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Abstract. This paper presents a new iterative technique for solving nonlinear singular two-point boundary
value problems with Neumann and Robin boundary conditions. The method is based on the homotopy
perturbation method and the integral equation formalism in which a recursive scheme is established for
the components of the approximate series solution. This method does not involve solution of a sequence
of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other itera-
tive techniques developed for singular boundary value problems. The convergence result for the proposed
method is established in the paper. The method is illustrated by four numerical examples, two of which
have physical significance: The first problem is an application of the reaction-diffusion process in a porous
spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical
cell with Michaelis-Menten uptake kinetics.

1 Introduction

We consider the following doubly singular two-point boundary value problems:

(g(x)y′)
′
= g(x)p(x)f(x, y), 0 < x ≤ 1, (1)

subject to the boundary conditions
y′(0) = 0, μy(1) + σy′(1) = B. (2)

Here, μ > 0, σ ≥ 0, and B is finite constant. The condition g(0) = 0 states that the problem (1) is singular. Further,
if p(x) is allowed to be discontinuous at x = 0, the problem (1) and (2) is called doubly singular [1].

The following conditions have been imposed on the functions g(x), p(x) and f(x, y):

C1: f(x, y) is continuous for all (x, y) ∈ {[0, 1] × R},

C2: ∂f(x, y)/∂y exists and is continuous for all (x, y) ∈ {[0, 1] × R}

C3: ∂f(x, y)/∂y ≥ 0,

C4: g(x) ≥ 0, g(0) = 0,

C5: g(x) ∈ C1(0, 1],

C6: 1/g(x) ∈ L1(0, 1],

C7: p(x) > 0 in (0, 1], p(x) ∈ L1(0, 1],

C8:
∫ 1

0

1
g(η)

∫ η

0

g(t)p(t) dt dη < ∞,

C9: f(x, y) satisfies the Lipschitz condition |f(x, y1) − f(x, y2)| ≤ σ∗|y1 − y2|,
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where σ∗ is Lipschitz’s constant and moreover it is required that σ∗M < 1, where M is a bound that depends on the
different functions and boundary conditions that define the problem, see Lemma 1.

Pandey [2–4] has established the existence and uniqueness of the solution to problem (1) with p(x) = 1 and with
boundary conditions y(0) = 0 (or y′(0) = 0) and y(1) = A. Further, Pandey and Verma [5,6] have established the
existence and uniqueness results for the solution of problem (1) with boundary conditions y(0) = 0, μy(1)+σy′(1) = B.

Singular boundary value problems frequently arise in the modeling of many problems in physical, biological,
chemical and engineering sciences [7–18]. In particular, the problem (1) and (2) with g(x) = x2, p(x) = 1 and
f(x, y) = δy/(y + λ), δ > 0, λ > 0 arises in the study of steady-state oxygen-diffusion in a spherical cell with
Michaelis-Menten uptake kinetics [7,8]. The problem (1) and (2) with g(x) = x, p(x) = 1 arises in the study of
thermal explosions for f(x, y) = −νey [11]. Further, the problem (1) and (2) arises in the study of the equilibrium
of isothermal gas sphere when g(x) = x2, p(x) = 1 and f(x, y) = −y5, [12]. Another case of physical significance is
when g(x) = x2, p(x) = 1 and f(x, y) = θ2ym, which arises in the formulation of reaction-diffusion process in a porous
spherical catalyst [13]. Here θ2 denotes the Thiele modulus.

In recent years, the development of new numerical and analytical tools for solving singular boundary value problems
has emerged as an area of great promise. The solution of the nonlinear singular boundary value problems arising in
various physical models discussed above is numerically challenging because of singularity behavior at the origin.
Several numerical and analytical techniques have been proposed by various authors for solving the singular differential
equation (1) with g(x) = xα (or g(x) = xαs(x)), (α > 0, s(x) ≥ 0) and p(x) = 1 and with boundary conditions y(0) = 0
(or y′(0) = 0) and y(1) = A (or μy(1) + σy′(1) = B), such as finite difference method [19–25], spline method [26–28],
finite element method [29] and decomposition method [30]. Asaithambi et al. [31] presented a numerical technique
for obtaining pointwise bounds for the solution of a class of nonlinear singular boundary-value problems arising in
physiology. Moreover, El-Gebeily and Abu-Zaid [32] have developed a finite difference method based on a uniform
mesh for the solution of the following linear singular boundary value problem:

(g(x)y′)
′
= w(x)(f(x) − q(x)y(x)), 0 < x ≤ 1,

with boundary conditions
y′(0) = 0, y(1) = 0.

