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Abstract. Differential measurements of particle collisions or decays can provide stringent constraints on
physics beyond the Standard Model of particle physics. In particular, the distributions of the kinematical
and angular variables that characterise heavy meson multibody decays are non-trivial and can be used to
probe this new physics. In the era of high luminosity opened by the advent of the Large Hadron Collider and
of Flavor Factories, differential measurements are less and less dominated by statistical precision and require
a precise determination of efficiencies that depend simultaneously on several variables and do not factorise in
these variables. This article is a reflection on the potential of multivariate techniques for the determination
of such multidimensional efficiencies. We carried out two case studies showing that multivariate techniques,
such as neural networks, can determine and correct for the distortions introduced by reconstruction and
selection criteria in the multidimensional phase space of the decays B0 → K∗0(→ K+π−)μ+μ− and
D0 → K−π+π+π−, at the price of a minimal analysis effort. We conclude that this method can already
be used for measurements which statistical precision does not yet reach the percent level. With more
sophisticated machine learning methods, the aforementioned potential is very promising.

1 Introduction

With the advent of the LHC and, a few years before, of Flavor Factories, High Energy Physics (HEP) entered an
era of high statistical precision. More and more differential measurements of particle collisions or decays are now
possible. For instance, stringent constraints can be imposed on the models predicting the dynamics of the decay
B0 → K∗0(→ K+π−)μ+μ− by measuring the distribution of this decay in the four-dimensional space defined by
q2, cos θl, cos θK and φ, a set of independent variables that provide a full description of the decay dynamics and
that are defined in sect. 2.1. Deviations from the Standard Model (SM) predictions in specific regions of the phase
space can be detected this way and sign the action of a physics beyond the SM. Loop-mediated rare decays like
B0 → K∗0(→ K+π−)μ+μ− are particularly sensitive to this new physics. Many models in which particles do not
couple to weak interaction via only their left chiral component predict angular distributions that differ from the SM
ones. More detail can be found, for example, in ref. [1].

In analyses of the kind introduced above, one has to account for the distortion of the phase space caused by recon-
struction and selection criteria. In the example above, this is the distortion of the (q2, cos θl, cos θK , φ) four-dimensional
distribution. The most straightforward method would be to use a sample of simulated B0 → K∗0(→ K+π−)μ+μ−

phase-space decays. A four-dimensional binning could be defined, and the efficiency in each bin determined by the
ratio between the yield of reconstructed and selected events and the yield of generated events. If this determination is
made in terms of all the kinematic variables describing the decay and if the granularity of the binning is fine enough,
the result does not depend on the distributions assumed for these variables by the simulation, which are not always
realistic. However, this method would necessit to generate a huge sample. Even with only 10 bins per dimension,
10000 four-dimensional bins would have to be defined. It would take typically 10 million generated, reconstructed and
selected events to determine the efficiency in all bins with less than a 5% uncertainty. Instead, sophisticated methods
are available to account for efficiencies that depend simultaneously on several variables and that do not factorise in
these variables (see sect. 2.1).
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Fig. 1. Graphical representation of cos θl, cos θK and φ. Their precise definitions are given in the text.

We propose in this article to explore the potential of another approach, suggested by rapid progresses in machine
learning and multivariate analysis observed in the last decade. Techniques such as Neural Networks (NN) [2] or Boosted
Decision Trees (BDT) [3], among others, can now detect with high sensitivity differences between two samples of events
characterised by a large number of variables. They are routinely used nowdays in particle physics measurements to
tell signal from background events. Said otherwise, these techniques are performant at comparing n-dimensional
distributions to detect even subtle differences between signal and background samples (that traditional “by eye”
studies would miss) and discriminate between event types via the NN or BDT score, a single variable incorporating all
the information found in n dimensions. They should naturally be sensitive also to distortions introduced in the phase
space of particle collisions or decays by reconstruction and selection criteria.

