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Abstract. The influence of the Dzyaloshinsky-Moriya (DM) interaction on entanglement in the one-
dimensional spin-1/2 Heisenberg-Ising model is investigated via concurrence. The existence of two states,
different in quantum properties and linked through a critical point by quantum phase transition, in the
thermodynamic limit, are identified. The strong DM interaction delays quantum phase transition and hence
shifts the boundary between the two phases to the region of the strong coupling constant. The increasing
strength of the DM interaction strongly restores entanglement against its degradation arising from the
increasing size of the system. The first derivative of the entanglement quantifier diverges to the critical
point and is related directly to the divergence of the correlation length. The scaling behavior in the vicinity
of the quantum critical point is also discussed.

1 Introduction

Entanglement [1] is one of the most fascinating and very perplexing phenomena of composite quantum systems. It has
been extensively investigated under diverse conditions both for simple as well as many-body complicated systems [2–5].
Due to peculiarity in its nature and its key role in the foreseen quantum technology, it has been the pivot of theoretical
research in different contexts for a very long time [6–8]. The studies of its dynamics in the context of relativity show
that entanglement is a relative phenomenon and depends on the state of the observer [9–11]. In condensed matter
physics, it is used as a detector for the existence of quantum phase transition (QPT), which occurs at absolute zero
temperature [12]. Under different conditions, the studies of entanglement in various spin systems reveal its nonanalytic
and scaling behaviors in the vicinity of the critical point [13–15].

The Ising and Heisenberg spin models are the few among the many-body systems, which have been the focus of
different studies for long enough time due to the existence of their analytical solutions. Another class of interesting spin
models, embodied with a variety of unusual behaviors specifically related to their ground states and thermal properties,
are the Heisenberg-Ising spin systems. Such a model with alternating Heisenberg-Ising interactions were proposed and
quantum mechanical solution for eigenfunctions were obtained by Lieb et al. [16]. The thermodynamical properties
of such a model and its behavior under twisted boundary conditions were studied in [17,18]. Recently, the behavior
of the model was examined under anisotropic Heisenberg exchange and DM interaction in two different studies [19,
20]. These studies reveal low-energy excitations with a gap and nonanalytic behavior of ground-state energy with a
gapless excitation spectrum. One of the materials that can be modeled in terms of such competing interactions is
the natural mineral azurite (Cu3(CO3)2(OH)2), which exists in the so-called diamond-chain structure. Further details
about different properties of such systems can be found in [21,22] and references therein.

Analytically studying the dynamics of the entanglement in many-body systems becomes very complex with the
increasing dimensions of quantum systems. Special techniques are used to overcome such difficulties. One such technique
is the well-known renormalization group (RG) technique. For several decades, the RG technique has been extensively
used to explore the properties of many spin systems such as Monto Carlo RG [23,24] and density-matrix RG [25–29].
Recently, the approach of quantum renormalization group (QRG) is used to study the behavior of entanglement and
QPT of anisotropic spin systems under different conditions [14,15]. It is found that with the considerable increasing
number of iterations, the concurrence reaches two saturated values that represent two different phases of the spins
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Fig. 1. Kadanoff’s block renormalization group method of the Heisenberg-Ising spin-1/2 chain where each block consists of
three sites.

system. These and some other studies [30,31] based on the approach of QRG show the existence of nonanalytical
behaviors at quantum critical point. The studies of the effects of Dzyaloshinskii-Moriya (DM) interaction [32,33],
which arises from the spin orbit interaction, in different spins models show remarkable behavioral changes in QPT
and other related quantum critical phenomenon [34,35].

In this paper, we apply the QRG technique to study the behavior of the entanglement with the increasing size of
the system via QRG iterations in the presence of DM interaction in the one-dimensional spin-1/2 Heisenberg-Ising
model [16,36]. The Hamiltonian describing our system consists of four different parameters, three of them are coupling
constants between the neighboring spins and one specifies the strength of the DM interaction. We first find relations
that describe the behaviors of these parameters with increasing size of the system and then use them to thoroughly
investigate the behavior of entanglement and QPT. We show that, although the effect of DM interaction on the
dynamics of entanglement in our system is qualitatively parallel to its effects in the case of Ising and Heisenberg spin
chains [37–39], it is considerably different quantitatively. In the thermodynamic limit, the behavior of the entanglement
manifests two different phases of entangled and product states against the coupling parameter. These phases are
separated by a critical point which is itself a function of the DM interaction. The nonanalytical behavior of the
entanglement at the critical point and the scaling behavior near the critical point have also been analyzed.