However, no numerical or analytical method has yet been developed to approximate the solution of nonlinear doubly
singular boundary value problem (1) with Neumann and Robin boundary conditions (2). Although some recursive
methods [33–35] have been developed for solving the problem (1) and (2) with g(x) = xα, α > 0 and p(x) = 1 and
however, these methods require the computation of an undetermined coefficient because the explicit expression for the
components of the approximate series solution contains an unknown constant. Such constant is determined by solving
a sequence of nonlinear algebraic or transcendental equations of higher order, which increases the computational cost.
In some cases, the undetermined coefficient may not be obtained uniquely.

The aim of this study is to introduce a new algorithm to approximate the solution of nonlinear doubly singular
boundary value problem (1)-(2). There are three major steps occurring in this algorithm:
i) Convert the original problem (1)-(2) into an equivalent nonlinear integral equation.
ii) Employ boundary conditions (2) to eliminate the undetermined coefficients associated with the resulting integral

equation.
iii) Implement the homotopy perturbation method [36] to the integral equation without undeter-mined coefficients for

the solution of the considered problem.
In addition to the development of the method, we establish its convergence result. The method is illustrated

by one nonlinear doubly singular problem with known exact solution. The method is also implemented to obtain
approximate solution of two singular boundary value problems- first one arises in the study of steady-state oxygen
diffusion in a spherical cell [7], and second one arises in the study of reaction-diffusion process in a porous spherical
catalyst [13]. Numerical results obtained by the proposed method are compared with that obtained using the finite
difference method [23], B-Spline method [27] and the method in [31].

This article is organized as follows. In the following section we will discuss basic principles of the standard homotopy-
perturbation method. We derive a new recursive scheme to obtain solution of singular boundary value problem (1)-(2)
in sect. 3. Section 4 contains the convergence analysis of the proposed method. In sect. 5, the method is applied on
four numerical examples taken from the literature and comparison is made between the present method with some
existing methods. Finally, conclusions are drawn in sect. 6.

2 Review of the standard homotopy-perturbation method

In this section, we give a brief description of the standard homotopy perturbation method (HPM). HPM is a combi-
nation of the classical perturbation method and the homotopy concept as used in topology, originally introduced by
J.-H. He [36]. This method has been effectively applied to a wide class of functional equations [37–43].
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We consider the following nonlinear differential equation:

G(y) + f(r) = 0, (3)

with boundary conditions

B∗
(

y,
∂y

∂n

)
= 0, r ∈ Γ, (4)

where G is a differential operator, f(r) denotes an analytical function, y is an unknown function, Γ is the boundary
of the domain Ω and B∗ is a boundary operator. The operator G can be divided into two parts L and N , where L is
linear and N is nonlinear. Equation (3) can therefore be written as

L(y) + N(y) + f(r) = 0. (5)

Basing on the homotopy idea, one can construct a homotopy equation u(r, p) : Ω× [0, 1] → R for eq. (3) which satisfies

H(u, p) = (1 − p)[L(u) − L(u0)] + p[G(u) + f(r)] = 0, (6)

or
H(u, p) = L(u) − L(u0) + pL(u0) + p[N(u) + f(r)] = 0, (7)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of eq. (3), which satisfies the boundary
condition of eq. (4).

It is clear that, for H(u, p) = 0, we have

H(u, 0) = L(u) − L(u0) = 0, (8)
H(u, 1) = G(u) + f(r) = 0. (9)

When the homotopy parameter p varies through 0 to 1, u(r, p) varies correspondingly through y0(r, p) to y(r, p). In
topology, this is called deformation and H(u, 0) and H(u, 1) are called homotopic.