We do not take for granted that multivariate techniques reach the same level of precision as methods such as
the principal moment analysis described in [1], nor that such a result can be obtained without a certain expertise in
MVA techniques or without a time-consumming optimisation of the parameters that rule the technique’s behavior and
performance. However, the rythm at which MVA techniques have been progressing recently, their growing availability
to basic users in the form of user-friendly packages, and the increasing typical expertise of high-energy physicists
suggest MVAs might soon become very valuable tools, and easy to use, for multidimensional efficiency determination.
It is therefore interesting to start exploring the potential of this approach.

This article only starts this exploration, with the ambition to answer the following question: what can be achieved if
multivariate techniques are used in a very simple manner, using generic settings, like the default ones found in packages
like [4]? In the case of analyses which do not require the same precision as the analysis of B0 → K∗0 (→ K+π−)μ+μ−

introduced above, is this approach enough? Also, our goal is not to provide quantitative results, but an illustration of
the potential of this approach.

In this article, we will first describe briefly a typical technique used to treat multidimensional efficiencies, and
describe the approach we propose (sect. 2). Then, we will apply it to a first test case, involving the decay D0 →
K−π+π+π− (sect. 3). This decay can be used to improve our knowledge of D-meson mixing. For that purpose, one
needs to determine the selection efficiency across the space defined by five independent variables in terms of which
the decay dynamics can be expressed. Another test case will involve B0 → K∗0(→ K+π−)μ+μ− (sect. 4). The results
observed in these two cases will be summarized and discussed in the conclusion (sect. 5).

2 Techniques for multidimensional efficiencies

2.1 A classical technique

Methods of a certain complexity can be used to account for efficiencies that depend simultaneously on several variables
and that do not factorise in these variables. The study of the decay B0 → K∗0(→ K+π−)μ+μ− provides a typical
example [1]. The dymamics of this decay is fully described by four independent variables, q2, cos θl, cos θK and φ.
They are defined as the invariant mass of the dimuon system squared, the cosine of the angle between the μ+ (μ−)
and the direction opposite the B0 (B0) in the rest frame of the dimuon system, the cosine of the angle between the
direction of the K+ (K−) and the B0 (B0) in the rest frame of the K∗0 (K∗0) system, and the angle between the
plane defined by the μ+ and μ− and the plane defined by the kaon and pion in the B0 (B0) rest frame, respectively.
The definition of the three angles above is illustrated on fig. 1. In ref. [1], the technique introduced in ref. [5] is used
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to determine the efficiency across the four-dimensional space defined by q2, cos θl, cos θK and φ. This involves a long
sum of products of Legendre polynomials in the concerned variables:

ε(cos θl, cos θK , φ, q2) =
∑

klmn

cklmnPk(cos θl)Pl(cos θK)Pm(φ)Pn(q2), (1)

where the terms Pi(x) stand for Legendre polynomials of order i. The coefficients cklmn are evaluated by performing
a principal moment analysis of simulated B0 → K∗0(→ K+π−)μ+μ− phase-space decays:
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where N is the total number of events and ωi are weights imposed for instance to correct for known discrepancies
between data and simulation. Their sum provides the total normalisation N

′
. For cos θl, cos θK , the angle φ and

q2, polynomials up to order 4, 5, 6 and 5 are used, respectively (see ref. [1]). Designing the method, understanding
the properties of the Legendre polynomials and, more generally, of the sum in eq. (1), implementing the software
to compare this parametrisation with the efficiencies observed for simulated decays so as to determine the highest
orders to include until a proper description of the efficiency is obtained and to determine the cklmn coefficients, and
interpretating the results are time demanding tasks. In the end, hundreds of cklmn are necessary. This might be worse
in cases where more than four variables have to be dealt with, and it’s not obvious the method will always work
accurately.

