + 1)ϑ + β) (n − i)!(i!)2Γ (iϑ + β + 1)Γ
(
− iϑ+β

ϑ

)
Γ

(
(i+j+2)ϑ+β

ϑ

) , j = 0, 1, . . . , N.

Therefore, eq. (23) can be written as
(
IβFLϑ

n

)
(x) �

[
Ωβ

ϑ(n, 0), Ωβ
ϑ(n, 1), . . . , Ωβ

ϑ(n,N)
]
Ψϑ(x), n = 0, 1, . . . , N,

which completes the proof.

Theorem 2. Let Ψμ(t) be the FLFs vector defined in eq. (16) and α be a positive constant. The fractional integration
of order α in the Riemann-Liouville sense of the vector Ψμ(t) can be expressed as follows:

(IαΨμ)(t) � tP
α
μ Ψμ(t), (25)

where tP
α
μ is the (M + 1) × (M + 1) OMFI of order α for FLFs, and is given by:

tP
α
μ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ωα
μ (0, 0) Ωα

μ (0, 1) . . . Ωα
μ (0,M)

Ωα
μ (1, 0) Ωα

μ (1, 1) . . . Ωα
μ (1,M)

...
... . . .

...

Ωα
μ (m, 0) Ωα

μ (m, 1) . . . Ωα
μ (m,M)

...
...

...
...

Ωα
μ (M, 0) Ωα

μ (M, 1) . . . Ωα
μ (M,M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)
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where

Ωα
μ (m, j) =

m∑
i=0

(−1)m+i+jμ(2j + 1)(m + i)!Γ (iμ + 1)Γ
(

(i+2)μ+α
μ

)
Γ

(
(j−i)μ−α

μ

)

((i + 1)μ + α) (m − i)!(i!)2Γ (iμ + α + 1)Γ
(
− iμ+α

μ

)
Γ

(
(i+j+2)μ+α

μ

) , m = 0, 1, . . . ,M.

Proof. The proof is similar to theorem 1.

4 The proposed method for the FSDE

In this section, the FLFs expansion together with their OMFI are used to solve the FSDE given by

∂u(x, t)
∂t

= 0D
1−α
t

[
Kα

∂2u(x, t)
∂x2

]
+ f(x, t), (x, t) ∈ [0, 1] × [0, 1], (27)

subject to the initial condition,
u(x, 0) = s(x), x ∈ [0, 1], (28)

and boundary conditions,
u(0, t) = g0(t), u(1, t) = g1(t), t ∈ [0, 1], (29)

where 0D
1−α
t denotes the Riemann-Liouville fractional derivative of order 1−α with respect to the variable t, 0 < α < 1

is the anomalous diffusion exponent, Kα is the generalized diffusion constant, s, g0 and g1 are given functions in L2[0, 1],
and f is a given function in L2([0, 1] × [0, 1]).

Equation (31) can be written as [18–20] in the following equivalent form:

c
0D

α
t u(x, t) = Kα

∂2u(x, t)
∂x2

+
(
I1−α
t f

)
(x, t), (30)

where c
0D

α
t denotes the Caputo fractional derivative of order α with respect to the variable t and I1−α

t denotes the
Riemann-Liouville fractional integral of order 1 − α with respect to the variable t.

Then, we just need to investigate the following problem:

c
0D

α
t u(x, t) = Kα

∂2u(x, t)
∂x2

+
(
I1−α
t f

)
(x, t), (x, t) ∈ [0, 1] × [0, 1], (31)

subject to the initial condition,
u(x, 0) = s(x), x ∈ [0, 1], (32)

and boundary conditions,
u(0, t) = g0(t), u(1, t) = g1(t), t ∈ [0, 1]. (33)

For solving this problem, by applying the Riemann-Liouville fractional integration of order α with respect to t on both
sides of eq. (31) and using the initial condition in eq. (32), we obtain

u(x, t) − s(x) = Kα

(
Iα
t

∂2u

∂x2

)
(x, t) + f(x, t), (34)

where q(x, t) = (Itf)(x, t).
Now, we expand ∂2u(x,t)

∂x2 by the FLFs as follows:

∂2u(x, t)
∂x2

� Ψϑ(x)T UΨμ(t), (35)

where U = [uij ] is an (N + 1) × (M + 1) unknown matrix, which should be computed and Ψϑ(x) and Ψμ(t) are the
FLFs vectors defined in eq. (16).

By integrating eq. (35) two times with respect to x, we have

u(x, t) � u(0, t) + x

(
∂u(x, t)

∂x

∣∣∣∣
x=0

)
+ Ψϑ(x)T

(
xPT

ϑ

)2
UΨμ(t), (36)
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and, by putting x = 1 in eq. (36), and considering the boundary conditions in eq. (33), we obtain

∂u(x, t)
∂x

∣∣∣∣
x=0

� g1(t) − g0(t) − Ψϑ(1)T
(

xPT
ϑ

)2
UΨμ(t). (37)

We also expand g0(t) and g1(t) by the FLFs as follows:

g0(t) � GT
0 Ψμ(t), g1(t) � GT

1 Ψμ(t), (38)

where G0 and G1 are the FLFs coefficient vectors.
By substituting eq. (38) into eq. (37), we obtain

∂u(x, t)
∂x

∣∣∣∣
x=0

�
(
GT

1 − GT
0 − Ψϑ(1)T

(
xPT

ϑ

)2
U

)
Ψμ(t) � ŨT Ψμ(t). (39)

Moreover, we expand x and the unit function by the FLFs as follows:

x � Ψϑ(x)T X, 1 = Ψϑ(x)T E, 1 = ÊT Ψμ(t), (40)

where X, E and Ê are the FLFs coefficient vectors.
Now by substituting eq. (39) into eq. (36) and using eq. (40), we have

u(x, t) � Ψϑ(x)T
[
EGT

0 + XŨT +
(

xPT
ϑ

)2
U

]
Ψμ(t) � Ψϑ(x)T ΛΨμ(t). (41)