By means of homotopy perturbation method, p is implemented as a small parameter, the solution u of eq. (6) can
be expressed as a power series in p:

u =
∞∑

i=0

uip
i. (10)

Setting p = 1 in (10), one can obtain the approximate solution of eq. (3) as

y =
∞∑

i=0

ui(x). (11)

3 Derivation of an improved iterative technique

Here we derive a new recursive scheme for solving nonlinear doubly singular differential equation (1) with Neumann
and Robin boundary conditions (2). For the purpose, we set z(x) = g(x)y′ in eq. (1), then integrating eq. (1) from 0
to x, we get

z(x) = z(0) +
∫ x

0

g(t)p(t)f(t, y)dt. (12)

Imposing the boundary condition at x = 0 in eq. (12), it follows that

y′(x) =
1

g(x)

∫ x

0

g(t)p(t)f(t, y)dt. (13)

Again, integrating eq. (13) from x to 1, yields

y(x) = y(1) −
∫ 1

x

1
g(η)

(∫ η

0

g(t)p(t)f(t, y)dt

)
dη. (14)

We set y(1) = C∗, where C∗ is not known. To determine the value of C∗ we apply the right end boundary condition
to eq. (14).
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Thus, using the boundary condition at x = 1 we obtain as follows:

y(1) = C∗ =
B

μ
− σ

μg(1)

∫ 1

0

g(t)p(t)f(t, y)dt. (15)

Substituting (15) into eq. (14) yields

y(x) =
B

μ
− σ

μg(1)

∫ 1

0

g(t)p(t)f(t, y)dt −
∫ 1

x

1
g(η)

(∫ η

0

g(t)p(t)f(t, y)dt

)
dη. (16)

Interchanging the order of integration in (16), we get

y(x) =
B

μ
− σ

μg(1)

∫ 1

0

g(t)p(t)f(t, y)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)f(t, y)dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)f(t, y)dt. (17)

Now the nonlinear integral equation (17) without any undetermined coefficients is treated by using the HPM to
establish a recursive scheme for the solution of the original problem (1)-(2). In view of this, we consider eq. (17) as

L(y) = y(x) − B

μ
+

σ

μg(1)

∫ 1

0

g(t)p(t)f(t, y)dt +
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)f(t, y)dt

+
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)f(t, y)dt = 0. (18)

By means of the homotopy perturbation method, we construct the following homotopy:

H(y, p) = (1 − p)F (y) + pL(y), (19)

where F (y) = y(x) − B
μ .

If p = 0, then eq. (19) becomes
H(y, 0) = F (y) (20)

and, when p = 1, eq. (19) turns out to be the original equation, i.e.

H(y, 1) = y(x) − B

μ
+

σ

μg(1)

∫ 1

0

g(t)p(t)f(t, y)dt +
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)f(t, y)dt

+
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)f(t, y)dt. (21)

The solution of (21) and the nonlinear function f(x, y) in (21) are decomposed by an infinite series of embedded
parameter p as

y =
∞∑

i=0

yip
i

and

f(x, y) =
∞∑

n=0

Hn(y0, y1, . . . , yn)pn, (22)

where the Hn is the so-called He’s polynomial, which can be calculated by using the formula

Hn(y0, y1, . . . , yn) =
1
n!

(
dnf(x, y)

dpn

)
p=0

. (23)
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Inserting eq. (10) into eq. (21) and then equating the identical powers of p, we obtain a set of nonlinear integral
equations:

p0 : y0(t) =
B

μ
,

p1 : y1(t) = − σ

μg(1)

∫ 1

0

g(t)p(t)H0(t, y)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)H0(t, y)dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)H0(t, y)dt,

p2 : y2(t) = − σ

μg(1)

∫ 1

0

g(t)p(t)H1(t, y)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)H1(t, y)dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)H1(t, y)dt,

p3 : y3(t) = − σ

μg(1)

∫ 1

0

g(t)p(t)H2(t, y)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)H2(t, y)dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)H2(t, y)dt,

p4 : y4(t) = − σ

μg(1)

∫ 1

0

g(t)p(t)H3(t, y)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)H3(t, y)dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)H3(t, y)dt, (24)

and so on.
The present method can be defined by the following recurrence relation:

y0(t) =
B

μ
,

yi(t) = − σ

μg(1)

∫ 1

0

g(t)p(t)Hi−1(t, y)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)Hi−1(t, y)dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)Hi−1(t, y)dt, i ≥ 1. (25)

Hence, the n-th order approximation to the doubly singular boundary value problem (1) with boundary condition (2)
can be obtained as

φn = y0 + y1 + y2 + . . . + yn. (26)

We note that the recursive scheme defined in (25) does not require the computation of unknown constants for solving
the singular boundary value problem (1)-(2). Hence, there is a huge gain in efficiency since the computationally
expensive unknown constants evaluation is not performed.