2.2 A new approach

The approach we propose is based on the idea that if a BDT or a NN is very powerful at detecting differences between
a signal and a background sample based on a given set of n variables, not by considering them individually, but by
also exploiting their correlations, i.e. by comparing n-dimensional distributions, it should also be powerful at finding
the differences between two samples differing only due to reconstruction and selection biases. In this case, instead of
training the multivariate discriminator by comparing a signal and a background sample, one would compare samples of
the same decay: an original sample made of generator level decays with a distorted sample made of decays that satisfied
reconstruction and selection criteria. Instead of comparing discriminating variables, one would focus on the phase space
of the decay, or in other words the n-dimensional distribution of events in the space defined by a set of independent
variables that can describe fully the decay dynamics. In the example of the decay B0 → K∗0(→ K+π−)μ+μ−, these
phase space variables are (q2, cos θl, cos θK , φ).

In a four-stage approach, we first generate an original MC sample and a distorted one. The latter is generated in
the same way as the former, save that reconstruction and selection cuts are applied. This stage is mandatory in most
if not all physics analyses in HEP. The approaches like the ones in sect. 2.1 need that too. When high precision is
necessary one generates samples containing up to a few million events. In most HEP collaborations, generating larger
samples is challenging due to limited CPU and data storage capabilities. In the test cases presented in sect. 3 and 4,
we use the ROOT package [6], and more specifically the TGenPhaseSpace class to generate these samples.

The second step is to train a multivariate analysis by comparing the samples generated above. In the case studies
we carried out, we used the TMVA [4] package to train Multilayers Perceptron NNs. The only variables we provided the
NNs with are the phase space variables.

The third stage is to parameterise the reconstruction and selection efficiency in terms of only a single variable,
which makes the task of accounting for this multidimensional efficiency far more practical. For that purpose, we
naturally use the NN score, which summarises into one single variable all the differences detected between the original
and distorted phase spaces.

The fourth stage is to generate additional original and distorted samples, independent of those used above for
training, in order to study the performance of the approach presented here. In practice, the parameterised efficiency
determined in the third stage provides a per-candidate efficiency that is used to weight the distorted sample so as to
reproduce the phase space (and the various characteristic distributions) of the original sample.

3 Application to the study of D0 → K−π+π+π−

Multibody D0 decays provide examples where multidimensional efficiencies must be determined. These decays can
be used, for instance, to improve our understanding of D0 mixing [7]. This includes four-body decays. In this case,
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a five-dimensional differential analysis must be carried out. Our case study in this article is the D0 → K−π+π+π−

decay, which dynamics can be described by the following set of masses:

m12 = m(π+
1 π−)

m23 = m(π+
2 π−)

m34 = m(π+
2 K−)

m123 = m(π+
1 π−π+

2 )

m234 = m(π−π+
2 K−).

3.1 Generation of the distorted and original samples

We generated an original sample and a distorted sample of D0 → K−π+π+π− decays, both containing around 200000
decays. We tried to produce samples which features are typical of what could be observed at LHCb, the present world
leading experiment in Flavor Physics [8]. For that purpose, an important element is to generate decays that have the
same kinematics as in LHCb’s laboratory frame. This is not possible with the TGenPhaseSpace class alone, which
knows nothing of the physics of the proton-proton collision where D0 mesons are produced. Using this class one can
generate the four-momentum of each daughter particle given the four-momentum of the decaying particle, assuming a
flat phase space (i.e. assuming that all the combinations of daughter four-momenta that respect energy and momentum
conservation are equally allowed). To reproduce the kinematics of D0 mesons produced in proton-proton collisions at a
center-of-mass energy of 7 or 8TeV, we combined several samples, each generated assuming a different value of the D0

transverse momentum and rapidity. The relative contribution of each sample to the final one was decided according
the D0 production cross-sections measured in ref. [9] as a function of these quantities.

After having generated the original sample as described above, we produced the distorted sample by requiring all
the decay products to be in the acceptance of the LHCb detector (i.e. the angle between their momentum and the
nominal beam line should lie in the range 0.01–0.4 rad) and by applying the following kinematical cuts:

– pT(D0) > 3GeV/c;

– pT > 0.5GeV/c, p > 3GeV/c for all the decay products;

– max(p(K−), p(π+), p(π+), p(π−)) > 10GeV/c;

– max(pT(K−), pT(π+), pT(π+), pT(π−)) > 1.7GeV/c;

– max(pT(K−), pT(π+), pT(π+), pT(π−)) > 3.7GeV/c with the hardware trigger reconstruction.