This paper is organized as follows. In sect. 2, we apply the QRG method to investigate the model and renormalize
the parameters for constructing the effective Hamiltonian of the system. In sect. 3, we investigate the behavior of
the entanglement in the thermodynamic limit through a number of QRG iterations and discuss its nonanalytical and
scaling behavior. In sect. 4, we summarize and conclude.

2 Quantum renormalization of the model

Since the focus of this work is to analyze the behavior of the entanglement in the Heisenberg-Ising model using the
QRG technique, we therefore begin from a brief review of the basic concepts of the building blocks of this work. The
QRG technique is a procedure which is used to eliminate system’s degrees of freedom followed by an iteration. The
concept behind the iterations is to reduce the number of variables step by step until a stable point is reached. To
investigate the behavior of entanglement of our system through QRG technique, we use the approach of Kadanoff,
where the lattice is divided into blocks, each comprising equal number of sites. This is an important approach for
carrying analytical computation that can easily be extended to higher dimensions. In this set up, first the projection
operators that act on the lower energy space of the system of each block are built. Then the projection of interblock
interaction is mapped to an effective Hamiltonian which acts on the renormalized subspace [40–42]. To implement the
procedure of this method, we first write the Hamiltonian of our spin model of 2N sites as follows [36]:

H =
N∑

i=1

[
J

(
σx

2i−1σ
x
2i

)
+ J

(
σy

2i−1σ
y
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)
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(
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z
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)
+ D(σx

2i−1σ
y
2i − σy

2i−1σ
x
2i) + λ(σz

2iσ
z
2i+1)

]
, (1)

where J > 0, Jz > 0 and λ � 0 and characterize the coupling strengths between nearest spins on different sites.
The parameter D represents the strength of DM interaction along the z-direction and σα(α = x, y, z) are the Pauli
matrices. The first three terms of the Hamiltonian correspond to the Heisenberg interaction, the fourth term represents
the DM interaction and the last term represents the Ising interaction. As commented in the introduction, a number
of materials can be approximately modeled with this type of Hamiltonian. So, it is important to look deeply into it
through different perspectives. The Hamiltonian of eq. (1) is visualized in fig. 1, where the solid black curves represent
the Ising interaction and the solid red curves represent the Heisenberg interaction. For clarity purposes, the positions
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of spins in each block are labeled with numbers, such that its order reverses in each subsequent block. This helps to
easily track the types of coupling between the adjacent blocks. Following the Kadanoff’s approach, eq. (1) can be split
into two parts as follows:

H = HA + HAA, (2)

where HA =
∑2N/3

L=1 hB
L represents the part contributed to the total Hamiltonian by the Hamiltonian hB

L of a single
block summed over the total number of blocks L in the system. For each block being composed of three spins, its
explicit form for the L-th block can be written as

hB
L = Jσx

1,Lσx
2,L + Jσy

1,Lσy
2,L + Jzσ

z
1,Lσz

2,L + D(σx
1,Lσy

2,L − σy
1,Lσx

2,L) + λσz
2,Lσz

3,L. (3)

Similarly, the HAA in eq. (2) represents the part of the total Hamiltonian arising from the sum of the Hamiltonians
of interaction between two nearest blocks. This can explicitly be written as

HAA =
N/3∑

m=1

[
J

(
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x
3,2m
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+ J

(
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]
. (4)

The projectors for the subspace of a block can be constructed from its degenerate lowest energy eigenfunctions.
It can be easily verified that the lowest eigenvalues of the L-th block Hamiltonian are doubly degenerate, whose
corresponding degenerate eigenfunctions are given by

|Ψ0〉 =
1√

1 + |a|2
(ia| ↑↓↑〉 + | ↓↑↑〉) , (5)

|Ψ ′
0〉 =

1√
1 + |b|2

(−ib| ↑↓↓〉 + | ↓↑↓〉) , (6)

with

a =
(
λ +

√
4D2 + 4J2 + λ2

)
/2 (D − iJ) , (7)

b =
(
λ −

√
4D2 + 4J2 + λ2

)
/2 (D − iJ) , (8)

where | ↓〉 and | ↑〉 are the eigenfunctions of the Pauli spin operator σz. The corresponding degenerate eigenvalue is
given by