Furthermore, we expand s(x) and q(x, t) by the FLFs as follows:

s(x) � Ψϑ(x)T S, q(x, t) � Ψϑ(x)T QΨμ(t), (42)

where S is the known FLFs coefficients vector for s(x), and Q is the known FLFs coefficients matrix for q(x, t). Then,
by substituting eqs. (35), (41) and (42) into eq. (34) and using OMFI of FLFs, we write the residual function R(x, t)
for eq. (31) as follows:

R(x, t) = Ψϑ(x)T
[
Λ −KαU tP

α
μ − SÊT − Q

]
Ψμ(t). (43)

As in a typical Galerkin method [46], we generate (N + 1) × (M + 1) linear algebraic equations with the unknown
expansion coefficients, uij , i = 1, 2, . . . , (N + 1); j = 1, 2, . . . , (M + 1) as

∫ 1

0

∫ 1

0

R(x, t)Flϑi (x)FLμ
j (t)wϑ(x)wμ(t)dx dt = 0, i = 1, 2, . . . , (N + 1), j = 1, 2, . . . , (M + 1). (44)

Finally, by solving this system for the unknown matrix U , we obtain an approximate solution for the problem by
substituting U in eq. (41).

The algorithm of the proposed method is presented as follows:

Algorithm 1

Input: N,M ∈ N, μ, ϑ ∈ R

+; Kα ∈ R

+, 0 < α < 1; the functions s, g0, g1 and f .
Step 1: Define the FLFs FLϑ

n(x) and FLμ
m(t) by eq. (10), and the weight functions wϑ(x) and wμ(t).

Step 2: Construct the FLFs vectors Ψϑ(x) and Ψμ(t) from eqs. (15) and (16).
Step 3: Compute the operational matrices xP 2

ϑ and tP
α
μ using eqs. (19) and (26).

Step 4: Define the (N + 1) × (M + 1) unknown matrix U = [uij ].
Step 5: Compute the vectors G0, G1, X, E and S in eqs. (38), (40) and (42).

Step 6: Compute the vector Ũ by eq. (39).
Step 7: Compute the matrix Λ using eq. (41).
Step 8: Compute the matrix Q by eq. (42).
Step 9: Compute the residual function R(x, t) using eq.(43).

Step 10: Put
∫ 1

0

∫ 1

0
R(x, t)Flϑi (x)FLμ

j (t)wϑ(x)wμ(t)dx dt = 0, i = 1, 2, . . . , (N + 1), j = 1, 2, . . . , (M + 1).
Step 11: Solve the linear system of algebraic equations in Step 10 for the unknown matrix U .
Output: The approximate solution: u(x, t) � Ψ(x)T ΛΨ(t).
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5 The proposed method for the time FDWE

In this section, we use the OMFI of the FLFs to solve the time FDWE given by:

∂αu(x, t)
∂tα

+ λ
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2

+ f(x, t), (x, t) ∈ [0, 1] × [0, 1], 1 < α ≤ 2, (45)

subject to the initial conditions,

u(x, 0) = f0(x), ut(x, 0) = f1(x), x ∈ [0, 1], (46)

and boundary conditions,
u(0, t) = g0(t), u(1, t) = g1(t), t ∈ [0, 1], (47)

where λ > 0 is a constant, f0, f1, g0 and g1 are given functions in L2[0, 1], and q is a given function in L2([0, 1]× [0, 1]).
To solve eq. (45), by applying the Riemann-Liouville fractional integration of order α with respect to t on both

sides of eq. (45) and considering the initial conditions in eq. (46), we obtain

u(x, t) − v(x, t) + λ
(
Iα−1
t u

)
(x, t) =

(
Iα
t

∂2u

∂x2

)
(x, t) + (Iα

t q) (x, t), (48)

where v(x, t) = f0(x) + tf1(x) − λtα−1

Γ (α) f0(x).

Now we approximate ∂2u(x,t)
∂x2 by the FLFs as follows:

∂2u(x, t)
∂x2

� Ψϑ(x)T UΨμ(t), (49)

where U = [uij ] is an (N + 1) × (M + 1) unknown matrix which should be found.
Moreover, by integrating eq. (49) two times with respect to x, we have

u(x, t) � u(0, t) + x

(
∂u(x, t)

∂x

∣∣∣∣
x=0

)
+ Ψϑ(x)T

(
xPT

ϑ

)2
UΨμ(t), (50)

and, by putting x = 1 in eq. (50), and considering the boundary conditions in eq. (47), we obtain

∂u(x, t)
∂x

∣∣∣∣
x=0

� g1(t) − g0(t) − Ψϑ(1)T
(

xPT
ϑ

)2
UΨμ(t). (51)

We also expand g0(t) and g1(t) by the FLFs as follows:

g0(t) � GT
0 Ψμ(t), g1(t) � GT

1 Ψμ(t), (52)

where G0 and G1 are the FLFs coefficient vectors.
By substituting eq. (52) into eq. (51), we obtain

∂u(x, t)
∂x

∣∣∣∣
x=0

�
(
GT

1 − GT
0 − Ψϑ(1)T

(
xPT

ϑ

)2
U

)
Ψμ(t) � ŨT Ψμ(t). (53)

Moreover, we expand x and the unit function by the FLFs as follows:

x � Ψϑ(x)T X, 1 = Ψϑ(x)T E, (54)

where X and E are the FLFs coefficient vectors.
Now, by substituting eq. (53) into eq. (50) and using eq. (54), we have

u(x, t) � Ψϑ(x)T
[
EGT

0 + XŨT +
(

xPT
ϑ

)2
U

]
Ψμ(t) � Ψϑ(x)T ΛΨμ(t). (55)

Furthermore, we expand v(x, t) and f(x, t) by the FLFs as follows:

v(x, t) � Ψϑ(x)T V Ψμ(t), f(x, t) � Ψϑ(x)T FΨμ(t), (56)

where V and F are the known FLFs coefficient matrices for v(x, t) and f(x, t), respectively.
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Then, by substituting eqs. (49), (55) and (56) into eq. (48) and using OMFI for FLFs, we write the residual function
R(x, t) for eq. (45) as follows:

R(x, t) = Ψϑ(x)T
[
Λ + λΛ tP

(α−1)
μ − U tP

α
μ − V − F tP

α
μ

]
Ψμ(t). (57)

As in a typical Galerkin method [46], we generate (N + 1) × (M + 1) linear algebraic equations with the unknown
expansion coefficients, uij , i = 1, 2, . . . , (N + 1); j = 1, 2, . . . , (M + 1) as

∫ 1

0

∫ 1

0

R(x, t)Flϑi (x)FLμ
j (t)wϑ(x)wμ(t)dx dt = 0, i = 1, 2, . . . , (N + 1), j = 1, 2, . . . , (M + 1). (58)

Finally, by solving this system for the unknown matrix U , we obtain an approximate solution for the problem by
substituting U in eq. (55).