By construction, the generator-level p and pT’s available in our samples do not account for the finite resolution of
the reconstruction. Since in LHCb the momentum resolution of the offline reconstruction is very small (from 0.5% at
low momentum to 1% at 200GeV/c), we consider that we can safely neglect it. One exception is made for the first
stage of LHCb’s trigger system. It is a hardware trigger that searches for high pT objects, based on a partial event
reconstruction carried out by the front end electronics [10]. Several kinds of objects are searched for, involving several
trigger lines: candidates are looked for in the muon system, while in the electromagnetic calorimeter clusters due to
photons or electrons are sought. In the case of a decay like D0 → K−π+π+π−, the hardware trigger looks for high
pT clusters (> 3.7GeV/c) in the hadron calorimeter, which resolution is σE/E = 80%/

√
E ⊕ 10% with E expressed

in GeV. We apply the trigger cut to particles which pT has been smeared in order to reproduce this resolution. This
trigger cut is applied to only a third of the events since LHCb events in which a D0 → K−π+π+π− decay is produced
are often triggered on independently, due to the decay products of the second charm hadron produced in the event
(proton-proton collisions actually produce c-c̄ pairs).

On fig. 2 we compare the distributions of m12, m23, m34, m123 and m234 in the distorted and original samples. The
selection efficiencies as a function of each of these variables (i.e., the ratio between the distributions superimposed on
fig. 2) are also shown on fig. 3. This illustrates the effect of the selection on the phase space.

3.2 Neural network training

We chose to use the MLPBNN NN provided by the TMVA package. This Multilayer Perceptron (MLP) NN is trained using
the BFGS method instead of a simple back-propagation method. The definition of a MLP, and a description of the
latter method can be found in ref. [4]. Also, a Bayesian regulation technique is employed. It is described in ref. [11]. We
used the default configuration found in the example macro downloaded with the TMVA package. To the attention of the
expert reader, we specify that in this case the MLP involves only one hidden layer, which comprises N + 10 neurons,
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Fig. 2. Distributions of m12, m23, m34, m123 and m234 in the original sample (histogram) and in the distorted one (full
triangles). The normalisation is arbitrary.

where N is the number of input variables (m12, m23, m34, m123 and m234 in our case). The neuron activation function
is tanh. Input variables are linearly scaled to lie with [−1; 1], and 600 training cycles are performed. An overtraining
test is run every 5 cycles. All the other settings can be found in table 19 of ref. [4].

It took two hours to train this MLP to distinguish between decays from the distorted or original samples. We used a
machine equipped with a Intel i7-640M 2.8GHz 2-Core processor. The distribution of the NN score s in the original and
distorted samples is shown on fig. 4. It also displays the ratio of these distributions, to which we fitted a parameterised
efficiency, ε(s). We used for that a fifth order polynomial. The ε(s) function should match ε(m12,m23,m34,m123,m234),
the multidimensional efficiency we aim at.

3.3 Results

To test the efficiency obtained above, we produced two additional distorted and original samples which size equals that
of the training samples. We weighted each D0 → K−π+π+π− decay i in the distorted test sample with ωi = 1/ε(si).
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Fig. 3. Efficiency in m12, m23, m34, m123 and m234 observed in the data generated for this study. Shown are the ratios of the
distributions found in the distorted and original samples. The normalisation of these distributions was arbitrary.