4 Convergence of the method

In this section, we establish the convergence result of the proposed method (25) developed for solving the nonlinear
doubly singular boundary value problem (1) and (2). For this, we write the equation (21) in operator form as

y = C + N(y), (27)

where C = B
μ and

N(y) = − σ

μg(1)

∫ 1

0

g(t)p(t)f(t, y)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)f(t, y)dt −

∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)f(t, y)dt,
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or

N(y) = −
∫ 1

0

k(x, t)g(t)p(t)f(t, y)dt, (28)

where k(x, t) is the kernel and is given by

k(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1

x

1
g(η)

dη +
σ

μg(1)
, t ≤ x,

∫ 1

t

1
g(η)

dη +
σ

μg(1)
, t > x.

Lemma 1. Let g satisfy C5 and C6 and p satisfies C7. Then there exists a constant M such that

max
0≤x≤1

∣∣∣∣
∫ 1

0

k(x, t)g(t)p(t)dt

∣∣∣∣ = M < ∞.

Proof. The proof of the Lemma is quite straightforward. In view of the conditions defined in C5–C8 and the kernel
k(x, t) as defined in (28) we must have

max
0≤x≤1

∣∣∣∣
∫ 1

0

k(x, t)g(t)p(t)dt

∣∣∣∣ = M < ∞.

Lemma 2. Let {Sn} be a sequence of partial sum of the series solution
∑∞

i=0 yi with components yi, i ≥ 0, defined by
eq. (25) and N be a nonlinear operator defined in (28). Then the sequence {Sn} can be written in operator form as
Sn = C + N(Sn−1), n ≥ 1, with C = B

μ .

Proof. Let Sn =
∑n

i=0 yi be the n-th partial sum of the series solution
∑∞

i=0 yi.
With the help of the solution components defined in (25), one can easily obtain

Sn =
n∑

i=0

yi

=
B

μ
− σ

μg(1)

∫ 1

0

g(t)p(t)
n∑

i=1

Hi−1(t)pi−1 dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)

n∑
i=1

Hi−1(t)pi−1 dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)

n∑
i=1

Hi−1(t)pi−1 dt. (29)

Inserting eq. (22) in (29) we obtain

Sn =
B

μ
− σ

μg(1)

∫ 1

0

g(t)p(t)f(t, Sn−1)dt −
∫ x

0

(∫ 1

x

1
g(η)

dη

)
g(t)p(t)f(t, Sn−1)dt

−
∫ 1

x

(∫ 1

t

1
g(η)

dη

)
g(t)p(t)f(t, Sn−1)dt. (30)

Hence the sequence generated by the method can be written as

Sn = C + N(Sn−1), n ≥ 1, with C =
B

μ
= y0.

This completes the proof of Lemma 2.

Theorem 1. Suppose that X = C[0, 1] be a Banach space with the norm ‖z‖ = maxx∈[0,1] |z(x)|, x ∈ X. Let N : X → X

be a nonlinear mapping defined by (28). Also assume that f(x, y) satisfies the condition C9. Let β = σ∗M , where the
constant M defined in Lemma 1. Then eq. (27) has a unique solution in X.
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Proof. In view of Lemma 1 and using the Lipschitz condition on f(x, y), we have for any y1, y2 ∈ X:

|N(y1) − N(y2)| =
∣∣∣∣
∫ 1

0

k(x, t)g(t)p(t)f(t, y1)dt −
∫ 1

0

k(x, t)g(t)p(t)f(t, y2)dt

∣∣∣∣
=

∣∣∣∣
∫ 1

0

k(x, t)g(t)p(t)[f(t, y1) − f(t, y2)]dt

∣∣∣∣
≤ max

x∈[0,1]

∣∣∣∣
∫ 1

0

k(x, t)g(t)p(t)dt

∣∣∣∣ × max
t∈[0,1]

|f(t, y1) − f(t, y2)|

= M × max
t∈[0,1]

|f(t, y1) − f(t, y2)|

≤ M × max
t∈[0,1]

σ∗|y1 − y2|

= Mσ∗‖y1 − y2‖.
Setting β = σ∗M , we have

|N(y1) − N(y2)| ≤ β‖y1 − y2‖.
If β < 1, then the nonlinear mapping N is contraction.

