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Abstract. This paper studies the collinear equilibrium points of the restricted three-body problem under
the effects of the oblateness of the bigger primary and the radiation pressure of the smaller primary. Using
a semi-analytical and numerical approach, the positions and linear stability of these points are investigated
for the binary systems RXJ 0450.1-5856 and Nova Cen 1969 (Cen X-4), and found to be affected by the
oblateness and radiation pressure. The collinear points remain unstable in the sense of Lyapunov.

1 Introduction

A degenerated case of the three-body problem is the restricted three-body problem (R3BP). It describes the motion
of an infinitesimal mass (third body) moving under the gravitational effects of two finite masses, called primaries,
which move in circular orbits around their common center of mass on account of their mutual gravitational attraction
and the infinitesimal mass not influencing the motion of the primaries. Several scientists and astronomers [1–10] have
considered the applications of the R3BP to the dynamics of the stellar and solar systems, lunar theory and planetary
sciences. The solutions to the classical problem, which have been developed over the centuries from [11–17] and others,
form the basis of the study of the dynamics of the celestial bodies from their work to the recent advances in flight
dynamics. The approximate circular motion of the planets around the Sun and the small masses of asteroids and
satellites of planets compared to the planets’ masses, originally suggested the formulation of the circular restricted
three-body problem (CR3BP). The CR3BP possesses five equilibrium points. Three of them are in a straight line, and
are called the collinear equilibrium points, while the other two forms equilateral triangles with the primaries, and are
called triangular equilibrium points.

Several studies [18–26] have been carried out on the collinear libration points of the circular/ or elliptic restricted
three-body problem. The authors of [18] and [21] have shown that the inner collinear point can be stable under certain
conditions while [25] studied the effect of photogravitational force and oblateness in the perturbed R3BP and analyzed
128 cases of its model. The authors of [27] have investigated the effects of triaxiality of the bigger primary bodies on
the collinear libration points of some binary systems moving in elliptical orbits around their common center of mass.
Recently, [28] studied the bifurcation of artificial halo orbits from the Lyapunov planar family of periodic orbits around
the collinear libration points and their results show that Solar Radiation Pressure is indeed a relevant ingredient for
the new dynamical system.

The authors of [29] formulated the photogravitational CR3BP when at least one of the interacting bodies is an
intense emitter of radiation. In certain stellar dynamics problems when a star acts upon a particle in a cloud of gas
and dust, the dominant factor is by no means gravity, but the repulsive force of the radiation pressure. Researchers
like [30–35] have included the radiation pressure force in their studies.

The bodies in the R3BP assumes that the masses concerned are spherically symmetrical in homogenous layers, but
it is found that celestial bodies, such as Saturn and Jupiter, are not perfect spheres [36]. Rotation in stars produces
an equatorial bulge due to centrifugal force. As a result of the rapid rotation after the formation of Neutron stars,
white and black dwarfs, they may be considered oblate. A neutron star on formation can rotate at a rate of nearly
a thousand rotations per second [37]. The pulsar PSRB1937+21 spinning about 642 times a second and the pulsar
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PSRJ1748-422ad spinning 716 times a second are some of the swiftest spinning pulsar [38]. This motivated several
researchers [39–43] to include oblateness of the primaries in their studies of the R3BP.

In considering the bigger primary as an oblate spheroid and the smaller one as a source of radiation, a different
version of the problem came into existence. In this context, we consider close binary stars in which the bigger primary
is a stellar remnant (a neutron star, a white dwarf, a black dwarf) with the smaller one a low-mass stellar companion.
A white dwarf, also called a degenerate dwarf, is a highly evolved stellar remnant of a giant star that has blown away
its outer layers as planetary nebulae. It is composed of electron degenerated matter with no internal heat sources;
however, it gradually radiates its residual energy until it becomes a black dwarf. Such types of binaries are not scarce,
as stars of different masses have different life spans [44]. Examples of these are low-mass X-ray binaries (LMXBs), pre-
LMXBs, and soft X-ray transient. These are the best natural counterparts in the system under study, which provides
test beds for this astrophysical problem [45]. This constitutes an excellent model for the research under investigation.