The result can be found in fig. 5. It is the same as fig. 2 with distributions from the re-weighted distorted sample
superimposed. One can see that these distributions match closely those observed in the original sample, before the
distortions due to the selection were imposed. The ratios on fig. 6 are consistent with 1 all over the m12, m23, m34,
m123 and m234 spectra, unlike the un-weighted ratios on fig. 3, which show clear distortions. Consequently, the MLP
we trained produces a single variable s to fully encompass the 5-dimensional information on the distortion of the
(m12,m23,m34,m123,m234) space. The ε(s) efficiency accounts simultaneously for the 5 individual efficiencies as a
function of m12, m23, m34, m123 and m234. The yield in each bin of the corrected distributions in fig. 5 is calculated
as the sum of the ωi weights over all the events that lie in this bin. In principle, this corrected yield can be correct
even if ε(s) is not an accurate evaluation of ε(m12,m23,m34,m123,m234) everywhere in the (m12,m23,m34,m123,m234)
space. A compensation is possible in the sum. Also, the evaluation could be wrong in regions containing too little
statistics for the effect to appear significantly on figs. 5 and 6. To constrain this possibility, we repeated the test
of figs. 5 and 6 in various restricted regions of the (m12,m23,m34,m123,m234) space. The results are on the figures
provided in appendix A (in the supplementary material). The corrected distributions once more match the original ones.
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Fig. 4. Distributions and distribution ratio showing (a) the NN score s in the distorted (red open circles) and original (black
full circles) D0 → K−π+π+π− samples, and (b) the selection efficiency as a function of s (with an arbitrary normalisation).
The fit leading to ε(s) is superimposed to the measured efficiencies.

Note that we still use the efficiency from fig. 4 for these corrections. The polynomial’s parameters were not re-evaluated
by performing in each region specific fits or new trainings. We conclude that ε(s) = ε(m12,m23,m34,m123,m234), in
the limit of the precision with which it can be verified with our data.

We reach the same conclusion when applying the same technique to correct an alternative distorted sample,
obtained with tighter cuts and therefore showing stronger distortions in the phase space. We tightened one cut on
the D0 → K−π+π+π− decay products: pT > 0.6GeV/c. Also, the hardware trigger selection is applied to all events
instead of only a third. The results we obtained can be judged with the help of figs. 7 and 8. What we obtained in
particular regions of the phase space is shown on figures provided in appendix A (in the supplementary material).

4 Application to the study of B0 → K∗0(→ K+π−)μ+μ−

We performed a second case study to explore the potential of MVAs to treat multidimensional efficiencies. It is based
on the decay B0 → K∗0(→ K+π−)μ+μ−. A similar procedure to that described in sect. 3 has been carried out for
that purpose.

4.1 Sample generation

We generated a distorted and an original sample, both containing about 2000000 decays, using once more the ROOT
TGenPhaseSpace class. The kinematics of the B0 meson is derived from the differential production cross-section as
a function of transverse momentum and rapidity, measured in proton-proton collisions at a center-of-mass energy of
7TeV [12].

To produce the distorted sample, we applied a selection as similar as possible to that in ref. [1]. We first impose all
the decay products to be in the acceptance of the tracking system of the LHCb detector. The muons are also required
to be in the acceptance of the muon system. To determine whether a given track verifies these criteria, its trajectory
is extrapolated from the proton-proton interaction vertex to the position of the sub-detector under consideration as
described in [13]. The impact of LHCb’s dipole magnet is accounted for. The following other criteria are imposed:

– One of the muons should satisfy pT(μ) > 1.8GeV/c in order to reproduce the cut used by the muon-specific line
which dominates the hardware trigger in the case of decays such as B0 → K∗0(→ K+π−)μ+μ−.

– max(p(K+), p(π−), p(μ+), p(μ−)) > 10GeV/c.

– min(pT(K+), pT(π−), pT(μ+), pT(μ−)) > 0.2GeV/c.

– pT(B0) > 4GeV/c.

– p(B0) > 40GeV/c.

– For all decay products IP/σIP > 3, where IP stands for the minimum distance of a track to the proton-proton
primary vertex.
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Fig. 5. Distributions of m12, m23, m34, m123 and m234 in the original sample (histogram), in the distorted one (full black
triangles) and in the distorted sample where the decays have been re-weighted using the ωi weights (open red crosses), as
explained in the text. The absolute normalisation is arbitrary when the correction is not applied and natural when it is applied.