The algorithm of the proposed method is presented as follows:

Algorithm 2

Input: N,M ∈ N, μ, ϑ ∈ R

+; λ ∈ R

+, 1 < α ≤ 2; the functions f0, f1, g0, g1 and f .
Step 1: Define the FLFs FLϑ

n(x) and FLμ
m(t) by eq. (10), and the weight functions wϑ(x) and wμ(t).

Step 2: Construct the FLFs vectors Ψϑ(x) and Ψμ(t) from eqs. (15) and (16).

Step 3: Compute the operational matrices xP 2
ϑ , tP

(α−1)
μ and tP

α
μ using eqs. (19) and (26).

Step 4: Define the (N + 1) × (M + 1) unknown matrix U = [uij ].
Step 5: Compute the vectors G0, G1, X and E in eqs. (52) and (54).

Step 6: Compute the vector Ũ using eq. (53).
Step 7: Compute the matrix Λ by eq. (55).
Step 8: Compute the matrices V and F using eq. (56).
Step 9: Compute the residual function R(x, t) by eq. (57).

Step 10: Put
∫ 1

0

∫ 1

0
R(x, t)Flϑi (x)FLμ

j (t)wϑ(x)wμ(t)dx dt = 0, i = 1, 2, . . . , (N + 1), j = 1, 2, . . . , (M + 1).
Step 11: Solve the linear system of algebraic equations in Step 10 for the unknown matrix U .
Output: The approximate solution: u(x, t) � Ψ(x)T ΛΨ(t).

6 Illustrative test problems

In this section, some numerical examples are provided to demonstrate the efficiency and reliability of the proposed
method. Also, the absolute errors of the proposed method in some different points (xi, ti) ∈ [0, 1] × [0, 1] are reported
as follows:

|e (xi, ti)| =
∣∣Ψϑ(xi)T ΛΨμ(ti) − u (xi, ti)

∣∣ .

It is worth to mention that all numeric computations are performed via MAPLE 17 with 50 decimal digits.

Example 1

Consider the following time FSDE [17,18]:

∂u(x, t)
∂t

= 0D
1−α
t

[
∂2u(x, t)

∂x2

]
+ ex

(
(1 + α)tα − Γ (2 + α)

Γ (1 + 2α)
t2α

)
,

subject to the initial and boundary conditions,

u(x, 0) = 0, u(0, t) = t1+α, u(1, t) = et1+α,

and the exact solution u(x, t) = ext1+α.
This problem is also solved by the proposed method for N = M = 10. The graphs of the absolute errors for

(ϑ = 1, μ = 1
4 ) and α = 0.25 at t = 0.5 and x = 0.5 are shown in fig. 1. The space-time graphs of the approximate

solution and absolute error for α = 0.25 are shown in fig. 2. From figs. 1 and 2, it can be seen that the proposed
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Fig. 1. The graphs of the absolute errors at t = 0.5 (left) and x = 0.5 (right) for α = 0.25 with (ϑ = 1, μ = 1
4
) for example 1.
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Fig. 2. The space-time graphs of the approximate solution (left) and absolute error (right) for α = 0.25 with (ϑ = 1, μ = 1
4
)

for example 1.

Table 1. The absolute errors of the approximate solutions for some values of 0 < α < 1 at some different points (xi, ti) for
example 1.

(ϑ = 1, μ = 1
4
) (ϑ = 1, μ = 1

2
)

(x, t) α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(0.1, 0.1) 1.1653E-15 5.4630E-16 8.9967E-17 5.4027E-07 5.4630E-16 6.6203E-08

(0.2, 0.2) 4.8299E-16 3.4482E-16 3.7702E-17 5.6531E-07 3.4481E-16 6.8081E-08

(0.3, 0.3) 6.3654E-15 4.3503E-15 2.7852E-15 9.1462E-07 4.3503E-15 9.9607E-08

(0.4, 0.4) 3.1785E-15 2.0544E-15 1.0999E-15 3.5436E-07 2.0544E-15 3.0814E-08

(0.5, 0.5) 1.2673E-14 1.0547E-14 8.5076E-15 7.6824E-07 1.0547E-14 9.0129E-08

(0.6, 0.6) 2.2290E-14 1.9065E-14 1.6046E-14 7.7987E-07 1.9065E-14 7.9461E-08

(0.7, 0.7) 1.5053E-14 1.3220E-14 1.1282E-14 7.8472E-07 1.3220E-14 9.3327E-08

(0.8, 0.8) 4.4996E-14 4.2386E-14 3.9374E-14 1.4603E-06 4.2386E-14 1.5929E-07

(0.9, 0.9) 3.0894E-14 2.9780E-14 2.8455E-14 7.8523E-07 2.9780E-14 8.1111E-08

method is very efficient and accurate for solving this problem. The absolute errors of the approximate solutions for
some values of 0 < α < 1 at some different points (xi, ti) ∈ [0, 1] × [0, 1] for ϑ = 1 and some values for μ are shown
in tables 1 and 2. From the numerical results reported in tables 1 and 2, it can be observed that the best choice for
(ϑ, μ) to obtain accurate numerical solutions for all chosen 0 < α < 1 is (ϑ = 1, μ = 1

4 ). In general, it can be concluded
that by choosing suitable values for (ϑ, μ) only a small number of the FLFs is needed to obtain satisfactory results.
In [17], Cui applied the high-order compact finite-difference method for solving this problem for two cases α = 0.25
and α = 0.75. The maximum absolute errors obtained in [17] for the cases α = 0.25 and α = 0.75 are 1.8928 × 10−5

and 5.6363 × 10−5, respectively. In [18], Gao and Sun proposed a compact finite-difference scheme for this problem,
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Table 2. The absolute errors of the approximate solutions for some values of 0 < α < 1 at some different points (xi, ti) for
example 1.

