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Abstract. In this paper, the Jacobi elliptic function expansion method is proposed for the first time to
construct the exact solutions of the time conformable fractional two-dimensional Boussinesq equation
and the combined KdV-mKdV equation. New exact solutions are found. This method is based on Jacobi
elliptic functions. The results obtained confirm that the proposed method is an efficient technique for
analytic treatment of a wide variety of nonlinear conformable time-fractional partial differential equations.

1 Introduction

Since it has been understood that the fractional differential equations are valuable tools in the modeling of many
phenomena in biology, chemistry, economy, engineering, physics and other areas of applications, they have drawn
much attention by scientists [1–4]. Due to this, scientists have been giving different definitions to these fractional
derivatives such as Grünwald-Letnikov, Riemann-Liouville and Caputo’s fractional derivatives [5–7]. Within these
definitions of fractional derivatives, the most popular ones are the following:

1) The Riemann-Liouville Fractional Derivative Definition: If n is a positive integer and α ∈ [n−1, n), the α derivative
of a function f is given by [7]

Dα
a (f)(t) =

1
Γ (n − α)

dn

dtn

∫ t

a

f(x)
(t − x)α−n+1

dx.

2) The Caputo Fractional Derivative Definition: If n is a positive integer and α ∈ [n − 1, n), the α derivative of a
function f is given by [7]

Dα
a (f)(t) =

1
Γ (n − α)

∫ t

a

f (n)(x)
(t − x)α−n+1

dx.

Although the above definitions are used in most articles, there are some flaws in these definitions, such as:

1) The Riemann-Liouville derivative does not satisfy Dα
a 1 = 0 (while the Caputo derivative satisfies this condition),

if α is not a natural number.
2) All fractional derivatives do not satisfy the known formula of the derivative of the product of two functions:

Dα
a (fg) = gDα

a (f) + fDα
a (g) .

3) All fractional derivatives do not satisfy the known formula of the derivative of the quotient of two functions:

Dα
a

(
f

g

)
=

fDα
a (f) − gDα

a (g)
g2

.
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4) All fractional derivatives do not satisfy the chain rule:

Dα
a (fog)(t) = fα(g(t))gα(t).

5) All fractional derivatives do not satisfy DαDβ = Dα+β in general.
6) The Caputo definition assumes that the function f is differentiable.

To overcome these difficulties, recently, an interesting and helpful work on the theory of derivatives and integrals of
fractional order was done by Khalil et al. [8], which is the simplest definition to recognize the fractional derivative and
integral.

Definition. Let f : [0,∞) → R be a function. The α-th order conformable fractional derivative of f is defined by

Tα(f)(t) = lim
ε→0

f(t + εt1−α) − f(t)
ε

,

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0 and limt→0+ f (α)(t) exists, then we define
f (α)(0) = limt→0+ f (α)(t), and the conformable fractional integral of a function f starting from a ≥ 0 is defined as

Ia
α(f)(t) =

∫ t

a

f(x)
x1−α

dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1]. The following theorem points out some
properties which are satisfied by the conformable fractional derivative [8].

Theorem 1. Let α ∈ (0, 1] and suppose f , g are α-differentiable at point t > 0. Then

1) Tα(cf + dg) = cTα(f) + cTα(g) for all a, b ∈ R.
2) Tα(tp) = ptp−α for all p ∈ R.
3) Tα(λ) = 0 for all constant functions f(t) = λ.
4) Tα(fg) = fTα(g) + gTα(f).
5) Tα( f

g ) = gTα(f)−fTα(g)
g2 .

6) If, in addition to f differentiable, then Tα(f)(t) = t1−α df
dt .

This new fractional definition has some physical applications. For instance, Hammad and Khalil [9] gave the
solution for the conformable fractional heat equation. Chung [10] used the conformable fractional derivative and
integral to discuss fractional Newtonian mechanics; Kurt et al. [11] expressed the exact and approximate solutions of
the time conformable fractional Burgers’ equation, which arises in numerous physical areas, such as gas dynamics, heat
conduction, elasticity theory, turbulence theory, shock wave theory, fluid mechanics, termaviscous fluids, hydrodynamic
waves and elastic waves. It is clearly seen that further studies and explanations can be made regarding the physical
meaning and physical applications of this new subject area.

Looking for the exact solutions of nonlinear wave equations is very important. Up to now, many powerful methods
have been developed, such as the exp-function method [12], the hyperbolic function method [13], the first integral
method [14], and so on. Recently, the Jacobi elliptic function expansion method [15] has been proposed to construct
exact solutions to nonlinear wave equations. In this paper, we obtain the exact solutions of the time-fractional combined
KdV-mKdV equation and Boussinesq equation by means of the conformable fractional derivative by the Jacobi elliptic
function expansion method.

2 The Jacobi elliptic function expansion method

Now let us simply describe the procedure of the Jacobi elliptic function expansion method. Let us consider a given
nonlinear wave equation, say, in two variables:

F

(
u,

∂αu

∂tα
,
∂u

∂x
,
∂u

∂y
,
∂2αu

∂t2α
,
∂2u

∂x2
,
∂2u

∂y2
, . . .