In this paper, our effort is geared towards investigating the effects produced by oblateness of the bigger primary and
the radiation pressure of the smaller primary on the existence of collinear equilibrium points and their linear stability
in the CR3BP. The obtained results of this model can be applied to study the motion (locations and stability) of a
test particle around the collinear points of the binary systems RXJ 0450.1-5856 and Cen X-4.

This paper is organized as follows. In sect. 2, the equations governing the motion are presented. The existence
of collinear equilibrium points is discussed in sect. 3, while sect. 4 examines their linear stability of these points.
Numerical analysis is done in sect. 5. Finally, sect. 6 summarizes the conclusion of our paper.

2 Equations of motion

Using a barycentric-synodic coordinate system (x, y) and dimensionless variables, the equations of motion of a test
particle in the CR3BP under the effects of oblateness of the bigger primary and the radiation of the smaller primary
can be expressed as

ẍ − 2nẏ = Ωx

ÿ + 2nẋ = Ωy (1)

where

Ωx = n2x − (1 − μ)(x + μ)
r3
1

− 3(1 − μ)A(x + μ)
2r5

1

− μq(x + μ − 1)
r3
2

,

Ωy = n2y − (1 − μ)y
r3
1

− 3(1 − μ)Ay

2r5
1

− μqy

r3
2

,

r2
1 = (x + μ)2 + y2, r2

2 = (x + μ − 1)2 + y2, (2)

n2 = 1 +
3A

2
. (3)

Here r1 and r2 are the respective distances of the test particle from the primaries m1 and m2 separated by a

distance R. The mean motion n of the primaries is given by n2 = 1 + 3A
2 , where 0 < A = r2

e−r2
ρ

5R2 � 1 is the oblateness
coefficient of m1 having the equatorial and polar radii as re and rp, respectively. 0 < μ = m2

m1+m2
≤ 1

2 be the mass

parameter. q characterizes the effects of radiation of the smaller primary, and is given by 0 < q = 1 − Fp

Fg
≤ 1, where

Fp and Fg are the radiation pressure and the gravitational force, respectively.
The equations of motion are affected by the shape of the bigger primary and the radiation pressure of the smaller

primary. Next, we shall discuss the positions of the collinear equilibrium points of the test particle.

3 Positions of collinear equilibrium points

The collinear equilibrium points can be obtained by solving equations Ωx = 0, y = 0. Therefore, we have

f(x) ≡ n2x − (1 − μ)(x + μ)
r3
1

− 3(1 − μ)A(x + μ)
2r5

1

− μq(x + μ − 1)
r3
2

= 0, (4)

where
r1 = |x + μ| and r2 = |x + μ − 1|. (5)
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Fig. 1. Position of the collinear point L1.

Fig. 2. Position of the collinear point L2.

The abscissae of the collinear points are the roots of the equation f(x) = 0. To locate these points, we observe the
behaviour of the function f(x). There are only three real roots of the equation f(x) = 0 with one lying in each of the
open interval (−μ − 1,−μ), (−μ, 0), and (1 − μ, 2 − μ). These roots correspond to the three collinear points and are
denoted by L1, L2 and L3.

Figures 1, 2 and 3 are sketches of the locations of the collinear points. In fig. 1, L1 is located to the left of the
bigger primary on the negative x-axis. Let ε1 be the distance of L1 from the primary m1, so that r1 = ε1, r2 = 1 + ε1

and x1 = −μ − ε1. Then from eqs. (4) and (5), we have

n2(−μ − ε1) +
(1 − μ)

ε2
1

+
3(1 − μ)A

2ε4
1

+
μq

(1 + ε1)2
= 0, (6)

such that

− n2ε1
7 − n2(2 + μ)ε1

6 − n2(1 + 2μ)ε1
5 +

(
1 − μ

(
1 + n2 − q

))
ε1

4 + 2(1 − μ)ε1
3

+ n2(1 − μ)ε1
2 + 3A(1 − μ)ε1 +

3
2
A(1 − μ) = 0. (7)

Equation (7) is a seventh-degree algebraic equation in ε1:

n2(−μ − ε1 − με1 + με1) + (1 − μ)ε1
−2 +

3
2
(1 − μ)Aε1

−4 + μq(1 + ε1)−2 = 0.