(ϑ = 1, μ = 3
4
) (ϑ = 1, μ = 1)

(x, t) α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(0.1, 0.1) 1.0970E-05 5.4625E-16 1.5824E-06 2.7476E-05 1.7375E-05 5.7483E-06

(0.2, 0.2) 8.3776E-06 3.4481E-16 1.2396E-06 1.5595E-05 1.0133E-05 3.4165E-06

(0.3, 0.3) 9.7453E-06 4.3502E-15 1.3699E-06 2.9960E-05 1.8121E-05 5.7788E-06

(0.4, 0.4) 5.7152E-06 2.0544E-15 7.2884E-07 3.6442E-05 2.1315E-05 6.6293E-06

(0.5, 0.5) 2.4679E-06 8.9159E-15 7.0020E-07 2.0080E-05 1.1169E-05 3.3581E-06

(0.6, 0.6) 1.0663E-06 1.9065E-14 1.5126E-06 1.1095E-05 7.2043E-06 2.3820E-06

(0.7, 0.7) 5.8631E-06 1.3221E-14 7.5966E-07 3.5053E-05 2.0899E-05 6.5923E-06

(0.8, 0.8) 4.3308E-06 4.2386E-14 6.9124E-07 4.3419E-05 2.5446E-05 7.9587E-06

(0.9, 0.9) 1.0588E-05 2.9780E-14 1.5640E-06 5.2516E-05 3.0834E-05 9.6672E-06
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Fig. 3. The graphs of the absolute errors at t = 0.5 (left) and x = 0.5 (right) for α = 0.50 with (ϑ = 1, μ = 1
2
) for example 2.

and compared the numerical solutions obtained for the cases α = 0.25 and α = 0.75 with numerical results obtained
in [17]. They showed that their numerical results are apparently more accurate than numerical results via difference
scheme in [17]. It is also worth mentioning that the maximum absolute errors obtained in [18] for the cases α = 0.25
and α = 0.75 are 1.4338×10−8 and 7.1085×10−6, respectively. From table 1, it can be seen that for (ϑ = 1, μ = 1

4 ) our
results are more accurate than results in [17,18]. It is worth noting that the implementation of our proposed method
is very simple in comparison with the above mentioned methods.

Example 2

Consider the following time FSDE [17]:

∂u(x, t)
∂t

= 0D
1−α
t

[
∂2u(x, t)

∂x2

]
+

(
2t +

8π2tα+1

Γ (2 + α)

)
sin(2πx),

with the homogeneous initial and boundary conditions, and the exact solution u(x, t) = t2 sin(2πx).
This problem is solved by the proposed method for N = M = 15. The graphs of the absolute errors for (ϑ = 1, μ =

1
2 ) and α = 0.50 at t = 0.5 and x = 0.5 are shown in fig. 3. The space-time graphs of the approximate solution and
absolute error for α = 0.50 are shown in fig. 4. From figs. 3 and 4, one can see that the proposed method provides
numerical solutions with high accuracy for the problem. The absolute errors of the approximate solutions for some
values of 0 < α < 1 at some different points (xi, ti) ∈ [0, 1] × [0, 1] for ϑ = 1 and some values for μ are shown in
tables 3 and 4. From the numerical results reported in tables 3 and 4, it can be observed that the best choices for
values (ϑ, μ) to obtain accurate numerical solutions for all chosen 0 < α < 1 are (ϑ = 1, μ = 1

4 , 1
2 , 1). Furthermore, it

can be seen that by choosing suitable (ϑ, μ) only a small number of the FLFs is needed to obtain satisfactory results.
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Fig. 4. The space-time graphs of the approximate solution (left) and absolute error (right) for α = 0.50 with (ϑ = 1, μ = 1
2
)

for example 2.

Table 3. The absolute errors of the approximate solutions for some values of 0 < α < 1 at some different points (xi, ti) for
example 2.

(ϑ = 1, μ = 1
4
) (ϑ = 1, μ = 1

2
)

(x, t) α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(0.1, 0.1) 2.0893E-14 2.9398E-14 3.9670E-14 2.0893E-14 2.9398E-14 3.9670E-14

(0.2, 0.2) 9.0586E-14 1.3648E-13 1.9747E-13 9.0586E-14 1.3648E-13 1.9747E-13

(0.3, 0.3) 1.3784E-12 1.2651E-12 1.1144E-12 1.3784E-14 1.2651E-12 1.1144E-12

(0.4, 0.4) 1.5418E-12 1.3410E-12 1.0796E-12 1.5418E-12 1.3410E-12 1.0796E-12

(0.5, 0.5) 3.6180E-12 3.3177E-12 2.9391E-12 3.6180E-12 3.3177E-12 2.9391E-12

(0.6, 0.6) 8.2284E-12 7.8632E-12 7.4165E-12 8.2284E-12 7.8632E-12 7.4165E-12

(0.7, 0.7) 8.7568E-12 8.3601E-12 7.8917E-12 8.7568E-12 8.3601E-12 7.8917E-12

(0.8, 0.8) 2.3438E-11 2.3076E-11 2.2666E-11 2.3438E-11 2.3076E-11 2.2666E-11

(0.9, 0.9) 3.0885E-11 3.0649E-11 3.0392E-11 3.0885E-11 3.0649E-11 3.0392E-11

Table 4. The absolute errors of the approximate solutions for some values of 0 < α < 1 at some different points (xi, ti) for
example 2.