)
= 0. (1)

Transforming eq. (1), applying the chain rule [16],

u = u(ξ), ξ = m
tα

α
+ nx + sy, (2)
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Table 1. Solutions of F (ξ) in eq. (5) for the special chosen values of P , Q and R [17,18].

P Q R F

1 r2 −(1 + r2) 1 sn, cd

2 −r2 2r2 − 1 1 − r2 cn

3 −1 2 − r2 r2 − 1 dn

4 1 −(1 + r2) r2 ns, dc

5 1 − r2 2r2 − 1 −r2 nc

6 r2 − 1 2 − r2 −1 nd

7 1 − r2 2 − r2 1 sc

8 −r2(1 − r2) 2r2 − 1 1 sd

9 1 2 − r2 1 − r2 cs

10 1 2r2 − 1 −r2(1 − r2) ds

11
−1

4

r2 + 1

2
− (1 − r2)2

4
r cn ∓ dn

12
1

4

−2r2 + 1

2

1

4
ns∓ cs

13
1 − r2

4

r2 + 1

2

1 − r2

4
nc∓ sc

14
1

4

r2 − 2

2

r4

4
ns∓ ds

15
r2

4

r2 − 2

2

r2

4
sn∓i cn,

dn√
1 − r2 sn∓ cn

16
1

4

1 − 2r2

2

1

4
r cn ∓i dn,

sn

1 ∓ cn

17
r2

4

r2 − 2

2

1

4

sn

1 ∓ dn

18
r2 − 1

4

r2 + 1

2

r2 − 1

4

dn

1 ∓ r sn

19
1 − r2

4

r2 + 1

2

−r2 + 1

4

cn

1 ∓ sn

20
(1 − r2)2

4

r2 + 1

2

1

4

sn

dn∓ cn

21
r4

4

r2 − 2

2

1

4

cn√
1 − r2 ∓ dn

where m, n and s are the arbitrary constants,

∂α(·)
∂tα

= m
d(·)
dξ

,
∂(·)
∂x

= n
d(·)
dξ

,
∂(·)
∂y

= s
d(·)
dξ

, . . . , (3)

yields an ordinary differential equation (ODE) for u(ξ),

O(u, u′, u′′, u′′′, . . .). (4)

The main idea in this generalized indirect method is to use the opportunity of the solutions of an auxiliary ordinary
differential equation (the first kind of Jacobian equation containing three parameters) to build abundant families of
Jacobian elliptic solutions for the above-mentioned equation. The auxiliary equation can be shown

(F ′)2(ξ) = PF 4(ξ) + QF 2(ξ) + R, (5)

where F ′ = dF/dξ, ξ = ξ(x, t, y) and P , Q, R are constants. Equation (5) has its solutions in table 1 where i2 = −1.
The Jacobian elliptic functions sn ξ = sn(ξ; r), cn ξ = cn(ξ; r) and dn ξ = dn(ξ; r), where r(0 < r < 1) is the modulus
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Table 2. Jacobi elliptic functions for r → 0 and r → 1 [17,18].

r → 0 r → 1 r → 0 r → 1

1 sn u sin u tanh u 7 dc u sec u 1

2 cn u cos u sech u 8 nc u sec u cosh u

3 dn u 1 sech u 9 sc u tan u sinh u

4 cd u cos u 1 10 ns u csc u coth u

5 sd u sin u sinh u 11 ds u csc u csch u

6 nd u 1 cosh u 12 cs u cot u csch u

of the elliptic function, are double periodic and satisfy the following properties:

sn2 ξ + cn2 ξ = 1,

dn2 ξ + r2 sn2 ξ = 1,

d
dξ

sn ξ = cn ξ dn ξ,

d
dξ

cn ξ = − sn ξ dn ξ,

d
dξ

dn ξ = −r2 cn ξ sn ξ.

Since r → 0 and r → 1, Jacobi elliptic functions, which are listed in table 2, turn into trigonometric and hyperbolic
functions, hence we obtain the trigonometric function solutions and solitonic solutions of the considered equation.

By the Jacobi elliptic function expansion method, u(ξ) can be expressed as a finite series of Jacobi elliptic functions,

u(ξ) =
k∑

i=0

aiF
i(ξ), (6)

where F (ξ) is the solution of the nonlinear ordinary equation (5) and k, ai (i = 0, 1, 2, . . . , k) are constants to be
determined later. The integer k in (6) can be determined by balancing the highest-order linear term,

O

(
dpu

dξp

)
= k + p, p = 0, 1, 2, . . . , (7)

and the highest-order nonlinear term,

O

(
uq dpu

dξp

)
= (q + 1)k + p, p = 0, 1, . . . , q = 0, 1, . . . , (8)

in (4).
Substituting (6) and setting all the coefficients of powers F to be zero, then a system of nonlinear algebraic

equations for ai (i = 0, 1, 2, . . . , n) is derived, by solving this system with the aid of Mathematica and using all the
values for P , Q, R (5) in table 1.

After all this procedure combining the values with eq. (6) and the auxiliary equation we choose, we can get exact
solutions for eq. (1).