Only momenta and transverse momenta are directly accessible in the data generated with the TGenPhaseSpace class.
The IP of a given track was therefore determined based on the angle between the B0 → K∗0(→ K+π−)μ+μ− decay
products and the momentum of the B0, assuming the latter travelled a typical 8mm before its decay. The uncertainty
on IP , σIP, was computed based on the transverse momentum of the particle under consideration and on the typical
uncertainty observed in LHCb. We used σIP = (15+29/pT)μm, with pT in GeV/c, the uncertainty advertised by LHCb
in recent publications (see for instance ref. [1]). With the set of criteria listed above, the distortion of the (q2, cos θl,
cos θK , φ) space, although not idenditical, is similar to that observed in ref. [1]. This can be seen on fig. 10, which shows
the distortion in our generated data, in extreme regions of q2: 0.1 < q2 < 0.98GeV2/c4 and 18.0 < q2 < 19.0GeV2/c4.
This can be compared with fig. 9 to notice that the evolution of the distortion between these two extreme regions is
reproduced.
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Fig. 6. Efficiency in m12, m23, m34, m123 and m234 in the data generated for this study. Shown are the ratios of the distributions
found in the distorted and original samples, with no correction (full black triangles) and for decays re-weighted using ωi weights
(red open crosses) as explained in the text. The absolute normalisation is arbitrary when the correction is not applied and
natural when it is applied.

4.2 Neural network training

We trained the MLP NN provided by the TMVA package. It is the same NN as that described in sect. 3, modulo two
differences: the classical back-propagation technique described in [4] is used instead of the BFGS method, and we use
no Bayesian regulation technique.

The distortion of the (q2, cos θl, cos θK , φ) space is more challenging to correct as that of the (m12, m23, m34,
m123, m234) space in the previous section. Indeed, as can be seen on figs. 9 and 10, the distortion the cos θl and φ
distributions is symmetric in these variables. As a consequence, the discriminative power of these variables is low:
the distorted and original samples cannot be distinguished via a strong “preference” of one of them for the higher or
the lower end of the cos θl or φ distributions. In other words, the efficiencies with which distorted and original events
would be selected by a cut on cos θl or φ would not differ much, whatever the value of this cut. Another difficulty
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Fig. 7. Distributions of m12, m23, m34, m123 and m234 in the original sample (histogram), in the distorted one obtained with a
tighter selection (full black triangles) and in the same sample where the decays have been re-weighted using the ωi weights (red
open crosses), as explained in the text. The absolute normalisation is arbitrary when the correction is not applied and natural
when it is applied.

complicates the determination of the multidimensional efficiency ε(q2, cos θl, cos θK , φ) with the approach presented
in this article. It stems from the fast variation as a function of q2 of the distortion in the 3 other variables and the
particular pattern it follows: at low q2, the distortion is strong in cos θl and very light in φ, while the opposite is
observed at high q2. There is therefore a more complicated structure to be understood by the NN. Also, the fact that
in some q2 regions only two variables can actually discrimate the distorted sample against the original one is a difficulty
in itself. Moreover, it is not trivial for the NN to adapt to this varying behavior since it is trained using the whole
distorted and original samples. It is not instructed to treat differently the various q2 regions. This difficulty affects the
determination of ε(q2, cos θl, cos θK , φ) in the whole sample and becomes more acute when it comes to determine the
multidimensional efficiency in restricted regions of q2.
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Fig. 8. Efficiency in m12, m23, m34, m123 and m234 in the data generated for this study, with a tighter selection for the distorted
sample. Shown are the ratios of the distributions found in the distorted and original samples, with no correction (full black
triangles) and for decays re-weighted using ωi weights (red open crosses) as explained in the text. The absolute normalisation
is arbitrary when the correction is not applied and natural when it is applied.