E0 = −Jz −
√

λ2 + 4J2 + 4D2 . (9)

The original Hamiltonian is linked to the effective Hamiltonian through projector operator T0, which is constructed
in such a way that higher-energy terms are removed and the system stays in the lowest energy state. The relation
between the effective Hamiltonian and the original Hamiltonian is given by

Heff = T0HT †
0 = T0H

AT †
0 + T0H

AAT †
0 , (10)

where T †
0 is the Hermitian operator of T0. The factorized form of the projector operator is given by

T0 =
2N/3∏

L=1

TL
0 , (11)

where TL
0 is the L-th block projector operator and is defined in terms of the lowest energy eigenfunctions in the

following way:
TL

0 = | ⇑〉L〈Ψ0| + | ⇓〉L〈Ψ ′
0|. (12)

In eq. (12), the kets | ⇑〉L and | ⇓〉L are the renamed states of the L-th block and can be thought of as a different
spin-1/2 particle. Note that TL

0 is Hermitian and this can easily be checked. In order to write the effective Hamiltonian
of the system in its final renormalized form, we first write the renormalized forms of the Pauli matrices as follows:

T0σ
α
i,LT †

0 = ηα
i σα

i,L; (i = 1, 3; α = x, y, z) , (13)
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where

ηx
3 = ηy

3 =

√
4(D2 + J2)

4(D2 + J2) + λ2
,

ηz
1 =

λ√
4(D2 + J2) + λ2

,

ηz
3 = 1. (14)

Looking at fig. 1, one can immediately see that the Heisenberg interaction between the blocks occurs when spins with
label 3 face each other and Ising interaction between the blocks takes place when spins with label 1 face each other.
Due to this reason, we only have ηz

1 in eq. (14). The effective renormalized Hamiltonian of the system can now be
written, by using eqs. (13) and (14), in the following form:
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N/3∑
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x
2m

)
+ J ′ (σy

2m−1σ
y
2m

)
+ J ′

z

(
σz

2m−1σ
z
2m

)

+ D′ · (σx
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y
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x
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]
. (15)

The explicit forms of the renormalized parameters in eq. (15) in terms of the original one are given below

J ′ =
4J(D2 + J2)

4(D2 + J2) + λ2
, J ′

z = Jz,

D′ =
4D(D2 + J2)

4(D2 + J2) + λ2
, λ′ =

λ3

4(D2 + J2) + λ2
. (16)

Equation (16) shows that Jz does not evolve as the size of the system increases. However, unlike the case of the
Heisenberg spin model [38], the DM interaction D flows with the growing size of the system similar to the case of the
Ising spin model [37]. From eq. (16) one can easily prove that

χ′ =
1

4(1 + κ2)
χ3, (17)

with
κ =

D

J
, χ =

λ

J
. (18)

It is notable that a large system of N = 3n+1 sites can be effectively described by a three-site block with the
renormalized coupling constant after the n-th iteration of the QRG. The parameter κ and the parameter χ in eq. (18)
can be considered as the rescaled values of DM interaction D and coupling constant λ in terms of coupling constant J .

A number of different measures for quantifying bipartite entanglement exist in the literature [43–47]. We, however,
will use concurrence [2,3] to quantify entanglement between the spins of our system. For a bipartite state, it is given
as

C = max{η4 − η3 − η2 − η1, 0}, (19)

where ηi (i = 1, 2, 3, 4) are the square roots of the eigenvalues in descending order of the matrix R = ρρ̃, with
ρ̃ = (σy ⊗σy)ρ∗(σy ⊗σy). Here ρ∗ represents the complex conjugate of the final density matrix ρ of a bipartite system.
A system with C = 1 is maximally entangled and the one with C = 0 is separable.