3 Exact traveling wave solutions to the time-fractional two-dimensional Boussinesq equation

Let us consider the conformable time-fractional Boussinesq equation,

∂α

∂tα
∂αu

∂tα
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2(u2)

∂x2
− ∂4u

∂x4
= 0, (9)

where α ∈ (0, 1) and ∂αu
∂tα means conformable fractional derivative of function u(x, y, t). This equation is used in the

analysis of long waves in shallow water. It is also used in the analysis of many other physical applications, such as the
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percolation of water in a porous subsurface of a horizontal layer of material. Applying the wave transformation (2) to
eq. (9) and then integrating twice yields

(m2 − n2 − s2)u − n2u2 − n4uξξ = 0. (10)

By balancing the highest-order linear term and the highest-order nonlinear term we obtain k = 2, thus the solution of
eq. (9) can be expressed as

u(ξ) = a0 + a1F (ξ) + a2F
2(ξ). (11)

So, differentiating eq. (11) twice,

uξξ = a1F
′′(ξ) + 2a2((F ′(ξ))2 + F (ξ)F ′′(ξ)), (12)

then by using (5),
F ′′ = 2PF 3 + QF. (13)

Inserting (13) and (5) into (12)

uξξ = a1

(
2PF 3 + QF

)
+ 2a2

(
PF 4 + QF 2 + R

)
+ 2a2F

(
2PF 3 + QF

)
. (14)

Substituting eq. (11) and eq. (14) in eq. (10) and setting each coefficient of F to zero, yields an equations system,

a0m
2 − a2

0n
2 − a0s

2 − a0n
2 − 2a2n

4R = 0,

a1n
2 − a1m

2 + 2a0a1n
2 + a1n

4Q + a1s
2 = 0,

a2n
2 − a2m

2 + 2a0a2n
2 + a2

1n
2 + a2s

2 + 4a2n
4Q = 0,

2a1a2n
2 + 2a1n

4P = 0,

a2
2n

2 − 6a2n
4P = 0.

By solving this system with the aid of Mathematica, two cases arises:

1) Case 1:

a1 = 0, a0 = −2n2Q − 2n2
√

Q2 − 3PR , a2 = −6n2P, m = ∓
√

n2 + s2 − 4n4
√

Q2 − 3PR .

2) Case 2:

a1 = 0, a0 = −2n2Q + 2n2
√

Q2 − 3PR , a2 = −6n2P, m = ∓
√

n2 + s2 + 4n4
√

Q2 − 3PR .

Pursuing the solution procedure mentioned above and combining, respectively, the values with eq. (11), we can get
exact solutions of eq. (9) for all cases as follows.

Solutions for Case 1

When P = r2, Q = −(1 + r2), R = 1 are chosen, F = sn from table 1, thus

u(x, y, t) = 2n2
(
1 + r2 −

√
1 − r2 + r4

)
− 6n2r2 sn2

(
m

tα

α
+ nx + sy

)
,

and considering r → 1, from table 2, the solitary wave solution can be obtained as

u1,1(x, y, t) = 2n2 − 6n2 tanh2

(
m

tα

α
+ nx + sy

)
, (15)

where m = ∓
√

n2 − 4n4 + s2.
Choosing P = −r2, Q = 2r2 − 1, R = 1 − r2, it can be denoted, from table 1 F = cn, hence

u(x, y, t) = 2n2
(
1 − 2r2 −

√
1 − r2 + r4

)
+ 6n2r2 cn2

(
m

tα

α
+ nx + sy

)
. (16)
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For r → 1 from table 2, the solitary wave solution is expressed as

u1,2(x, y, t) = −4n2 + 6n2 sech2

(
m

tα

α
+ nx + sy

)
,

where m = ∓
√

n2 − 4n4 + s2. It is clearly seen that this solution is the same as that of (15).
While P = −1, Q = 2−r2, R = r2−1, it can be deducted from table 1 F = dn, then the solution can be evaluated

as

u(x, y, t) = 2n2
(
−2 + r2 −

√
1 − r2 + r4

)
+ 6n2 dn2

(
m

tα

α
+ nx + sy

)
.

For r → 1, it is clearly seen that this solution is the same solution as (15).
Setting P = 1, Q = −(1 + r2), R = r2, from table 1 F = ns, due to this settings

u(x, y, t) = 2n2
(
1 + r2 −

√
1 − r2 + r4

)
− 6n2 ns2

(
m

tα

α
+ nx + sy

)
.

Furthermore, if r → 1 from table 2 the solitary wave solution of eq. (9) is as follows:

u1,3(x, y, t) = 2n2 − 6n2 coth2

(
m

tα

α
+ nx + sy

)

and, if r → 0, from table 2 the periodic solution of eq. (9) can be derived as

u1,4(x, y, t) = −6n2 csc2

(
m

tα

α
+ nx + sy

)
, (17)

where m = ∓
√

n2 − 4n4 + s2.
Supposing P = 1, Q = −(1 + r2), R = r2, from table 1 this choices correspond to F = dc, so

U(x, y, t) = 2n2
(
1 + r2 −

√
1 − r2 + r4

)
− 6n2 dc2

(
m

tα

α
+ nx + sy

)

is found and, for r → 0 from table 2, the periodic solution can be obtained as

u1,5(x, y, t) = −6n2 sec2

(
m

tα

α
+ nx + sy

)
, (18)

where m = ∓
√

n2 − 4n4 + s2.
Considering P = 1, Q = 2 − r2, R = 1 − r2 and, from table 1, F = cs, the solution can be acquired as

u(x, y, t) = 2n2
(
−2 + r2 −

√
1 − r2 + r4

)
− 6n2 cs2

(
m

tα

α
+ nx + sy

)
.