Simplifying the above, we get an analogous polynomial of same degree to eq. (7) as

ε1
7 + aε1

6 + bε1
5 + cε1

4 − dε1
3 − eε1

2 − fε1 − g = 0, (8)
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Fig. 3. Position of the collinear point L3.

where

υ =
μ

(1 − μ)
,

a =
(

2 + 3υ
1 + υ

)
, b =

1
1 + υ

(1 + 3υ) , c =
1

1 + υ

(
− 1

n2
+ υ − qυ

n2

)
, d =

1
1 + υ

(
2
n2

)
,

e =
1

1 + υ

(
1
n2

+
3

2n2
A

)
, f =

1
1 + υ

(
3
n2

)
A and g =

1
1 + υ

(
3

2n2
A

)
.

Here, the point L2 lies between the primaries m1 and m2 on the x-axis (see fig. 2). Let ε2 be the distance of L2

from the primary m2, so that r1 = 1 − ε2, r2 = ε2 and x2 = 1 − μ − ε2. Then from eqs. (4) and (5), we have

n2(1 − μ − ε2) −
(1 − μ)

(1 − ε2)2
− 3(1 − μ)A

2(1 − ε2)4
+

μq

ε2
2

= 0, (9)

such that

− n2ε2
7 + n2(5 − μ)ε2

6 − n2(10 − 4μ)ε2
5 + (n2(10 − 6μ) + μ(1 + q) − 1)ε2

4

−
(
n2(5 + 4μ) + 2(−1 + μ(1 + 2q))

)
ε2

3 + 6μqε2
2 − 4μqε2 + μq = 0. (10)

Equation (10) is an algebraic equation of seventh degree in ε2:

n2(1 − μ − ε2 + με2 − με2) − (1 − μ)(1 − ε2)−2 − 3
2
(1 − μ)A(1 − ε2)−4 + μqε2

−2 = 0.

Simplifying the above, we get an analogous polynomial of same degree to eq. (10) as

ε2
7 − aε2

6 + bε2
5 − cε2

4 + dε2
3 − eε2

2 + fε2 − g = 0, (11)

where

υ =
μ

(1 − μ)
,

a =
1

1 + υ
(5 + 4υ), b =

1
1 + υ

(10 + 6υ), c =
1

1 + υ

(
− 1

n2
+ 10 +

qυ

n2
+ 4υ

)
,

d =
1

1 + υ

(
− 2

n2
+ 5 +

4qυ

n2
+ υ

)
, e =

1
1 + υ

(
− 1

n2
+ 1 +

6qυ

n2
− 3

2n2
A

)
,

f =
1

(1 + υ)n2
(4qυ) and g =

qυ

(1 + υ)n2
.
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Table 1. Numerical data for binary systems.

Binary Mass ratio Radiation pressure
μ q M1 M2

RXJ 0450.1-5856 0.0967 0.9965 1.4 0.15

Cen X-4 0.038515 0.993 1.9996 0.0801

In this case, L3 is located to the right of the radiating smaller primary on the positive x-axis (see fig. 3). Let ε3 be
the distance of L3 from the primary m2, so that r1 = 1 + ε3, r2 = ε3 and x3 = 1−μ + ε3. Then from eqs. (4) and (5),
we have

n2(1 − μ + ε3) −
(1 − μ)

(1 + ε3)2
− 3(1 − μ)A

2(1 + ε3)4
− μq

ε3
2

= 0, (12)

such that

n2ε3
7 + n2(5 − μ)ε3

6 + n2(10 − 4μ)ε3
5 +

(
n2(10 − 6μ) + μ(1 − q) − 1

)
ε3

4

+
(
n2(5 − 4μ) − 2(1 − μ(1 − 2q))

)
ε3

3 − 6μqε3
2 − 4μqε3 − μq = 0. (13)

Equation (13) is an algebraic equation of seventh degree in ε3:

n2(1 − μ + ε3 − με3 + με3) − (1 − μ)(1 + ε3)−2 − 3
2
(1 − μ)A(1 + ε3)−4 − μqε3

−2 = 0.

Simplifying the above, we get an analogous polynomial of same degree to eq. (13) as

ε3
7 + aε3

6 + bε3
5 + cε3

4 + dε3
3 − eε3

2 − fε3 − g = 0, (14)

where

υ =
μ

(1 − μ)
,

a =
(5 + 4υ)
1 + υ

, b =
(10 + 6υ)

1 + υ
, c =

1
1 + υ

(
10 − 1

n2
+ 4υ − qυ

n2

)
,

d =
1

1 + υ

(
5 − 2

n2
+ υ − 4qυ

n2

)
, e =

1
1 + υ

(
1 − 1

n2
− 6qυ

n2
− 3

2n2
A

)
,

f =
4qυ

n2(1 + υ)
and g =

qυ

n2(1 + υ)
.