(ϑ = 1, μ = 3
4
) (ϑ = 1, μ = 1)

(x, t) α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(0.1, 0.1) 4.8506E-09 5.5714E-09 7.3549E-09 2.0893E-14 2.9399E-14 3.9671E-14

(0.2, 0.2) 3.2969E-08 3.0956E-08 3.0936E-08 9.0586E-14 1.3648E-13 1.9747E-13

(0.3, 0.3) 2.1475E-08 1.8831E-08 1.7510E-08 1.3784E-12 1.2651E-12 1.1144E-12

(0.4, 0.4) 1.1284E-08 9.5736E-09 8.6436E-08 1.5418E-12 1.3410E-12 1.0796E-12

(0.5, 0.5) 4.0329E-12 3.7410E-12 3.3720E-12 4.0329E-12 3.7410E-12 3.3720E-12

(0.6, 0.6) 1.3401E-08 1.2229E-08 1.2005E-08 8.2284E-12 7.8632E-12 7.4165E-12

(0.7, 0.7) 2.3177E-08 2.1914E-08 2.2290E-08 8.7568E-12 8.3601E-12 7.8917E-12

(0.8, 0.8) 2.2582E-08 2.0672E-08 2.0685E-08 2.3438E-11 2.3076E-11 2.2666E-11

(0.9, 0.9) 1.3519E-08 3.8082E-09 7.5906E-09 3.0885E-11 3.0649E-11 3.0392E-11
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Fig. 5. The graphs of the absolute errors at t = 0.5 (left) and x = 0.5 (right) for α = 0.75 with (ϑ = 1, μ = 1
2
) for example 3.

In [17], Cui applied high-order compact finite-difference method for solving this problem and investigated the numerical
solutions for α = 0.50. The maximum absolute error obtained in [17] is 5.0200 × 10−4. It is also expressed that the
coefficient matrix of the unknowns in his method is tridiagonal and the scheme can be solved by the Thomas algorithm,
but since all time history must be in memory, the memory requirement are costly, and the computer memory will
limit the step sizes. To avoid of this fact the “Short Memory” principle has been used, but it is worth noting that
the numerical experiments are not very satisfactory unless sufficiently many previous time steps have been included.
However, we believe that our method is more efficient and accurate in comparison with the above mentioned method.
Furthermore, the implementation of our proposed method is very simple in comparison with the mentioned method.

Example 3

Consider the following time FSDE [18,19]:

∂u(x, t)
∂t

= 0D
1−α
t

[
∂2u(x, t)

∂x2

]
+ f(x, t),

with the homogenous initial and boundary conditions, and

f(x, t) = (2 + α)exx2(1 − x)2tα+1 − Γ (3 + α)
Γ (2α + 2)

t2α+1ex
(
2 − 8x + x2 + 6x3 + x4

)
.

The exact solution for this problem is given in [18,19] as u(x, t) = exx2(1 − x)2tα+2.
This problem is also solved by the proposed method for N = M = 12. The graphs of the absolute errors for

(ϑ = 1, μ = 1
2 ) and α = 0.75 at t = 0.5 and x = 0.5 are shown in fig. 5. The space-time graphs of the approximate

solution and absolute error for α = 0.75 are shown in fig. 6. From figs. 5 and 6, it can be observed that the proposed
method is very accurate for solving this problem. The absolute errors of the approximate solutions for some values
of 0 < α < 1 at some different points (xi, ti) ∈ [0, 1] × [0, 1] for ϑ = 1 and some values for μ are shown in tables 5
and 6. From tables 5 and 6, one can see that the best choice for values (ϑ, μ) to obtain accurate numerical solutions
for all chosen 0 < α < 1 is (ϑ = 1, μ = 1

4 ). Furthermore, it can be seen that by choosing suitable (ϑ, μ), only a few
number of the FLFs is needed to obtain satisfactory results. In [18], Zhao and Sun, and in [19] Ren et al. have proposed
a box-type scheme and a compact difference scheme, respectively for solving this problem with Neumann boundary
conditions.

Example 4

Consider the following time FDWE [34]:

∂αu(x, t)
∂tα

+
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2

+ f(x, t), 1 < α ≤ 2,

with the homogenous initial and boundary conditions, and

f(x, t) =
2x(1 − x)
Γ (3 − α)

t2−α + 2tx(1 − x) + 2t2.
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Fig. 6. The space-time graphs of the approximate solution (left) and absolute error (right) for α = 0.75 with (ϑ = 1, μ = 1
2
)

for example 3.

Table 5. The absolute errors of the approximate solutions for some values of 0 < α < 1 at some different points (xi, ti) for
example 3.

(ϑ = 1, μ = 1
4
) (ϑ = 1, μ = 1

2
)

(x, t) α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(0.1, 0.1) 1.0591E-14 1.6530E-13 1.0008E-12 2.4706E-11 7.2647E-14 5.3118E-12

(0.2, 0.2) 2.7800E-15 1.0559E-13 4.4145E-13 5.6743E-11 7.4827E-14 1.2859E-11

(0.3, 0.3) 4.2109E-14 3.8730E-14 2.0540E-13 1.1572E-10 9.6851E-14 2.5763E-11

(0.4, 0.4) 3.6027E-13 3.4266E-13 9.3389E-13 1.2821E-10 1.3099E-13 3.2749E-11

(0.5, 0.5) 1.2908E-13 8.4652E-14 8.1460E-14 1.7255E-11 4.2559E-13 1.1406E-12

(0.6, 0.6) 6.7786E-13 3.3773E-13 1.6059E-12 1.8323E-10 1.4608E-12 4.1547E-11

(0.7, 0.7) 4.9752E-13 2.3678E-13 8.1717E-13 1.4779E-10 1.0059E-12 3.9874E-11

(0.8, 0.8) 5.5828E-13 3.1919E-13 1.9012E-12 1.2709E-11 1.0278E-12 7.8293E-12

(0.9, 0.9) 9.7112E-13 8.9222E-13 6.1592E-12 1.7107E-11 1.9818E-12 7.3444E-12

Table 6. The absolute errors of the approximate solutions for some values of 0 < α < 1 at some different points (xi, ti) for
example 3.