As r → 0, from table 2, we get the periodic solution as

u1,6(x, y, t) = −6n2 − 6n2 cot2
(

m
tα

α
+ nx + sy

)

and, as r → 1, from table 2 we get the solitary wave solution as from table 2,

u1,7(x, y, t) = −4n2 − 6n2 csch2

(
m

tα

α
+ nx + sy

)
, (19)

where m = ∓
√

n2 − 4n4 + s2. The first solution is the same as that of (17).
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Also regarding P = 1 − r2, Q = 2 − r2, R = 1 and, from table 1, F = sc, the solution can be evaluated as

u(x, y, t) = 2n2
(
−2 + r2 −

√
1 − r2 + r4

)
− 6n2(1 − r2) sc2

(
m

tα

α
+ nx + sy

)
.

In addition, for r → 0, from table 2 the periodic solution can be stated as

u1,8(x, y, t) = −6n2 − 6n2 tan2

(
m

tα

α
+ nx + sy

)
,

where m = ∓
√

n2 − 4n4 + s2. The obtained solution is the same as that of (18).
Also assigning P = 1, Q = 2r2 − 1, R = r4 − r2 and F = ds from table 1, the solution is found as

u(x, y, t) = 2n2
(
1 − 2r2 −

√
1 − r2 + r4

)
− 6n2 ds2

(
m

tα

α
+ nx + sy

)
.

In this case for r → 0, from table 2 the solution obtained is the same as that of (17) and, for r → 1, the solution
obtained is the same as that of (19).

When P , Q, R are chosen as P = − 1
4 , Q = r2+1

2 , R = − (1−r2)2

4 , F is going to be as F = r cn ∓dn from table 1,
so the solution can be obtained as

u(x, y, t) = −n2

(
1 + r2 +

√
1 + 14r2 + r4

2

)

+
3n2

2

(
r cn

(
m

tα

α
+ nx + sy

)
∓ dn

(
m

tα

α
+ nx + sy

))2

.

Furthermore, for r → 1, the solution is found to be the same of (15) using table 1.
If we choose P , Q, R as P = 1

4 , Q = −2r2+1
2 , R = 1

4 , from table 1 F is obtained as F = ns∓ cs, in this way the
solution can be expressed as

u(x, y, t) = −n2

(
1 − 2r2 +

√
1 − 16r2 + 16r4

2

)

− 3n2

2

(
ns

(
m

tα

α
+ nx + sy

)
∓ cs

(
m

tα

α
+ nx + sy

))2

.

Moreover, for r → 0, from table 2 the periodic solution can be stated as

u1,9(x, y, t) = −3n2

2
− 3n2

2

(
csc

(
m

tα

α
+ nx + sy

)
∓ cot

(
m

tα

α
+ nx + sy

))2

,

and for r → 1 the solitary solution can be found as

u1,10(x, y, t) =
n2

2
− 3n2

2

(
coth

(
m

tα

α
+ nx + sy

)
∓ csch

(
m

tα

α
+ nx + sy

))2

,

where m = ∓
√

n2 − n4 + s2.
For choices P = 1−r2

4 , Q = r2+1
2 , R = 1−r2

4 , from table 1 F can be written as F = nc∓ sc, thus the solution is
found as

u(x, y, t) = −n2

(
1 + r2 +

√
1 + 14r2 + r4

2

)

− 3n2

2
(1 − r2)

(
nc

(
m

tα

α
+ nx + sy

)
∓ sc

(
m

tα

α
+ nx + sy

))2

.

For r → 0, with the help of table 2, the periodic solution can be acquired as

u1,11(x, y, t) = −3n2

2
− 3n2

2

(
sec

(
m

tα

α
+ nx + sy

)
∓ tan

(
m

tα

α
+ nx + sy

))2

,

where m = ∓
√

n2 − n4 + s2.



Page 8 of 14 Eur. Phys. J. Plus (2016) 131: 244

Setting P = r2

4 , Q = r2−2
2 , R = r2

4 , from table 1 F = sn∓i cn, due to this settings,

u(x, y, t) = n2

(
2 − r2 −

√
16 − 16r2 + r4

2

)

− 3n2

2
r2

(
sn

(
m

tα

α
+ nx + sy

)
∓ i cn

(
m

tα

α
+ nx + sy

))2

.