3 Analysis of the renormalized entanglement

It takes less effort to analyze the ground-state entanglement of spin-1/2 Heisenberg-Ising chain through the QRG
method in the presence of the DM interaction via the density matrix formalism. Keeping this in mind, we first
construct the density matrix from the corresponding ground-state state function of the system. For the ground-state
state function given in eq. (5), the density matrix becomes

ρ = |Ψ0〉〈Ψ0|. (20)

The state function |Ψ0〉 represents the ground state of a block that consists of three spins and we are interested in
the dynamics of only bipartite entanglement. To achieve our goal, the density matrix needs to be partial traced over
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Fig. 2. The behavior of ground-state entanglement for three different choices of DM interaction D in thermodynamic limit
against the coupling constants J and λ, is shown. The figures correspond to (a) D = 0, (b) D = 0.5, and (c) D = 0.8.

the dimensions of the subspace of one spin. A careful observation of the two state functions shows that partial tracing
over the subspace of the spin with label 1 or at site with label 2 results in a product state whereas the same operation
on the spin space at site with label 3 leaves the reduced bipartite state entangled. Therefore, to observe the behavior
of bipartite entanglement in the system with DM interaction, we partial trace over the dimensions of the spin at site
3. The resulting reduced density matrix for the rest two spins of a block is as follows:

ρ12 =
1

1 + |a|2

⎡

⎢⎢⎢⎣

0 0 0 0
0 |a|2 ia 0
0 −ia∗ 1 0
0 0 0 0

⎤

⎥⎥⎥⎦ . (21)

It is now easy and straightforward to construct matrix R, as defined above, for calculating concurrence. One can then
verify that all eigenvalues of R, except one, are zero. This makes the mathematical rigor easier for finding concurrence
by using the definition given in eq. (19). The concurrence corresponding to ρ12 is then given by

C12 = 2

√
D2 + J2

4(D2 + J2) + λ2
. (22)

From eq. (22), it can readily be seen that in the absence of DM interaction the result for concurrence of ref. [36]
is retrieved. The presence of DM interaction and of the two coupling constants in the defining relation for C12

demonstrates that renormalization of these parameters strongly affect the behavior of bipartite entanglement between
the nearest neighbors blocks of spins. For the ground state, the behavior of entanglement for three different values of
the DM interaction (D = 0, 0.5, 0.8) in thermodynamic limit is shown in fig. 2. In the absence of the DM interaction
(fig. 2(a)), the behavior of entanglement exhibits discontinuity along a line satisfying the condition 2J = λ, which
defines the quantum phase boundary of the model. At one side of the quantum phase boundary, the system is maximally
entangled (2J > λ) and at the other side it is separable (2J ≤ λ). The behavior of entanglement heavily depends on
the strength of the DM interaction as shown in figs. 2(b) and (c). One can observe that the ranges of values of J and λ
specifying the quantum phase boundary shrink with the increasing strength of the DM interaction. In other words, a
considerably strong DM interaction may completely eliminate discontinuity from the dynamics of entanglement thereby
leaving the system maximally entangled without demonstrating quantum phase transition. Apparently, this behavior
of entanglement in the present system due to the presence of DM interaction is qualitatively identical to its behavior
with DM interaction in the Ising and Heisenberg spin models [37–39]. However, quantitatively it is comparatively
more sensitive to the DM interaction. This behavior may prove the spin systems, with different competing interactions
between the nearest spins, more favorable for certain quantum information tasks whose realization solely depends on
the existence of long-time entanglement.

In order to look more deeply into the behavior of entanglement in the presence of DM interaction with increasing
size of the system degree of freedom via QRG iterations, we want to reduce the number of parameters and write
eq. (22) with the help of eq. (17) into the following rescaled form:

C12 = 2

√
κ2 + 1

4 + 4κ2 + χ2
. (23)
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(a) (b) (c)

Fig. 3. Representation of the evolution of concurrence in terms of QRG iterations for three different values of the rescaled
DM interaction parameter κ. The different behaviors of entanglement in the two different regions at large iterations of QRG
correspond to the emerging phases of the system through phase transition (a) κ = 0, (b) κ = 1 and (c) κ = 2.

Fig. 4. The first derivative of the concurrence for κ = 2 and its manifestation toward divergence as the number of QRG
iterations increases.