Using the software Mathematica, and taking the value of the oblateness coefficient A = 0.2, we obtain the numerical
solutions of eqs. (8), (11) and (14) for the binary systems RXJ 0450.1-5856 and Cen X-4. The bigger primary is a stellar
remnant (a neutron star) and the smaller one, a low mass stellar companion. The obtained solutions for these systems
are ε1 = 0.949633, ε2 = 0.246854, ε3 = 0.315041, and ε1 = 0.979900, ε2 = 0.186277, ε3 = 0.223103, respectively. Then,
from x1 = −μ − ε1, x2 = 1 − μ − ε2 and x3 = 1 − μ + ε3, we list the x-coordinates of the collinear equilibria L1, L2,
and L3 in tables 2 and 3. Figures 4–9 are surface representations of the positions of collinear points, and have been
plotted for (A, q, L1); (A, q, L2) and (A, q, L3), axes, respectively, for various assumed values of oblateness of the bigger
primary, and radiation pressure force of the smaller primary for the binary systems RXJ 0450.1-5856 and Cen X-4.
The numerical data for the binaries are given in table 1, where the radiation pressure q is obtained from [45].

Tables 2 and 3 show the effect of oblateness on the collinear points of RXJ 0450.1-5856 and Cen X-4, respectively.
In each system /case, we first compute the position of the collinear points in the absence of oblateness and radiation
pressure (classical) and then for the binaries, with an assumed small oblateness. The summary effect is a shift nearer
to or away from the primaries depending on the system parameters.

4 Stability of collinear equilibrium points

We now examine the stability of an equilibrium configuration, that is, its ability to restrain the body motion in its
vicinity. To do so, we displace the third body a little from an equilibrium point with a small velocity. If its motion is
a rapid departure from the vicinity of the point, we call such a position an unstable one. However, if the body merely
oscillates about the point, it is said to be a stable position. Let the location of an equilibrium point be denoted by
(a0, b0) and consider a small displacement (ξ, η) from the point such that x = a0 + ξ and y = b0 + η. Substituting
these values in (1), we obtain the variational equations.
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Table 2. Computations of the collinear equilibrium points for varying oblateness and radiation for RXJ 0450.1-5856.

Cases A q xL1 xL2 xL3

1 0 1 −1.04024 0.615350 1.25846

0.9965 −1.04021 0.615640 1.25802

2 0.0001 1 −1.04024 0.615381 1.25844

0.9965 −1.04022 0.615671 1.25800

3 0.001 1 −1.04029 0.615657 1.25822

0.9965 −1.04026 0.615947 1.25777

4 0.002 1 −1.04033 0.615963 1.25797

0.9965 −1.04030 0.616252 1.25753

5 0.01 1 −1.04070 0.618347 1.25604

0.9965 −1.04067 0.618632 1.25559

6 0.02 1 −1.04113 0.621183 1.25366

0.9965 −1.04110 0.621466 1.25322

7 0.03 1 −1.04154 0.623876 1.25135

0.9965 −1.04152 0.624155 1.25091

8 0.05 1 −1.04231 0.628884 1.24687

0.9965 −1.04228 0.629157 1.24644

9 0.1 1 −1.04394 0.639655 1.23652

0.9965 −1.04392 0.639915 1.23610

10 0.2 1 −1.04635 0.656203 1.21874

0.9965 −1.04633 0.656446 1.21834

Table 3. Computations of the collinear equilibrium points for varying oblateness and radiation for Cen X-4.