For r → 1, by using table 2, the solitary solution can be evaluated as

u1,12(x, y, t) =
n2

2
− 3n2

2

(
tanh

(
m

tα

α
+ nx + sy

)
∓ i sech

(
m

tα

α
+ nx + sy

))2

, (20)

where m = ∓
√

n2 − n4 + s2.
Regarding P = 1

4 , Q = 1−2r2

2 , R = 1
4 , from table 1, it is obtained that F = r sn∓idn and the solution can be

expressed as

u(x, y, t) = −n2

(
1 − 2r2 +

√
1 − 16r2 + 16r4

2

)

− 3n2

2

(
r sn

(
m

tα

α
+ nx + sy

)
∓ idn

(
m

tα

α
+ nx + sy

))2

.

For r → 1, the solution is obtained as that of (20).
Considering P = 1

4 , Q = 1−2r2

2 , R = 1
4 , from table 1, F can be expressed as F = sn

1∓cn , so the solution can be
found as

u(x, y, t) = −n2

(
1 − 2r2 +

√
1 − 16r2 + 16r4

2

)
− 3n2

2

(
sn(m tα

α + nx + sy)
1 ∓ cn(m tα

α + nx + sy)

)2

.

Also, for r → 0, by use of table 2, the periodic solution can be acquired as

u1,13(x, y, t) = −3n2

2
− 3n2

2

(
sin(m tα

α + nx + sy)
1 ∓ cos(m tα

α + nx + sy)

)2

(21)

and, for r → 1, the solitary wave solution can be stated as

u1,14(x, y, t) =
n2

2
− 3n2

2

(
tanh(m tα

α + nx + sy)
1 ∓ sech(m tα

α + nx + sy)

)2

, (22)

where m = ∓
√

n2 − n4 + s2.
Supposing P = r2

4 , Q = r2−2
2 , R = 1

4 , it can be deducted from table 1 F = sn
1∓dn and the solution can be evaluated

as

u(x, y, t) = n2

(
2 − r2 −

√
16 − 19r2 + 4r4

2

)
− 3n2

2
r2

(
sn(m tα

α + nx + sy)
1 ∓ dn(m tα

α + nx + sy)

)2

.

For r → 1, the solution is obtained the same as that of (22).
Assigning P = 1−r2

4 , Q = r2+1
2 , R = 1−r2

4 , from table 1, this assignment corresponds to F = cn
1∓sn , so the solution

can be found as

u(x, y, t) = −n2

(
1 + r2 +

√
1 + 14r2 + r4

2

)
− 3n2

2
(1 − r2)

(
cn(m tα

α + nx + sy)
1 ∓ sn(m tα

α + nx + sy)

)2

.

Considering r → 0, in the light of table 2, the periodic solution can be shown as

u1,15(x, y, t) = −3n2

2
− 3n2

2

(
cos(m tα

α + nx + sy)
1 ∓ sin(m tα

α + nx + sy)

)2

,

where m = ∓
√

n2 − n4 + s2.
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Choosing P = (1−r2)2

4 , Q = r2+1
2 , R = 1

4 from table 1, this choice follows F = sn
dn∓ cn , so that the solution can be

obtained as

u(x, y, t) = −n2

(
1 + r2 +

√
1 + 14r2 + r4

2

)

− 3n2

2
(1 − r2)2

(
sn(m tα

α + nx + sy)
dn(m tα

α + nx + sy) ∓ cn(m tα

α + nx + sy)

)2

.

For r → 0 the solution is obtained as that of (21).

Solutions for Case 2

When P = r2, Q = −(1 + r2), R = 1 are chosen, F = sn, from table 1, thus

u(x, y, t) = 2n2
(
1 + r2 +

√
1 − r2 + r4

)
− 6n2r2 sn2

(
m

tα

α
+ nx + sy

)

and considering r → 1, from table 2, the solitary wave solution can be obtained as

u2,1(x, y, t) = 6n2 − 6n2 tanh2

(
m

tα

α
+ nx + sy

)
, (23)

where m = ∓
√

n2 + 4n4 + s2.
Choosing P = −r2, Q = 2r2 − 1, R = 1 − r2, it can be denoted, from table 1, F = cn, hence

u(x, y, t) = 2n2
(
1 − 2r2 +

√
1 − r2 + r4

)
+ 6n2r2 cn2

(
m

tα

α
+ nx + sy

)
. (24)

For r → 1, from table 2, the solitary wave solution is expressed as

uu2,2(x, y, t) = 6n2 sech2

(
m

tα

α
+ nx + sy

)
,

where m = ∓
√

n2 + 4n4 + s2. It is clearly seen that this solution is the same as that of (23).
While P = −1, Q = 2 − r2, R = r2 − 1, it can be deducted, from table 1, F = dn, then the solution can be

evaluated as

u(x, y, t) = 2n2
(
−2 + r2 +

√
1 − r2 + r4

)
+ 6n2 dn2

(
m

tα

α
+ nx + sy

)
.

For r → 1, it is clearly seen that this solution is the same as that of (23).
Setting P = 1, Q = −(1 + r2), R = r2, from table 1, F = ns, due to this settings

u(x, y, t) = 2n2
(
1 + r2 +

√
1 − r2 + r4

)
− 6n2 ns2

(
m

tα

α
+ nx + sy

)
.