Hence by the Banach contraction mapping theorem, eq. (27) has a unique solution in X.

Theorem 2. Suppose that X = C[0, 1] be a Banach space with the norm ‖z‖ = maxx∈[0,1] |z(x)|, x ∈ X. Let N : X → X

is the nonlinear mapping defined by (28) which satisfies the Lipschitz condition ‖N(x1) − N(x2)‖ ≤ β‖x1 − x2‖, for
all x1, x2 ∈ X, with 0 ≤ β < 1. If we assume that ‖y0‖ < ∞, then the sequence Sn = C + N(Sn−1), converges to the
exact solution y.

Proof. Let Sn be the n-th partial sum of the series
∑∞

i=0 yi, as defined by Sn = C + N(Sn−1).
The convergence of the sequence Sn is equivalent to the convergence of the series

∑∞
i=0 yi.

We complete the proof showing that
i)

‖Sn+1 − Sn‖ ≤ βn‖y0‖, ∀n; (31)
ii) the sequence Sn is a Cauchy sequence in X = C[0, 1].

The proof of the assertion (31) follows by the method of induction. Using the definition of nonlinear operator N ,
for n = 1 we have

‖S2 − S1‖ = ‖N(S1) − N(S0)‖ ≤ β‖S1 − S0‖ = β‖y0‖.
So the result is true for n = 1.

Assume that the assertion (31) is valid for n = k, i.e.

‖Sk+1 − Sk‖ = ‖N(Sk) − N(Sk−1)‖ ≤ β‖Sk − Sk−1‖ = βk‖y0‖
Now we have to prove that the result is true for n = k + 1:

‖Sk+2 − Sk+1‖ = ‖N(Sk+1) − N(Sk)‖ ≤ β‖Sk+1 − Sk‖ ≤ βk+1‖S1 − S0‖ = βk+1‖y0‖.
Hence the result is true for all values of n.

We next show that Sn is a Cauchy sequence on the Banach space X.
For every m,n ∈ N , m ≤ n,

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2) + . . . + (Sm+2 − Sm+1) + (Sm+1 − Sm)‖
≤ ‖Sn − Sn−1‖ + ‖Sn−1 − Sn−2‖ + . . . + ‖Sm+2 − Sm+1‖ + ‖Sm+1 − Sm‖.

Now using (31) we have

‖Sn − Sm‖ ≤ βn−1‖y0‖ + βn−2‖y0‖ + . . . + βm+1‖y0‖ + βm‖y0‖
≤ ‖y0‖βm(1 + β + β2 + . . . + βn−1−m)

≤ ‖y0‖βm

(
1 − βn−m

1 − β

)
,

with 0 < β < 1, and ‖y0‖ < ∞, by assumption, the immediate consequence of above inequality is that

lim
n,m→∞

‖Sn − Sm‖ = 0.

Therefore, Sn is a Cauchy sequence in the Banach space X. This implies that the series solution
∑∞

i=0 yi converges to
the exact solution y.
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5 Numerical experiments

In this section, we demonstrate the applicability, flexibility and accuracy of the present scheme by applying it to several
nonlinear singular boundary value problems. We verify whether the numerical examples do satisfy the assumption of
the convergence theorem before applying the described method to obtain their solution. In addition, numerical results
are compared with that of [23,27,31]. All the numerical computations were done using symbolic computation software
package Maple.

Example 1

Consider the following nonlinear doubly singular boundary value problem:

(xαy′)
′
= ρxα+ρ−2 (ρxρey − (α + ρ − 1))

4 + xρ
, (32)

y′(0) = 0, 5y(1) + y′(1) = 5 ln(1/5) − 1. (33)

The exact solution is given by Y (x) = − ln(4 + xρ).
We solve the problem (32)-(33) for α = 0.5 and ρ = 1. This problem corresponds to eqs. (1) and (2) with g(x) = x0.5,

p(x) = x−0.5, f(x, y) = x−0.5ey(xey − 0.5), μ = 5, σ = 1 and B = 5 ln(1/5) − 1,
We first verify whether the particular condition of the convergence theorem is met or not. For this purpose, we

therefore need to check that the singular boundary value problem (32)-(33) does satisfy the condition σ∗M < 1.
In the considered example we have M = max0≤x≤1