Cases A q xL1 xL2 xL3

1 0 1 −1.01604 0.744951 1.21443

0.993 −1.01602 0.745409 1.21380

2 0.0001 1 −1.01605 0.744973 1.21441

0.993 −1.01602 0.745431 1.21379

3 0.001 1 −1.01606 0.745166 1.21425

0.993 −1.01604 0.745624 1.21362

4 0.002 1 −1.01608 0.745380 1.21406

0.993 −1.01606 0.745870 1.21344

5 0.01 1 −1.01622 0.747054 1.21262

0.993 −1.01620 0.747507 1.21200

6 0.02 1 −1.01639 0.749060 1.21085

0.993 −1.01637 0.749508 1.21023

7 0.03 1 −1.01655 0.750979 1.20913

0.993 −1.01653 0.751422 1.20852

8 0.05 1 −1.01684 0.754580 1.20581

0.993 −1.01682 0.755014 1.20520

9 0.1 1 −1.01748 0.762454 1.19817

0.993 −1.01746 0.762870 1.19758

10 0.2 1 −1.01843 0.774819 1.18515

0.993 −1.01842 0.775208 1.18459
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Fig. 4. Effect of oblateness on the collinear point L1 of RXJ 0450.1-5856.

Fig. 5. Effect of oblateness on the collinear point L2 of RXJ 0450.1-5856.

To study the stability of collinear equilibrium points, we obtain the variational equations of motion as

ξ̈ − 2nη̇ = ξ(Ωxx)0 + η(Ωxy)0,

η̈ + 2nξ̇ = ξ(Ωxy)0 + η(Ωyy)0. (15)

Here, only linear terms in ξ and η have been taken. The second partial derivatives of Ω are denoted by subscripts.
We get the corresponding characteristics equation:

λ4 − (Ω0
xx + Ω0

yy − 4n2)λ2 + Ω0
xxΩ0

yy − (Ω0
xy)2 = 0, (16)

where the superscripts 0 indicate that the partial derivatives have been calculated at the collinear equilibrium point
under investigation.
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Fig. 6. Effect of oblateness on the collinear pointL3 of RXJ 0450.1-5856.

Fig. 7. Effect of oblateness on the collinear pointL1 of Cen X-4.

Clearly, from eq. (1), we get the equations

Ωx = n2x − (1 − μ)(x + μ)
r3
1

− 3(1 − μ)A(x + μ)
2r5

1

− μq(x + μ − 1)
r3
2

, (17)

Ωy = n2y − (1 − μ)y
r3
1

− 3(1 − μ)Ay

2r5
1

− μqy

r3
2

, (18)

where r2
1 = (x + μ)2 + y2, r2

2 = (x + μ − 1)2 + y2.
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Fig. 8. Effect of oblateness on the collinear point L2 of Cen X-4.

Fig. 9. Effect of oblateness on the collinear point L3 of Cen X-4.

Therefore, from eqs. (17) and (18), we obtain

Ωxx = n2 − (1 − μ)
r3
1

+
3(1 − μ)(x + μ)2

r5
1

− 3(1 − μ)A
2r5

1

+
15(1 − μ)A(x + μ)2

2r7
1

− μq

r3
2

+
3μq(x + μ − 1)2

r5
2

, (19)

Ωyy = n2 − (1 − μ)
r3
1

+
3(1 − μ)y2

r5
1

− 3(1 − μ)A
2r5

1

+
15(1 − μ)Ay2

2r7
1

− μq

r3
2

+
3μqy2

r5
2

, (20)

Ωxy = Ωyx =
3(1 − μ)(x + μ)y

r5
1

+
15(1 − μ)(x + μ)Ay

2r7
1

+
3μq(x + μ − 1)y

r5
2

. (21)
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In the case of the collinear point L2 lying on the x-axis between the primaries. We have r1 = 1 − ε2, r2 = ε2 such
that x0 = 1 − μ − ε2, where ε2 is the distance of L2 from the smaller primary.

Now, substituting x0 = 1 − μ − ε2 in eq. (19) to get

Ω0
xx = n2 − (1 − μ)

|x0 + μ|3 +
3(1 − μ)(x0 + μ)2

|x0 + μ|5 − 3(1 − μ)A
2|x0 + μ|5 +

15(1 − μ)A(x0 + μ)2

2|x0 + μ|7 − μq

|x0 + μ − 1|3 +
3μq(x0 + μ − 1)2

|x0 + μ − 1|5 ,

Ω0
xx = n2 +

2(1 − μ)
(1 − ε2)3

+
6(1 − μ)A
(1 − ε2)5

+
2μq

(ε2)3
> 0. (22)