Furthermore, if r → 1 from table 2, the solitary wave solution of eq. (9) is as follows:

u2,3(x, y, t) = 6n2 − 6n2 coth2

(
m

tα

α
+ nx + sy

)

and, if r → 0, from table 2 the periodic solution of eq. (9) can be written as

u2,4(x, y, t) = 4n2 − 6n2 csc2

(
m

tα

α
+ nx + sy

)
, (25)

where m = ∓
√

n2 + 4n4 + s2.
Supposing P = 1, Q = −(1 + r2), R = r2, from table 1, this choice corresponds to F = dc, so

u(x, y, t) = 2m2
(
1 + r2 +

√
1 − r2 + r4

)
− 6m2 dc2

(
m

tα

α
+ nx + sy

)
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is found and, for r → 0, from table 2, the periodic solution can be obtained as

u2,5(x, y, t) = 4n2 − 6n2 sec2

(
m

tα

α
+ nx + sy

)
, (26)

where m = ∓
√

n2 + 4n4 + s2.
Considering P = 1, Q = 2 − r2, R = 1 − r2 and from table 1, F = cs, the solution can be acquired as

u(x, y, t) = 2n2
(
−2 + r2 +

√
1 − r2 + r4

)
− 6n2 cs2

(
m

tα

α
+ nx + sy

)
.

As r → 0, from table 2 we get the periodic solution as

uu2,6(x, y, t) = −2n2 − 6n2 cot2
(

m
tα

α
+ nx + sy

)

and, as r → 1, from table 2 we get the solitary wave solution

u2,7(x, y, t) = −6n2 csch2

(
m

tα

α
+ nx + sy

)
, (27)

where m = ∓
√

n2 + 4n4 + s2. The first solution is the same as that of (25).
Also, regarding P = 1 − r2, Q = 2 − r2, R = 1 and, from table 1, F = sc, the solution can be evaluated as

u(x, y, t) = 2n2
(
−2 + r2 +

√
1 − r2 + r4

)
− 6n2(1 − r2) sc2

(
m

tα

α
+ nx + sy

)
.

In addition, for r → 0, from table 2 the periodic solution can be stated as

uu2,8(x, y, t) = −2n2 − 6n2 tan2

(
m

tα

α
+ nx + sy

)
,

where m = ∓
√

n2 + 4n4 + s2. The obtained solution is the same as that of (26).
Also assigning P = 1, Q = 2r2 − 1, R = r4 − r2 and F = ds, from table 1, the solution is found as

u(x, y, t) = 2n2
(
1 − 2r2 +

√
1 − r2 + r4

)
− 6n2 ds2

(
m

tα

α
+ nx + sy

)
.

In this case, for r → 0, from table 2 the solution is obtained as that of (25) and, for r → 1, the solution is obtained as
that of (27). When P , Q, R are chosen as P = − 1

4 , Q = r2+1
2 , R = − (1−r2)2

4 , F is going to be as F = r cn ∓dn from
table 1, so the solution can be obtained as

u(x, y, t) = −n2

(
1 + r2 +

√
1 + 14r2 + r4

2

)

+
3n2

2

(
r cn

(
m

tα

α
+ nx + sy

)
∓ dn

(
m

tα

α
+ nx + sy

))2

.

Furthermore, for r → 1, the solution is found as that of (23) using table 1.
If we choose P , Q, R as P = 1

4 , Q = −2r2+1
2 , R = 1

4 , from table 1, F is obtained as F = ns∓ cs, in this way the
solution can be expressed as

u(x, y, t) = −n2

(
1 − 2r2 −

√
1 − 16r2 + 16r4

2

)
− 3n2

2

(
ns

(
m

tα

α
+ nx + sy

)
∓ cs

(
m

tα

α
+ nx + sy

))2

.

Moreover, for r → 0, from table 2 the periodic solution can be stated as

u2,9(x, y, t) = −n2

2
− 3n2

2

(
csc

(
m

tα

α
+ nx + sy

)
∓ cot

(
m

tα

α
+ nx + sy

))2
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and, for r → 1, the solitary solution can be found as

u2,10(x, y, t) =
3n2

2
− 3n2

2

(
coth

(
m

tα

α
+ nx + sy

)
∓ csch

(
m

tα

α
+ nx + sy

))2

,

where m = ∓
√

n2 + n4 + s2.
For choices P = 1−r2

4 , Q = r2+1
2 , R = 1−r2

4 , from table 1, F can be written as F = nc∓ sc, thus solution is found
as

u(x, y, t) = −n2

(
1 + r2 −

√
1 + 14r2 + r4

2

)

− 3n2

2
(1 − r2)

(
nc

(
m

tα

α
+ nx + sy

)
∓ sc

(
m

tα

α
+ nx + sy

))2

.

For r → 0, with the help of table 2, the periodic solution can be acquired as

u2,11(x, y, t) = −n2

2
− 3n2

2

(
sec

(
m

tα

α
+ nx + sy

)
∓ tan

(
m

tα

α
+ nx + sy

))2

,

where m = ∓
√

n2 + n4 + s2.
Setting P = r2

4 , Q = r2−2
2 , R = r2

4 , from table 1, F = sn∓i cn, due to this settings

u(x, y, t) = n2

(
2 − r2 +

√
16 − 16r2 + r4

2

)

− n2

2
r2

(
sn

(
m

tα

α
+ nx + sy

)
∓ i cn

(
m

tα

α
+ nx + sy

))2

.