∣∣ ∫ 1

0
k(x, t)g(t)p(t)dt

∣∣ = 0.87.
However, the function f(x, y) = x−0.5ey(xey − 0.5) does not satisfy the Lipschitz’s condition over the domain

{[0, 1] × R}, which means that our method does not satisfy the required condition.
Next we check whether our method for this example is convergent.
Using eq. (23), we compute homotopy polynomials Hn(x):

H0(x) = c1[c2e
2y0 − c3e

y0 ]

H1(x) = c1[2c2y1e
2y0 − c3y1e

y0 ]

H2(x) = 0.5c1(4c2y2e
2y0 + 4c2y

2
1e2y0 − 2c3y2e

y0 − c3y
2
1ey0)

H3(x) =
1
6
c1(12c2y3e

2y0 + 24c2y2y1e
2y0 + 8c2y

3
1e2y0 − 6c3y3e

y0 − 6c3y2y1e
y0 − c3y

3
1ey0)

... , (34)

with c1 = x−0.5, c2 = x, c3 = 0.5.
Inserting the homotopy polynomials (34) in eq. (25), we can obtain solution components yn(x) of approximate

series solution y(x).
Hence the third-order term of the approximate solution of (32)-(33) is as follows:

φ3(x) = y0(x) + y1(x) + y2(x) + y3(x) = 0.1052631579(1 − x.0.5)(15.55588431

− 1.340640092x5)x(9/2) − ln(5) + 2.101421926x5

− 2.334913251x(9/2) − 0.4554272101x10 + 0.4793970636x(19/2) + 0.007582152671(39/2)

− 0.07502591587x(29/2) + 1.645499640 ∗ 10(−10)x14 − 4.253111820 ∗ 10(−10)x9 − 0.007392598834x20

+ 0.07252505186x15 − 2.0(1 − x.0.5)(0.0004851054948x(39/2) − 0.01693248240x(29/2) + 0.1067324924x(19/2)

− 1.627892791 ∗ 10(−10)x9 − 0.2507971246 ∗ x(9/2)) + 0.000006729778544x(59/2) − 0.0003912137400x(49/2)

− 2.000000000(1 − x0.5)(0.000003364889279x(59/2) − 0.02058047546x(29/2) + 0.06240603435 ∗ x(19/2)

+ 0.003305970830x(39/2) − 0.0001956068698x(49/2) − 0.09792874783x(9/2) + 0.0003833894648x25

− 0.000006617615582x30 + 0.2041749375.
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Fig. 1. Numerical results of absolute error for example 1.

Table 1. Maximum absolute error for example 1.

n Maximum

(No. of terms) absolute error

6 7.77 × 10−4

7 2.73 × 10−4

8 2.89 × 10−5

To determine the accuracy of the proposed method against the exact solution, we compute the maximum absolute
error, as defined by

En(x) = Maxx∈[0,1]|φn(x) − Y (x)|.
Here, Y (x) is the exact solution of the problem and φn(x) is the truncated n-terms approximate series solution.

The results of the maximum absolute errors of the problem (32)-(33) for n = 6, 7, 8, are presented in fig. 1 and
table 1. Numerical results reveal that the present method with few solution components approximates the exact
solution very well and the method for the problem (32)-(33) is convergent. The accuracy of the solution increases as
the number of the solution components in the approximate series solution y(x) increases.

Example 2

Consider the nonlinear singular boundary value problem

(x2y′(x))
′
= x2

(
ky(x)

y(x) + η

)
, (35)

y′(0) = 0, 5y(1) + y′(1) = 5. (36)

This problem arises in the study of steady-state oxygen diffusion in a spherical cell [7]. Here, k and η are finite
positive constants and represent the reaction rate and the Michaelis constant, respectively. We take k = 0.76129 and
η = 0.03119.

This problem corresponds to eqs. (1) and (2) with g(x) = x2, p(x) = 1, μ = 5, σ = 1, B = 5 and f(x, y) =
0.76129y(x)

y(x)+0.03119 .
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Fig. 2. Approximate solution of example 2.

We first verify that the problem (35)-(36) does satisfy the condition σ∗M < 1.