The effect of χ on the dynamics of entanglement with increasing size of the system is shown in fig. 3 for five different
iterated values. It is easy to observe the drastic or nonanalytical change in the behavior of entanglement in thermo-
dynamic limit obtained through high QRG iterations. For small size of the system (zero iteration), the entanglement
instantly and gradually degrades as a continuous function of χ. However, as the number of iterations increases, two
different regions, separated by a fixed value of χ, are developed in which the entanglement at either sides, relatively
far from the fixed value of χ, remains frozen. The fixed value of χ at which all the curves meet, in fact, defines the
critical point of the system and the two emerging regions represent two different phases of the system. The region to
the left represents entangled phase of the system and the one to the right represents product state of the system. The
critical point is not unique rather it depends on the value of κ, such that as κ increases it shifts to larger value of χ.
Moreover, the increasing value of κ affects the entanglement for values of χ only to the left of the critical point in each
of these figures. It is also notable that the initial degradation caused by the presence of κ is the same regardless of the
size of the system.

The nonanalytic behavior of entanglement at the critical point in thermodynamic limit can further be explored
through the divergence of its first derivatives. For the purpose of easiness, we will limit our further investigation to a
single value of the rescaled DM interaction κ. The qualitative behavior of entanglement in the thermodynamic limit
of the system for other choices of κ is identical.

The behavior of the first derivative of concurrence with respect to χ at different iterations for κ = 2 are plotted
in fig. 4. The figure shows that each graph goes through a minimum at or in the vicinity of the critical point. The
minimum becomes more prominent and shifts towards the critical point as the system touches the thermodynamic
limit. The emerging singularity at the critical point is associated with the critical exponent of the system. To observe
this link, we look into the minimum χmin of each curve and to their positions that how it scales with the increasing size
of the system. This scaling behavior of the minimum of the first derivative of concurrence with the increasing size of the
system is shown in fig. 5 for the choice of κ = 2. We observe that the minimum χmin is connected to the critical point
through the entanglement exponent θ = 0.99 as the size of the system grows through the relation χmin = χc + N−θ.
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Fig. 5. The scaling behavior of χmin in terms of system size N for κ = 2, where χmin is the position of the minimum of each
curve in fig. 4.

Fig. 6. The logarithm of the absolute value of minimum, ln(|dC/dχ|χmin), versus the logarithm of chain size, ln(N), for κ = 2,
which is linear and shows a scaling behavior. Each point corresponds to the minimum value of a single plot of fig. 4.

It has already been shown that the entanglement exponent θ itself is linked to the correlation length exponent
ν close to the critical point through θ = 1/ν [30,31]. Moreover, the scaling behavior of the first derivative of the
concurrence at its minimum with the increasing size of the system has also been analyzed. Figure 6 shows the plot
of ln(|dC12/dχ|χmin) against ln(N) for κ = 2, which is linear and reflects that |dC12/dχ|χmin goes almost like N .
These results provide an adequate ground to believe that in the infinite Heisenberg-Ising spin-1/2 chain the QRG
implementation of entanglement truly captures its critical behavior in the vicinity of the critical point.

4 Conclusions

In summary, we investigate the behavior of entanglement in the Heisenberg-Ising spin-1/2 chain in the presence of
DM interaction through the QRG method using concurrence as entanglement quantifier. Our investigations show that
entanglement is very sensitive to DM interaction and can be frozen to its initial value through strong DM interaction.
In thermodynamic limit, the entanglement acquires two different behaviors thereby developing two regions one related
to entangled and the other to separable states of the system. The two regions are linked through the critical point
via quantum phase transition. The critical point is not unique, it rather depends on the strength of rescaled DM
interaction κ in such a way that it shifts to large value of χ with increasing value of κ, and thereby enlarging the range
of maintaining the phase of the entangled state of the system. In the thermodynamic limit, the divergent behavior of
the first derivative of concurrence at the critical point in the presence of DM interaction becomes more pronounced.
The scaling behavior of the entanglement in the vicinity of critical point, which characterizes how the critical point
of the model is reached in the thermodynamic limit, is also studied. Its behavior leads us to obtain the critical
exponent ν = 1/0.99 ≈ 1 in agreement with the universality class of the Ising model. The freezing of entanglement in
thermodynamic limit through increasing DM interaction may prove Heisenberg-Ising spin systems useful for practical
realization of quantum technology.
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