For r → 1, by using table 2, the solitary solution can be evaluated as

u2,12(x, y, t) =
3n2

2
− 3n2

2

(
tanh

(
m

tα

α
+ nx + sy

)
∓ i sech

(
m

tα

α
+ nx + sy

))2

, (28)

where m = ∓
√

n2 + n4 + α2
2.

Regarding P = 1
4 , Q = 1−2r2

2 , R = 1
4 , from table 1, one obtains that F = r sn∓idn and the solution can be

expressed as

u(x, y, t) = −n2

(
1 − 2r2 −

√
1 − 16r2 + 16r4

2

)

− 3n2

2

(
r sn

(
m

tα

α
+ nx + sy

)
∓ idn

(
m

tα

α
+ nx + sy

))2

.

For r → 1, the solution is obtained as that of (28).
Considering P = 1

4 , Q = 1−2r2

2 , R = 1
4 , from table 1, F can be expressed as F = sn

1∓cn , so the solution can be
found as

u(x, y, t) = −n2

(
1 − 2r2 −

√
1 − 16r2 + 16r4

2

)
− 3n2

2

(
sn(m tα

α + nx + sy)
1 ∓ cn(m tα

α + nx + sy)

)2

.

Also for r → 0, by way of table 2, the periodic solution can be acquired as

u2,13(x, y, t) = −n2

2
− 3n2

2

(
sin(m tα

α + nx + sy)
1 ∓ cos(m tα

α + nx + sy)

)2

, (29)

and, for r → 1, the solitary wave solution can be stated as

u2,14(x, y, t) =
3n2

2
− 3n2

2

(
tanh(m tα

α + nx + sy)
1 ∓ sech(m tα

α + nx + sy)

)2

, (30)

where m = ∓
√

n2 + n4 + s2.
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Supposing P = r2

4 , Q = r2−2
2 , R = 1

4 , it can be deduced, from table 1, F = sn
1∓dn and the solution can be evaluated

as

u(x, y, t) = n2

(
2 − r2 +

√
16 − 19r2 + 4r4

2

)
− 3n2

2
r2

(
sn(m tα

α + nx + sy)
1 ∓ dn(m tα

α + nx + sy)

)2

.

For r → 1, the solution is obtained as that of (30).
Assigning P = 1−r2

4 , Q = r2+1
2 , R = 1−r2

4 , from table 1, this assignment corresponds to F = cn
1∓sn , so the solution

can be found as

u(x, y, t) = −n2

(
1 + r2 −

√
1 + 14r2 + r4

2

)
− 3n2

2
(1 − r2)

(
cn(m tα

α + nx + sy)
1 ∓ sn(m tα

α + nx + sy)

)2

.

Considering r → 0, in the light of table 2, the periodic solution can be shown as

u2,15(x, y, t) = −n2

2
− 3n2

2

(
cos(m tα

α + nx + sy)
1 ∓ sin(m tα

α + nx + sy)

)2

,

where m = ∓
√

n2 + n4 + s2.
Choosing P = (1−r2)2

4 , Q = r2+1
2 , R = 1

4 from table 1, this choice follows F = sn
dn∓ cn , so that the solution can be

obtained as

u(x, y, t) = −n2

(
1 + r2 −

√
1 + 14r2 + r4

2

)

− 3n2

2
(1 − r2)2

(
sn(m tα

α + nx + sy)
dn(m tα

α + nx + sy) ∓ cn(m tα

α + nx + sy)

)2

.

For r → 0 the solution is obtained as that of (29).

4 Exact traveling wave solutions to the time-fractional combined KdV-mKdV equation

The KdV and mKdV equations are most popular soliton equations and have been comprehensively investigated. But
nonlinear terms of the KdV and mKdV equations often simultaneuosly exist in some problems, such as fluid physics
and quantum field theory, and form the combined KdV-mKdV equation. In this paper, we restrict our attention to
the study of the conformable time-fractional combined KdV-mKdV equation,

∂αu

∂tα
+ mu

∂u

∂x
+ nu2 ∂u

∂x
− s

∂3u

∂x3
= 0, (31)

where α ∈ (0, 1) and ∂αu
∂tα means conformable fractional derivative of function u(x, t). Applying the wave transformation,

u = u(ξ), ξ = w
tα

α
+ cx, (32)

eq. (31) turns into the following form:

wuξ + cmuuξ + cnu2uξ − sc3 uξξξ = 0. (33)

Balancing the highest-order linear term and the highest-order nonlinear term, we obtain k = 1, thus the solution of
eq. (31) can be stated as

u = a0 + a1F (ξ). (34)

Thus from eq. (34) and eq. (5),
uξ = a1F

′(ξ) (35)

and
uξξξ = a1F

′′′(ξ) = a1(6PF 2F ′ + QF ′), (36)
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where F ′′′(ξ) = 6PF 2F ′ + QF ′ is obtained by differentiating (5) two times. Substituting (35) and (36) into eq. (33)
and setting each coefficient of F to be zero, an equation system arises

a1(a0cm + a2
0 cn −c3Qs + w) = 0

a1(a2
1 cn −6c3Ps) = 0

a1(a1cm + 2a0a1 cn) = 0.