Similarly, from eq. (20), on substituting x0 = 1 − μ − ε2,

Ω0
yy = n2 − (1 − μ)

r3
1

− 3(1 − μ)A
2r5

1

− μq

r3
2

,

Ω0
yy = n2 −

[
(1 − μ)

(1 − ε2)3
+

3(1 − μ)A
2(1 − ε2)5

+
μq

(ε2)3

]
< 0. (23)

Lastly, from eq. (21), on putting y = 0 we have

Ω0
xy = Ω0

yx = 0. (24)

Now, since εi > 0 (i = 1, 2, 3), (1 − q) � 1, 0 < μ ≤ 1
2 and A � 1. We have Ω0

xx > 0, Ω0
yy < 0, and Ω0

xy = 0.
Since Ω0

xxΩ0
yy < 0, this implies that the discriminant of (16) will be positive and the roots can be expressed as

λ1 = s1, λ2 = −s1, λ3 = is2, and λ4 = −is2 where si(i = 1, 2) are real. Therefore, the motion around the collinear
point L2 is unstable. The same stability analysis can be done for the collinear equilibrium points L1 and L3. Hence,
these points remain unstable as the classical restricted three-body problem [16].

We have seen that the collinear points are, in general, unstable; but by assigning the appropriate initial conditions
for the disturbed motion around theses points, they can be made points of stability. The orbits of the infinitesimal mass
around these points are ellipse, which are parallel to the x- and y-axes of the rotating coordinate system. However,
the motion is retrograde along the orbits. These features are used in planning a mission around the collinear points.

For the further numerical investigation, we simplify the characteristic equation (16) using eqs. (22), (23) and (24).
The characteristic equation reduces to

λ4 −
[
n2 +

2(1 − μ)
(1 − ε2)3

+
6(1 − μ)A
(1 − ε2)5

+
2μq

(ε2)3
+ n2 − (1 − μ)

(1 − ε2)3
− 3(1 − μ)A

2(1 − ε2)5
− μq

(ε2)3
− 4n2

]
λ2

+
(

n2 +
2(1 − μ)
(1 − ε2)3

+
6(1 − μ)A
(1 − ε2)5

+
2μq

(ε2)3

)(
n2 − (1 − μ)

(1 − ε2)3
− 3(1 − μ)A

2(1 − ε2)5
− μq

(ε2)3

)
= 0, (25)

such that
λ4 + [P ]λ2 + R = 0, (26)

where

P = 2 + 3A − (1 − μ)
(1 − ε2)3

− 9(1 − μ)A
2(1 − ε2)5

− μq

(ε2)3
.

R = 1 + 3A +
(1 − μ)

(1 − ε2)3
+

3A(1 − μ)
(1 − ε2)3

− 2(μq)2

(ε2)6
+

9(1 − μ)A
2(1 − ε2)5

+
μq

(ε2)3
+

3Aμq

(ε2)3
− 2(1 − μ)2

(1 − ε2)6
− 9(1 − μ)2A

(1 − ε2)8

− 4μq(1 − μ)
(ε2)3(1 − ε2)3

− 9μq(1 − μ)A
(ε2)3(1 − ε2)5

.

5 Numerical applications

We numerically investigate the stability of the collinear equilibrium points for the binary systems RXJ 0450.1-5856
and Cen X-4 using the software package Mathematica in eq. (26). For this, we compute the characteristic roots for
varying parameters, and list them in tables 4 and 5, respectively.

Tables 4 and 5 show the characteristic roots to be negative, positive or complex. We conclude that the collinear
equilibrium points are unstable due to the presence of positive roots and positive real parts in the complex roots [16].
Our results agree with previous assertions of [27,45].
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Table 4. Roots of the characteristic equation (26), for the binary system RXJ 0450.1-5856.

A ε1 λ1,2 λ3,4 ε2 λ1,2 λ3,4 ε3 λ1,2 λ3,4

0 0.943511 ±2046.7 ±0.70.7819 i 0.287660 ±3.37691 ±0.2.61845 i 0.35472 ±6.54158 ±0.2.21429 i

0.0001 0.943516 ±2125.89 ±0.72.4367 i 0.287629 ±3.37759 ±0.2.61877 i 0.354695 ±6.54281 ±0.2.21455 i

0.001 0.943558 ±2740.41 ±0.85.9537 i 0.287353 ±3.38363 ±0.2.62161 i 0.354475 ±6.55396 ±0.2.21686 i