(ϑ = 1, μ = 3
4
) (ϑ = 1, μ = 1)

(x, t) α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(0.1, 0.1) 3.6692E-14 2.0811E-10 9.6903E-11 5.0957E-09 3.2396E-09 1.0391E-09

(0.2, 0.2) 1.5601E-15 8.4011E-10 4.0451E-10 1.7284E-08 1.1483E-08 4.0656E-09

(0.3, 0.3) 3.1166E-14 1.3156E-09 6.3452E-10 2.6434E-08 1.7734E-08 6.2650E-09

(0.4, 0.4) 1.6146E-13 1.2714E-09 6.2185E-10 3.0799E-08 2.1441E-08 7.5830E-09

(0.5, 0.5) 1.5324E-14 2.4291E-10 1.3709E-10 2.4346E-08 1.8432E-08 6.6094E-09

(0.6, 0.6) 3.5489E-13 1.1940E-09 5.7066E-10 9.3755E-09 9.1548E-09 3.3786E-09

(0.7, 0.7) 3.7479E-13 1.8083E-09 8.9997E-10 2.5547E-09 6.9719E-10 2.5998E-10

(0.8, 0.8) 4.6625E-13 1.3820E-09 6.9911E-10 3.1730E-09 7.3498E-10 5.2779E-10

(0.9, 0.9) 9.5645E-13 6.1495E-10 3.1335E-10 3.3165E-09 2.4949E-09 2.1812E-10
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Fig. 7. The graphs of the absolute errors at t = 0.5 (left) and x = 0.5 (right) for α = 1.50 with (ϑ = 1, μ = 1
4
) for example 4.
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Fig. 8. The space-time graphs of the approximate solution (left) and absolute error (right) for α = 1.50 with (ϑ = 1, μ = 1
4
)

for example 4.

Table 7. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some different points (xi, ti) for
example 4.

(ϑ = 1, μ = 1
4
) (ϑ = 1, μ = 1

2
)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 1.3500E-33 2.0760E-32 1.5710E-32 3.5748E-08 9.8100E-33 7.8522E-07

(0.2, 0.2) 5.0000E-32 6.3400E-32 1.4700E-32 1.0457E-07 6.2000E-33 1.6394E-06

(0.3, 0.3) 2.6000E-32 9.3000E-32 6.5000E-32 1.0680E-08 7.0000E-33 1.1692E-06

(0.4, 0.4) 1.7000E-32 1.1900E-31 1.3700E-31 2.0266E-07 2.0000E-32 2.5900E-06

(0.5, 0.5) 2.2400E-31 3.9800E-31 9.3000E-32 1.1693E-07 6.0000E-33 3.1399E-06

(0.6, 0.6) 3.2100E-31 4.7800E-31 2.2700E-31 1.7656E-07 8.0000E-33 6.3779E-07

(0.7, 0.7) 3.3000E-31 2.0000E-31 3.9000E-31 2.2697E-07 0.0000 3.3699E-06

(0.8, 0.8) 5.0000E-31 1.3000E-31 0.0000 5.7136E-08 1.0000E-32 1.0418E-06

(0.9, 0.9) 8.2000E-31 5.7000E-32 8.6000E-32 1.3647E-07 5.0000E-33 1.4630E-06

The exact solution for this problem is given in [34] as u(x, t) = t2x(1 − x).
This problem is also solved by the proposed method for N = M = 8. The graphs of the absolute errors for

(ϑ = 1, μ = 1
4 ) and α = 1.50 at t = 0.5 and x = 0.5 are shown in fig. 7. The space-time graphs of the approximate

solution and absolute error for α = 1.50 are shown in fig. 8. By figs. 7 and 8, it can be seen that the proposed method
provides numerical solutions with high accuracy for the problem. The absolute errors of the approximate solutions for
some values of 1 < α < 2 at some different points (xi, ti) ∈ [0, 1] × [0, 1] for ϑ = 1 and some values for μ are shown in
tables 7 and 8. From the numerical results reported in tables 7 and 8, one can see that the best choice for (ϑ, μ) to
obtain accurate numerical solutions for all chosen 1 < α < 2 is (ϑ = 1, μ = 1

4 ).
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Table 8. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some different points (xi, ti) for
example 4.

(ϑ = 1, μ = 3
4
) (ϑ = 1, μ = 1)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 7.7163E-08 3.0712E-07 7.4457E-07 4.3944E-10 1.6842E-07 5.0477E-07

(0.2, 0.2) 9.6531E-08 1.6941E-06 4.9945E-06 8.7663E-07 2.6294E-06 3.4478E-06

(0.3, 0.3) 3.0379E-07 8.2147E-08 2.8548E-06 1.6197E-06 3.9313E-06 3.7111E-06

(0.4, 0.4) 4.2050E-07 1.3287E-06 1.3821E-06 1.9740E-06 1.3696E-06 2.6916E-06

(0.5, 0.5) 1.8205E-07 8.0071E-07 1.9800E-06 2.0156E-06 4.8060E-06 4.3428E-06

(0.6, 0.6) 5.4480E-07 2.0092E-06 5.9535E-06 3.3103E-07 3.1998E-07 1.8222E-06

(0.7, 0.7) 1.0100E-07 1.0678E-07 2.2874E-06 1.6515E-06 4.0298E-06 3.6475E-06

(0.8, 0.8) 4.5130E-07 1.2586E-06 2.4733E-06 1.0386E-06 1.6663E-06 2.4491E-07

(0.9, 0.9) 1.9383E-07 5.1424E-07 3.4417E-07 9.8661E-08 2.4378E-07 8.7888E-07
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Fig. 9. The graphs of the absolute errors at t = 0.5 (left) and x = 0.5 (right) for α = 0.25 with (ϑ = 1, μ = 1
4
) for example 5.

Example 5

Consider the following time FDWE [34,40]:

∂αu(x, t)
∂tα

+
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2

+ f(x, t), 1 < α ≤ 2,

subject to the initial and boundary conditions,

u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = t3, u(1, t) = et3,

and

f(x, t) =
6t3−α

Γ (4 − α)
ex + 3t2ex − t3ex.

The exact solution for this problem is given in [34,40] as u(x, t) = ext3.
We solved this problem by the proposed method for N = M = 12. The graphs of the absolute errors for (ϑ =

1, μ = 1
4 ) and α = 1.25 at t = 0.5 and x = 0.5 are shown in fig. 9. The space-time graphs of the approximate solution

and absolute error for α = 1.25 are shown in fig. 10. By figs. 9 and 10, it can be seen that the proposed method is very
accurate for solving the problem. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some
different points (xi, ti) ∈ [0, 1]× [0, 1] for ϑ = 1 and some values for μ are shown in tables 9 and 10. From the numerical
results reported in tables 9 and 10, one can see that the best choice for (ϑ, μ) to obtain accurate numerical solutions
for all chosen 1 < α < 2 is (ϑ = 1, μ = 1

4 ). In [67], Liu et al. proposed the fractional predictor-corrector method
(FPCM) to solve this problem for the case α = 1.85. The maximum absolute error obtained in [67] is 1.6341 × 10−3.
However, it can be seen that our numerical results are more accurate in comparison with those based on the FPCM.
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Fig. 10. The space-time graphs of the approximate solution (left) and absolute error (right) for α = 1.25 with (ϑ = 1, μ = 1
4
)

for example 5.