Solving this system by using Mathematica yields

a0 = − m

2n
, a1 = ∓c

√
6Ps√
n

, w =
c(m2 + 4c2nQs)

4n
.

Following the same solution procedure, which is mentioned in sect. 2, respectively, using table 1 and table 2 and
combining the values with eq. (34), we can get exact solutions of eq. (31) as follows:

u1(x, t) = −
m ∓ 2c

√
6ns tanh(cx + ctα(m2−8c2 ns)

4nα )
2n

u2(x, t) = −
m ∓ 2c

√
6ns coth(cx + ctα(m2−8c2 ns)

4nα )
2n

u3(x, t) = −
m ∓ 2c

√
6ns csc(cx + ctα(m2−4c2 ns)

4nα )
2n

u4(x, t) = −
m ∓ 2c

√
6ns sec(cx + ctα(m2−4c2 ns)

4nα )
2n

u5(x, t) = −
m ∓ 2c

√
6ns tan(cx + ctα(m2+8c2 ns)

4nα )
2n

u6(x, t) = −
m ∓ 2c

√
6ns cot(cx + ctα(m2+8c2 ns)

4nα )
2n

u7(x, t) = −
m ∓ 2c

√
6ns csch(cx + ctα(m2+4c2 ns)

4nα )
2n

u8(x, t) = −
m ∓ c

√
6ns(sec(cx + ctα(m2+2c2 ns)

4nα ) ∓ tan(cx + ctα(m2+2c2 ns)
4nα ))

2n

u9(x, t) = −
m ∓ c

√
6ns(coth(cx + ctα(m2−2c2 ns)

4nα ) ∓ csch(cx + ctα(m2−2c2 ns)
4nα ))

2n

u10(x, t) = −
m ∓ c

√
6ns tanh(cx+

ctα(m2−2c2 ns)
4nα )

1∓sech(cx+
ctα(m2−2c2 ns)

4nα )

2n

u11(x, t) = −
m ∓ c

√
6ns cos(cx+

ctα(m2+2c2 ns)
4nα )

1∓sin(cx+
ctα(m2+2c2 ns)

4nα )

2n

u11(x, t) = −
m ∓ c

√
6ns sin(cx+

ctα(m2+2c2 ns)
4nα )

1∓cos(cx+
ctα(m2+2c2 ns)

4nα )

2n

u12(x, t) = −
m ∓ 2ic

√
6ns sech(cx + ctα(m2+4c2 ns)

4nα )
2n

u13(x, t) = −
m ∓ c

√
6ns(tanh(cx + ctα(m2−2c2 ns)

4nα ) + i sech(cx + ctα(m2−2c2 ns)
4nα ))

2n
.

5 Conclusions

In this paper, the Jacobi elliptic function expansion method is used to obtain the exact solutions of some conformable
nonlinear time-fractional wave equations. The Jacobi elliptic function expansion method has several advantages ac-
cording to other traditional methods. This method obtains the results directly, quickly and needs simple algorithms
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in programming. Additionally by using conformable fractional derivative definition, fractional wave equations can be
solved easily. Consequently, it is easily seen that many different type of fractional PDEs are suitable to solve by given
solution procedure.

The authors are grateful to the anonymous referees for their careful checking of the details and for their helpful comments that
contributed to the improvement of this paper.

References

1. M. Eslami, H. Rezazadeh, Calcolo (2015), DOI: 10.1007/s10092-015-0158-8.
2. A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, Model. Commun. Theor. Phys. 52, 992 (2009).
3. Y. Dinga, H. Yea, Math. Comput. Model. 50, 386 (2009).
4. J.J. Yao, A. Kumar, S. Kumar, Adv. Mech. Eng. 7, 1 (2015).
5. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons,

New York, 1993).
6. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, San Diego,

2006).
7. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999).
8. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, J. Comput. Appl. Math. 264, 65 (2014).
9. M.A. Hammad, R. Khalil, Int. J. Pure Appl. Math. 94, 215 (2014).

10. W.S. Chung, J. Comput. Appl. Math. 290, 150 (2015).
11. A. Kurt, Y. Cenesiz, O. Tasbozan, Open Phys. 13, 355 (2015).
12. J.H. He, X.H. Wu, Chaos Solitons Fractals 30, 700 (2006).
13. G. Zhang, Z. Li, Y. Duan, Sci. China Ser. A 44, 396 (2001).
14. H. Jafari, R. Soltani, C.M. Khalique, D. Baleanu, Romanian Rep. Phys. 67, 762 (2015).
15. S.K. Liu, Z.T. Fu, S.D. Liu, Q. Zhao, Phys. Lett. A 289, 69 (2001).
16. T. Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015).
17. S. Lai, X. Lv, M. Shuai, Math. Comput. Modell. 49, 369 (2009).
18. H.M. Li, Chin. Phys. 14, 251 (2005).