To overcome these difficulties, the input variables mapped to the NN’s first layer are not directly q2, cos θl, cos θK ,
and φ. We replace cos θl and φ by exp

(
− cos2 θl

4

)
and exp

(
− sin2 φ

4

)
, which distributions are not symmetric. Also,

unlike in sect. 3, we cannot use blindly the MLP settings provided by default by TMVA. Instead, we devoted a limited
effort (about a day of work) to a brute force optimisation. In practice:

– We further transformed the input variables so as to make their distributions gaussian, which helps the decorrelation
algorithms used by the NN [4].

– We used three hidden layers instead of only one. The number of neurons constituting the first, second and third
layers is 30, 8 and 4, respectively. It has to be compared with 4, the number of input variables.

– The number of training cycles was raised to 90000.
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Fig. 9. Angular efficiency in cos θl, cos θK and φ, as determined from a principal moment analysis of simulated three-body
B0 → K∗0(→ K+π−)μ+μ− phase-space decays (black solid and red long-dashed lines), and compared to simulated data
(histograms). The efficiency is shown for the regions: 0.1 < q2 < 0.98 GeV2/c4 (black) and 18.0 < q2 < 19.0 GeV2/c4 (red).
The absolute normalisation is arbitrary. This figure is reproduced from ref. [1].

– Overtraining tests were run every 10 cycles. Each time, the convergence is also tested. If 10 consecutive tests fail
to observe an improvement of the error function, the training is considered optimal and stopped.

All the other settings can be found in table 19 of ref. [4]. With these settings, it took ∼ 12 hours to train the NN on
the same machine as in sect. 3.

4.3 Results

We show on fig. 11 the distributions of the NN score s obtained in the original and distorted samples. This figure also
shows ε(s), the parameterised efficiency fitted to the ratio of the original and distorted distributions.

We tested this efficiency in the same way as in sect. 3.3. Figure 12 shows the efficiency in q2, cos θl, cos θK and
φ observed in test samples. Also shown are the efficiencies obtained with the corrected distorted test sample, in
which each decay i is weigted by ωi = 1/ε(si). We observe on this figure that the correction works precisely. The latter
statement also holds in specific regions of the q2 distribution, as can be seen on fig. 13, which shows this efficiency in the
region 0.1 < q2 < 0.98GeV2/c4, and on fig. 14, which focusses on the region 18.0 < q2 < 19.0GeV2/c4. The corrected
efficiencies in all three variables are consistent with a flat efficiency. When such an efficiency is fitted to the data points
(horizontal line on these figures), it is consistent with 1. These results can be compared to what was obtained by
the analysis reported in [1], with the principal moment analysis briefly described in sect. 2.1. The approach proposed
here seems less precise statistically but of comparable accuracy. This is a promising result since it was obtained with
very limited efforts and MVA-related competences. In ref. [1], LHCb determined angular observables characterising
the B0 → K∗0(→ K+π−)μ+μ− decay from an unbinned maximum likelihood fit performed in 10 regions of the q2

spectrum. The corresponding corrected efficiencies (save in 0.1 < q2 < 0.98GeV2/c4, already shown on fig. 13) can be
seen on figures provided in appendix B (in the supplementary material). We remind that in each q2 region the weights
are still calculated from the ε(s) function fitted to the efficiency shown on fig. 11. No specific training and no specific
evaluation of the polynomial is performed in individual regions.

As in sect. 3, our results suggest the ε(s) efficiency obtained with the approach proposed in this article can be used
to evaluate the effiency at a given point of the decay phase space.
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Fig. 10. Efficiency in cos θl, cos θK and φ in the data generated for the present study, in (a), (b) the region 0.1 < q2 <
0.98 GeV2/c4 and (b), (c) the region 18 < q2 < 19GeV2/c4. The absolute normalisation is arbitrary. The efficiency in cos θl at
high q2 is flat and therefore not displayed here. For the same reason, the efficiency in φ at low q2 is not shown.
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Fig. 11. Distributions and distribution ratio showing (a) the NN score s in the distorted (red open circles) and original (black full
circles) B0 → K∗0(→ K+π−)μ+μ− samples, and (b) the selection efficiency as a function of s (with an arbitrary normalisation).
The fit providing ε(s) is superimposed to the measured efficiencies.
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Fig. 12. Efficiency in q2, cos θl, cos θK and φ in the data generated for the present study. Shown are the ratios of the distributions
found in the distorted and original samples, with no correction (black full triangles) and for decays re-weighted using ωi weights
(red open crosses) as explained in the text. The absolute normalisation is arbitrary when the correction is not applied, natural
when it is.