0.002 0.943605 ±3296.98 ±0.98.9231 i 0.287048 ±3.39032 ±0.2.62477 i 0.35423 ±6.56621 ±0.2.21942 i

0.01 0.943969 ±6257.9 ±0.172.246 i 0.284668 ±3.44284 ±0.2.64974 i 0.352293 ±6.66072 ±0.2.23961 i

0.02 0.944404 ±8837.63 ±0.237.223 i 0.281834 ±3.50614 ±0.2.68035 i 0.349924 ±6.77057 ±0.2.26419 i

0.03 0.944817 ±11003.4 ±0.291.222 i 0.279145 ±3.56705 ±0.2.71030 i 0.34761 ±6.87217 ±0.2.28809 i

0.05 0.945584 ±14809.0 ±0.384.182 i 0.274143 ±3.68266 ±0.2.76843 i 0.34314 ±7.05417 ±0.2.33399 i

0.1 0.947217 ±23197.3 ±0.580.393 i 0.263385 ±3.94288 ±0.2.90483 i 0.332796 ±7.41528 ±0.2.43943 i

0.2 0.949633 ±38635.1 ±0.918.205 i 0.246854 ±4.38054 ±0.3.14863 i 0.315041 ±7.89591 ±0.2.62172 i

Table 5. Roots of the characteristic equation (26), for the binary system Cen X-4.

A ε1 λ1,2 λ3,4 ε2 λ1,2 λ3,4 ε3 λ1,2 λ3,4

0 0.977507 ±21877.4 ±0.290.668 i 0.216076 ±3.14313 ±0.2.46828 i 0.252319 ±4.41112 ±0.2.07787 i

0.0001 0.977509 ±26748.8 ±0.331.015 i 0.216054 ±3.14371 ±0.2.46858 i 0.252301 ±4.41209 ±0.2.07791 i

0.001 0.977525 ±53470.8 ±0.579.819 i 0.215861 ±3.14878 ±0.2.47117 i 0.252136 ±4.41780 ±0.2.07996 i

0.002 0.977543 ±72571.2 ±0.768.057 i 0.215648 ±3.15440 ±0.2.47404 i 0.251954 ±4.42446 ±0.2.08204 i

0.01 0.977684 ±159699. ±0.1640.85 i 0.213978 ±3.19876 ±0.2.49686 i 0.250511 ±4.47651 ±0.2.09864 i

0.02 0.977852 ±230790. ±0.2345.4 i 0.211977 ±3.25271 ±0.2.52493 i 0.248749 ±4.53888 ±0.2.11915 i

0.03 0.978012 ±289488. ±0.2916.98 i 0.210063 ±3.30515 ±0.2.55254 i 0.247031 ±4.59850 ±0.2.13942 i

0.05 0.978310 ±391606. ±0.3887.86 i 0.206471 ±3.40593 ±0.2.60642 i 0.243719 ±4.71040 ±0.2.17925 i

0.1 0.978948 ±614609. ±0.5914.58 i 0.198615 ±3.63803 ±0.2.73435 i 0.236090 ±4.95569 ±0.2.27499 i

0.2 0.979900 ±1022510. ±0.9382.83 i 0.186277 ±4.04100 ±0.2.96693 i 0.223103 ±5.34763 ±0.2.45265 i

6 Discussion and conclusion

The existence and linear stability of the collinear equilibrium points, under the joint effects of oblateness of the bigger
primary, and radiation of the smaller primary have been studied. The equations of motion are affected by the radiation
of the smaller primary and the oblateness of the bigger primary. The equations of motion (1) are analogous but not
exact to those of [46] and [45]. If y = 0, eqs. (4) and (5) determine the positions of the collinear equilibrium points of
the infinitesimal body, and they locate the three points L1, L2 and L3 forming horizontally with the line joining the
primaries. It is noted that, the radiating primary produces this shift away from itself, while the oblate one is toward
others.

The stability of the collinear equilibrium points is determined by the roots of the characteristic equation (26). We
investigate the stability of the systems using a numerical approach and reveal the existence of at least a positive root
and/or a positive real part. Consequently, the motion is unbounded, and thus unstable. Our results in the circular case
agree with those of [27,45]. In all these communications however, the stability analysis remains the same, collinear
equilibria remain unstable.
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