Table 9. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some different points (xi, ti) for
example 5.

(ϑ = 1, μ = 1
4
) (ϑ = 1, μ = 1

2
)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 1.3169E-20 2.6021E-21 9.3498E-21 1.1088E-10 2.4947E-21 1.4311E-09

(0.2, 0.2) 3.2588E-20 6.9387E-20 5.9722E-20 4.0681E-10 6.9410E-20 1.9862E-09

(0.3, 0.3) 1.2798E-19 5.1705E-20 4.4853E-20 1.1970E-10 5.1537E-20 1.0093E-09

(0.4, 0.4) 1.2678E-19 2.5709E-19 3.3075E-19 6.9363E-10 2.5787E-19 4.3781E-09

(0.5, 0.5) 8.1870E-19 8.3886E-19 9.2864E-19 9.0826E-10 8.3880E-19 2.4925E-09

(0.6, 0.6) 3.1825E-19 7.5240E-19 1.2362E-18 2.9761E-10 7.5231E-19 4.3308E-09

(0.7, 0.7) 3.9360E-18 3.4125E-18 2.8110E-18 1.5694E-09 3.4120E-18 5.5774E-09

(0.8, 0.8) 3.9710E-18 3.4186E-18 2.6320E-18 1.4391E-09 3.4193E-18 1.6162E-09

(0.9, 0.9) 1.2346E-17 1.1996E-17 1.1088E-17 8.8595E-10 1.1997E-17 2.1890E-09

Table 10. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some different points (xi, ti) for
example 5.

(ϑ = 1, μ = 3
4
) (ϑ = 1, μ = 1)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 5.2702E-09 1.0422E-09 3.2897E-08 2.7359E-08 8.5538E-08 1.2025E-07

(0.2, 0.2) 3.3186E-10 1.9765E-10 3.0303E-09 1.0747E-08 4.6804E-08 8.5811E-08

(0.3, 0.3) 1.0661E-08 1.9756E-09 6.0188E-08 3.3736E-08 1.0006E-07 1.1897E-07

(0.4, 0.4) 1.7464E-08 1.9134E-09 1.1131E-08 6.9245E-08 1.5694E-07 1.5560E-07

(0.5, 0.5) 1.8382E-08 1.8851E-09 5.1733E-08 8.7506E-08 1.6409E-07 1.5362E-07

(0.6, 0.6) 6.2774E-10 9.8058E-10 3.7139E-08 7.5321E-08 1.0155E-07 7.2003E-08

(0.7, 0.7) 2.0593E-08 3.3893E-09 4.1812E-08 4.7613E-08 3.3217E-09 5.8660E-08

(0.8, 0.8) 3.6073E-08 5.3958E-09 6.5686E-08 4.8316E-08 3.9548E-08 2.4194E-07

(0.9, 0.9) 3.6955E-08 6.7146E-09 1.5555E-08 1.5717E-07 3.5338E-07 6.0079E-08

Example 6

Consider the following time FDWD:

∂αu(x, t)
∂tα

+
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2

+ f(x, t), 1 < α ≤ 2,

subject to the homogenous initial and boundary conditions, and

f(x, t) =
(
(α + 1)tα − α tα−1 + Γ (α + 2)t − Γ (α + 1)

) (
x

5
2 − x

)
− 15

4
√

x
(
tα+1 − tα

)
.



Eur. Phys. J. Plus (2016) 131: 268 Page 19 of 22

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x 10
−30

x

E
rr

or

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−30

t

E
rr

or

Fig. 11. The graphs of the absolute errors at t = 0.5 (left) and x = 0.5 (right) for α = 1.75 with (ϑ = 1
2
, μ = 1

4
) for example 6.
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Fig. 12. The space-time graphs of the approximate solution (left) and absolute error (right) in the case α = 1.75 with
(ϑ = 1

2
, μ = 1

4
) for example 6.

The exact solution of this problem is u(x, t) = (tα+1 − tα)(x
5
2 − x).

We solved this problem by the proposed method for N = M = 11. The graphs of the absolute errors for (ϑ =
1
2 , μ = 1

4 ) and α = 1.75 at t = 0.5 and x = 0.5 are shown in fig. 11. The space-time graphs of the approximate solution
and absolute error for α = 1.75 are shown in fig. 12. By figs. 11 and 12, it can be seen that the proposed method
provides numerical solutions with high accuracy for the problem. The absolute errors of the approximate solutions for
some values of 1 < α < 2 at some different points (xi, ti) ∈ [0, 1] × [0, 1] for ϑ = 1

2 , 1 and some values for μ are shown
in tables 11–14. From tables 11–14, it can be observed that the best choice for (ϑ, μ) to obtain accurate numerical
solutions for all chosen 1 < α < 2 is (ϑ = 1

2 , μ = 1
4 ).

7 Conclusion

In this paper, an efficient and accurate Galerkin method using fractional Legendre Functions (FLFs) together with
their operational matrix of fractional integration (OMFI) was proposed to obtain approximate solutions for the frac-
tional sub-diffusion equation (FSDE) and time-fractional diffusion-wave equation (FDWE). Also, a new OMFI in the
Riemann-Liouville sense for FLFs was derived. The FLFs and their OMFI have been used to convert the problems
under consideration into some corresponding linear systems of algebraic equations to achieve approximate solutions for
the problems. The method discussed in this paper is very convenient for solving such kind of problems, since the initial
and boundary conditions are taken into account automatically. The efficiency of the propoesed method have been
tested on several non-trivial examples, where the numerical solutiona have been explicitly computed and graphically
represented. The applicability and accuracy was also carefully checked for these numerical examples. The obtained
results were in a good agreement with the exact solutions. We have also shown that only a small number of FLFs
are needed to obtain satisfactory results. Taking into account the efficiency of this method we believe that it can be
also used for the numerical solution of other kinds of fractional partial differential equations such as space fractional
diffusion-wave equation and it can be easily applied also to the analysis of fourth-order FDWE.
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Table 11. The absolute errors of the approximate solution for some values of 1 < α < 2 at some different points (xi, ti) for
example 6.