5 Conclusion

We proposed a novel approach to the determination of multidimensional efficiencies and explored its potential with
two examples which illustrate the needs of modern Heavy Flavor physics measurements: the studies of the decays
D0 → K−π+π+π− and B0 → K∗0(→ K+π−)μ+μ−. We used neural networks to characterize the differences intro-
duced in a 4- or 5-dimensional phase space by typical reconstruction and selection criteria. In both these test cases,
the NN score allows to correct the selected samples in order to reproduce the phase space distributions observed in
samples that have not undergone any selection. This is an evidence the approach developped here allows to evaluate
the efficiency at any point of a multidimensional phase space. Compared to elaborate techniques like the principal
moment method used in [1], this new approach seems less precise statistically although as accurate. It may suffice for
measurements that do not require the same level of precision as the angular analysis of B0 → K∗0(→ K+π−)μ+μ−

reported in [1]. In such cases, it would represent a considerable gain of working time since satisfactory results can be
achieved with minimum skills and knowledge of MVA techniques, using packages already routinely used within the
HEP community, with no need of any elaborate optimisation nor of more than a few days of work and a few hours of
CPU consumption. It also suggests that with more expertise and cutting-edge MVA techniques, a precise treatment
of multidimensional efficiencies is possible and could be applied to measurements of primary importance.

Other applications of MVAs to HEP, besides signal vs. background discrimination, can be considered in the future.
Selection efficiencies often rely on simulations that match real data only imperfectly and require systematic Data/MC
comparisons to correct the simulation. When the correction must be applied to many variables, using a MVA to
compare data with MC and derive “automatically” a unique number to re-weight the simulation would be a valuable
tool.

In a given analysis, if one knows the efficiency at each point of the phase space, the signal events found in data
can be corrected to obtained the distributions of interest before any selection bias, without having to use an imperfect
simulation. This is not possible in cases where a rare decay is searched for. There, very few signal events are found,
if any, and there is nothing to re-weight. The technique proposed in this article could be used to guide the selection
design in order to obtain a flat ε(s). For that purpose, one could re-train the MVA developped for the signal selection
with a weight applied to signal training events, derived from the ε(s) observed when the original selection is applied.
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Fig. 13. Efficiency in cos θl, cos θK and φ in the data generated for the present study, in the region 0.1 < q2 < 0.98 GeV2/c4.
Shown are the ratios of the distributions found in the distorted and original samples, with no correction (black full triangles)
and for decays re-weighted using ωi weights (red open crosses) as explained in the text. The absolute normalisation is arbitrary
when the correction is not applied, natural when it is.
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Fig. 14. Efficiency in q2, cos θl, cos θK and φ in the data generated for the present study, in the region 18.0 < q2 < 19.0 GeV2/c4.
Shown are the ratios of the distributions found in the distorted and original samples, with no correction (black full triangles)
and for decays re-weighted using ωi weights (red open crosses) as explained in the text. The absolute normalisation is arbitrary
when the correction is not applied, natural when it is.
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A comparison with the results obtained with the technique developped in ref. [14] would be a benchmark here. If this
goal is achieved, even a simulation that does not reproduce correctly the real phase space of the decay can be used to
determine the efficiency. Upper limits are often normalised to the branching fraction of a well known non-suppressed
decay which decay products are identical to the signal’s. It differs from the signal only due to a different phase space.
Ensuring for both modes a flat efficiency across the phase space would make their efficiency ratio closer to one and
more robust against systematic uncertainties.
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