In the considered problem we have M = max0≤x≤1

∣∣ ∫ 1

0
k(x, t)g(t)p(t)dt

∣∣ = 0.23 and σ∗ = 0.033.
Hence

σ∗M = 0.0076 < 1,

which means that the problem (35)-(36) does satisfy the assumption of the convergence theorem.
We solve the problem (35)-(36) using the proposed technique described by eq. (25). Using eq. (23), we compute

polynomials Hn(x):

H0(x) = 0.7382635596

H1(x) = 0.0223299687y1.

H2(x) = −0.02165456250y2
1 + 0.02232996850y2.

H3(x) = 0.0209995865y3
1 − 0.0433091253y1y2 + 0.02232996850y3,

... (37)

Inserting the polynomials (37) in eq. (25), we can obtain solution components yn(x) of approximate series solution
y(x).

The fourth-order term of the approximate solution of (35)-(36) is as follows:

φ4(x) = y0(x) + y1(x) + y2(x) + y3(x) + y4(x) = 0.8284816685 + 0.1207562728x2

− (0.0005495134060 ∗ x4 − 0.001282197947x2)

+ 0.0009676639911 ∗ x4 − (−0.00004639689451x6 + 0.0001807305688x4 − 0.0002093525882x2)

− 0.00008060486614x6 − (0.000004246062983x8 − 0.00002269299075x6 + 0.00004388721798x4

− 0.00003355199008x2) + 0.000004776820856x8.

The approximate solution of the problem (35)-(36) for n = 5, 7 is depicted in fig. 2. Comparison of the numerical
results obtained by our method, the finite difference method [23], B-Spline method [27] and a numerical method [31]
derived using the direct integration method as opposed to the commonly used finite differences is presented in table 2.
It is clearly evident that the results obtained by the proposed method with few solution components are in very good
agreement with that of [23,27,31], and the proposed method for this problem is convergent.
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Table 2. Approximate solution of example 2.

Present method Present method FDM solution Pointwise bound solution B-Spline solution

x φ5 φ7 [23] [31] [27]

0.0 0.8284830753 0.8284832866 0.8284831497 0.8284752 0.82848327295802

0.1 0.8297058822 0.8297060888 0.8297060742 0.8296982 0.82970607521884

0.2 0.8333745371 0.8333747303 0.8333747157 0.8333673 0.83337471691089

0.3 0.8394897383 0.8394899111 0.8394898966 0.8394831 0.83948989814383

0.4 0.8480526347 0.8480527826 0.8480527684 0.8480467 0.84805277036165

0.5 0.8590648040 0.8590649253 0.8590649116 0.8590596 0.85906491397434

0.6 0.8725282230 0.8725283186 0.8725283056 0.8725237 0.87252830841853

0.7 0.8884452322 0.8884453046 0.8884452928 0.8884408 0.88844529589927

0.8 0.9068184947 0.9068185474 0.9068185369 0.9068145 0.90681854026297

0.9 0.9276509514 0.9276509879 0.9276509791 0.9276474 0.92765098252660

1.0 0.9509457747 0.9509457981 0.9509457914 0.9509432 0.95094579461056

Example 3

Consider the nonlinear singular boundary value problem

(x2y′(x))
′
= x2θ2ym, (38)

y′(0) = 0, y(1) = 1. (39)

This problem is an application of reaction-diffusion process in a porous spherical catalyst [13].
The problem (38)-(39), in dimensionless form, is derived from the following singular boundary value problems by

introducing dimensionless variables y = CA/CAS , x = r/R, θ =
√

R2knCn−1
AS /De:

(r2CA(r))
′
= r2 KnCA(r)m

De
, (40)

subject to the boundary conditions

CA(R) = CAS , (at catalyst surface), (41)

C
′

A(0) = 0, (at the centre of the catalyst). (42)

The details of the mathematical formulation of the above reaction-diffusion problem can be found in [13].
This problem corresponds to eqs. (1) and (2) with g(x) = x2, p(x) = 1 and f(x, y) = θ2ym.
Here θ2 describes a ratio of chemical reaction rate at the catalyst surface in the absence of mass transfer limitation

to the rate of diffusion through the catalyst.
We solve the problem (38)-(39) for θ = 2 and m = 0.5,
First, we corroborate that the considered problem with θ = 2 and m = 0.5 does satisfy the condition σ∗M < 1.
Here we have M = max0≤x≤1