(ϑ = 1
2
, μ = 1

4
) (ϑ = 1

2
, μ = 1

2
)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 6.3200E-32 8.6500E-32 8.6000E-33 1.2569E-07 6.2000E-33 3.5023E-10

(0.2, 0.2) 2.5000E-32 1.8800E-31 4.2160E-31 3.7701E-07 3.0000E-33 1.4116E-09

(0.3, 0.3) 4.9000E-32 3.7500E-31 4.2600E-31 1.4160E-06 1.0000E-32 9.9022E-09

(0.4, 0.4) 7.6000E-32 6.8200E-31 7.7900E-31 1.0872E-06 2.1000E-32 7.9740E-09

(0.5, 0.5) 7.8000E-32 2.1600E-31 3.3400E-31 1.3095E-06 1.5000E-32 5.6182E-09

(0.6, 0.6) 5.8400E-31 8.8100E-31 2.6000E-32 1.9804E-06 3.8000E-32 6.4448E-09

(0.7, 0.7) 6.1600E-31 5.3500E-31 2.6400E-31 1.0948E-06 6.0000E-33 5.0656E-09

(0.8, 0.8) 4.4000E-32 3.2300E-31 6.8500E-31 2.1323E-06 6.0000E-33 3.0504E-09

(0.9, 0.9) 2.4600E-31 7.3000E-31 1.0540E-30 7.9575E-07 1.0000E-32 1.3878E-09

Table 12. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some different points (xi, ti) for
example 6.

(ϑ = 1
2
, μ = 3

4
) (ϑ = 1

2
, μ = 1)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 1.3812E-06 2.4916E-07 4.0603E-08 2.9244E-06 9.7970E-07 1.6120E-07

(0.2, 0.2) 1.8276E-06 2.1906E-07 1.2339E-08 6.0657E-06 2.4510E-06 5.4776E-07

(0.3, 0.3) 3.3628E-06 5.7925E-07 7.7451E-08 6.4277E-06 2.1519E-06 3.8354E-07

(0.4, 0.4) 3.8603E-08 4.3200E-08 1.0323E-07 2.7923E-06 1.1673E-07 1.9105E-07

(0.5, 0.5) 3.8652E-06 4.1543E-07 1.4404E-07 4.1092E-06 2.6654E-06 8.1157E-07

(0.6, 0.6) 5.2350E-06 6.4437E-07 2.1652E-08 9.1482E-06 4.0138E-06 9.8223E-07

(0.7, 0.7) 1.0579E-06 3.1710E-07 4.3693E-08 9.0008E-06 3.2715E-06 6.9048E-07

(0.8, 0.8) 2.4499E-06 3.3965E-07 8.2515E-08 6.2824E-06 1.9940E-06 3.7061E-07

(0.9, 0.9) 2.3150E-06 2.7708E-07 5.7861E-08 4.7581E-06 1.6187E-06 3.2544E-07

Table 13. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some different points (xi, ti) for
example 6.

(ϑ = 1, μ = 1
4
) (ϑ = 1, μ = 1

2
)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 1.3139E-07 7.2598E-08 3.8468E-08 5.7255E-09 7.2646E-08 3.8887E-08

(0.2, 0.2) 2.0302E-07 1.3417E-07 8.9142E-08 1.7392E-07 1.3403E-07 9.0606E-08

(0.3, 0.3) 1.9110E-07 1.5239E-07 1.1404E-07 1.2247E-06 1.5228E-07 1.2356E-07

(0.4, 0.4) 9.8715E-08 4.8248E-07 1.9372E-08 9.8850E-07 4.8220E-08 2.7166E-08

(0.5, 0.5) 3.3980E-07 2.4799E-07 1.6580E-07 9.6975E-07 2.4815E-07 1.7143E-07

(0.6, 0.6) 6.6207E-08 2.5887E-08 1.9787E-08 2.0467E-06 2.5683E-08 2.5959E-08

(0.7, 0.7) 4.0262E-07 3.5436E-07 3.0420E-07 1.4975E-06 3.5461E-07 2.9868E-07

(0.8, 0.8) 4.8309E-07 4.6348E-07 4.4429E-07 1.6490E-06 4.6340E-07 4.4737E-07

(0.9, 0.9) 2.2936E-07 2.3739E-07 2.4840E-07 1.0242E-06 2.3729E-07 2.4991E-07
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Table 14. The absolute errors of the approximate solutions for some values of 1 < α < 2 at some different points (xi, ti) for
example 6.

(ϑ = 1, μ = 3
4
) (ϑ = 1, μ = 1)

(x, t) α = 1.25 α = 1.50 α = 1.75 α = 1.25 α = 1.50 α = 1.75

(0.1, 0.1) 1.5126E-06 3.2178E-07 7.9234E-08 2.7929E-06 9.0706E-07 1.2276E-07

(0.2, 0.2) 2.0307E-06 3.5307E-07 7.6859E-08 5.8627E-06 2.3170E-06 4.5845E-07

(0.3, 0.3) 3.5541E-06 3.5307E-07 1.9111E-07 6.2364E-06 1.9997E-06 2.7000E-07

(0.4, 0.4) 6.0037E-08 4.9557E-09 1.2239E-07 2.6933E-06 6.8240E-08 2.1030E-07

(0.5, 0.5) 3.4945E-06 5.7933E-07 1.4622E-08 1.5074E-06 1.5620E-06 4.5899E-07

(0.6, 0.6) 5.1687E-06 6.1874E-07 1.9675E-09 9.2141E-06 4.0393E-06 9.6261E-07

(0.7, 0.7) 1.4600E-06 3.8607E-07 3.4772E-07 8.5976E-06 2.9167E-06 3.8622E-07

(0.8, 0.8) 2.9331E-06 8.0289E-07 3.6172E-07 6.7645E-06 2.4573E-06 8.1527E-07

(0.9, 0.9) 2.0860E-06 3.8854E-08 3.0635E-07 4.5252E-06 1.3782E-06 7.9251E-08
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