∣∣ ∫ 1

0
k(x, t)g(t)p(t)dt

∣∣ = 0.17 and σ∗ = 2.9.
Hence

σ∗M = 0.493 < 1,

which means that the present method defined by eq. (25) can be certainly used to solve the problem (38)-(39).
The sixth-order term of the approximate solution of (38)-(39) is given by

φ6(x) = 0.4759232396057792 + 0.4599128498387758x2 − 1.210189853060109 × 10−16x3

+ 0.06666666666666665x4 + 6.100444223851771 × 10−18x5 − 0.003054785700288346x6

+ 3.794707603699265 × 10−19x7 + 0.0006897903194199509x8 − 3.252606517456513 × 10−19x9

− 0.00015905082571749274x10 + 1.084202172485504 × 10−19x11 + 0.000021290095364169396x12.

The approximate solutions for different values of n are depicted in fig. 3 and table 3.
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Fig. 3. Approximate solution of example 3.

Table 3. Approximate solution of example 3.

x φ2 φ4 φ6

0.0 0.488889 0.475838 0.475923

0.1 0.493340 0.480444 0.480529

0.2 0.506773 0.494343 0.494426

0.3 0.529429 0.517773 0.517853

0.4 0.561707 0.551127 0.551204

0.5 0.604167 0.594953 0.595023

0.6 0.657529 0.649939 0.650000

0.7 0.722673 0.716915 0.716963

0.8 0.800640 0.796841 0.796873

0.9 0.892629 0.890801 0.890817

1.0 1 1 1

Example 4

Consider the following singular boundary value problem:

(xy′)
′
= −4x

(
1 − y(x)

1 − y(x)

)
, 0 < x < 1,

subject to the boundary conditions
y′(0) = 0, y(1) = 0.

The exact solution of the problem is not known. This problem corresponds to eqs. (1) and (2) with g(x) = x,
p(x) = 1, μ = 1, σ = 0, B = 0 and f(x, y) = −4

(
1 − y(x)

1−y(x)

)
.

We solve this equation by using our method defined in (25). The above problem does not satisfy the condition of
the convergence theorem as σ∗M = 2.48 > 1. Since the problem does not have the exact solution, we determine the
maximum absolute residual error function, as defined by

Rn(x) = Maxx∈[0,1]

∣∣∣∣(xφ′
n(x))

′
+ 4x

(
1 − φn(x)

1 − φn(x)

)∣∣∣∣ .
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Table 4. Numerical results of maximum absolute residual error of example 4.

n Maximum absolute residual error

5 9.162

6 1.446

7 5.735

8 1.571

9 227.248

10 22.8366
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Fig. 4. Approximate solution of example 4.
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Fig. 5. Residual error of example 4.

The results of the maximum absolute residual errors for different values of n are tabulated in table 4. Further the
approximate solution and the residual error for different values n are given in figs. 4 and 5, respectively. It is obvious
from the figures and table that the proposed method for this equation is divergent.
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6 Conclusions

To conclude, an efficient iterative technique has been developed in this study for the numerical solution of nonlinear
doubly singular two-point boundary value problem with Neumann and Robin boundary conditions. The convergence
analysis of the method has been discussed in the paper. Four nonlinear examples have been considered to illustrate
the applicability of the method. It has been observed that example 1 does not satisfy the assumption of the theorem
and converge to the solution. Further, examples 2 and 3 met the conditions required in the convergence proof and
converge. However, example 4 does neither satisfy the condition, nor even converge. The reason lies in the fact that the
nonlinearity confronted in this example is in the form of a rational function. Because of the strong nonlinearly of the
right hand side function f(x, y) of the singular differential equation in example 4, the method yields divergent solution.

In addition, the numerical results obtained by the present method were compared with those obtained by finite
difference method, B-spline approach and a numerical method based on the direct integration. The advantage of the
present method over these three methods is that the present method does not require any discretization of the variable
and the method is computationally very efficient. Another advantage of the present algorithm is that it requires few
solution components to produce similar results. Furthermore, the advantage of our method over other existing recursive
schemes [33–35] is that it does not require the computation of undetermined coefficients. Hence, the proposed method
can then be used for obtaining approximate solutions for nonlinear boundary value problems with mixed type of
boundary conditions, but also for nonlinear integral equations of different types.

The author is very grateful to the reviewers for their valuable suggestions and comments to improve the quality of the paper.
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