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Abstract. In this paper, the KdV-Sawada-Kotera-Ramani equation is investigated, which is used to de-
scribe the resonances of solitons in one-dimensional space. By using the Lie symmetry analysis method,
the vector field and optimal system of the equation are derived, respectively. The optimal system is further
used to study the symmetry reductions and exact solutions. Furthermore, the exact analytic solutions of
the equation can be obtained by considering the power series theory. Finally, the complete integrability
of the equation is systematically presented by using binary Bell’s polynomials, which includes the bilinear
representation, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. Based on its
bilinear representation, the N -soliton solutions of the equation are also constructed with exact analytic
expression.

1 Introduction

It is well known that nonlinear evolution equations (NLEEs) have an important effect on the study of nonlinear physical
phenomena. Due to the importance of those NLEEs, it is very significative to study their Lie symmetry analysis, exact
solutions, various soliton solutions and completely integrable properties, which includes bilinear form, Lax pairs, infinite
symmetries, Hamiltonian structure, bilinear Bäcklund transformation, etc. Nowadays, there are many kinds of methods
to construct exact solutions of the NLEEs in soliton theory, such as the inverse scattering transform [1], Lie group [2],
Darboux transformation [3], Hirota’s bilinear method [4,5], algebro-geometrical approach [6] and Painlevé analysis [7,
8], etc. The Hirota bilinear method developed by Hirota is one of powerful and effective approachs to construct exact
solutions of NLEEs. Once the bilinear form of a nonlinear equation is obtained by a dependent variable transformation,
it will be easy to get its multi-soliton solutions [9–21]. Moreover, by means of the Lie symmetry analysis and dynamical
system method, one can also obtain the symmetries and exact explicit solutions of NLEEs.

In this paper, we will study the following KdV-Sawada-Kotera-Ramani equation [22–26]:

ut + a(3u2 + uxx)x + b(15u3 + 15uuxx + uxxxx)x = 0, (1)

which was used to describe the resonances of solitons in a one-dimensional space by Hirota and Ito [22]. They found
that two solitons near the resonant state exhibit some new phenomena. The existence of conservation law for this
equation was further proved by Konno [27]. The KdV-Sawada-Kotera-Ramani equation (1) is a linear combination of
the KdV equation and the Sawada-Kotera equation.

When b = 0, eq. (1) is reduced to the KdV equation as follows:

ut + a(6uux + uxxx) = 0. (2)

This fundamental equation describes the weakly nonlinear waves in the one dimensional media with weak dispersion.
From [28], one can see that it is the first nonlinear equation integrated by use of the Inverse Scattering Method [29].
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When a = 0, eq. (1) is reduced to the Sawada-Kotera equation given by

ut + b(45u2ux + 15uxuxx + 15uuxxx + uxxxxx) = 0, (3)

which belongs to the completely integrable hierarchy of higher-order KdV equations, and has many sets of conservation
laws [30].

The main purpose of this paper is to investigate the Lie symmetry analysis, optimal system and exact solution of the
KdV-Sawada-Kotera-Ramani equation. In addition, based on binary Bell polynomial [31–36], we will systematically
study its bilinear representation, Bäcklund transformation, Lax pair and infinite conservation laws, respectively.

The structure of this paper is as follows. In sect. 2, based on Lie symmetry analysis method, we study the vector
field and optimal system of eq. (1). In sect. 3, the similarity reductions and exact solutions of eq. (1) are investigated
by means of optimal system. In sect. 4, based on the power series method, the exact analytic solutions of the equation
are obtained. The convergence of power series solutions of eq. (1) is also analyzed. In sect. 5, we systematically
construct the bilinear representation by using Bell polynomial approach, based on which, its N -soliton solutions are
also derived. In sect. 6, we derive the bilinear Bäcklund transformation and Lax pair of KdV-Sawada-Kotera-Ramani
equation, respectively. In sect. 7, by virtue of the obtained Lax equation, the infinite conservation laws of the equation
are also derived.

2 Lie sysmmetry analysis

In this section, we investigate the Lie symmetry and optimal system of KdV-Sawada-Kotera-Ramani equation. The
geometric vector field of eq. (1) is given as follows:

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
, (4)

where the coefficient functions ξ(x, t, u), τ(x, t, u), φ(x, t, u) are to be determined. It is equivalent to a one-parameter
Lie group as below

x∗ = x + εξ(x, t, u) + o(ε2),

t∗ = t + ετ(x, t, u) + o(ε2),

u∗ = u + εφ(x, t, u) + o(ε2), (5)

where ε is a group parameter. If the vector field (4) generates a symmetry of eq. (1), then V should be satisfied the
following Lie symmetry condition:

pr(5)V (F )|F=0 = 0, (6)

where F = ut + a(6uux + uxxx) + b(45u2ux + 15uxuxx + 15uuxxx + uxxxxx). Furthermore, the prolongation of pr(5)V
is of the following form:

pr(5)V (F ) = V + φx ∂

∂ux
+ φt ∂

∂ut
+ φxx ∂

∂uxx
+ φxt ∂

∂uxt
+ φtt ∂

∂utt

+ φxxx ∂

∂uxxx
+ φxxxxx ∂

∂uxxxxx
, (7)

where

φx = Dxφ − uxDxξ − utDxτ, φt = Dtφ − uxDtξ − utDtτ,

φxx = D2
xφ−uxD2

xξ − utD
2
xτ − 2uxxDxξ − 2uxtDxτ, (8)

and Dx,Dt are total derivative operators as follows:

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ · · · ,

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ · · · . (9)

Then, when b �= 0, we get the following vector field of the KdV-Sawada-Kotera-Ramani equation (1) by means of Lie
symmetry analysis method

V1 =
(

x

5
− 4a2t

25b

)
∂x + t∂t − 30bu + 2a

75b
∂u, V2 = ∂t, V3 = ∂x. (10)
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When b = 0, eq. (1) is reduced to the KdV equation (2). Following the same way as eq. (1), the vector field of
eq. (2) is given by

V1 =
x

3
∂x + t∂t − 2u

3
∂u, V2 = t∂x +

1
6a

∂u, V3 = ∂t, V4 = ∂x. (11)

It is necessary to verify that the vector field is closed under the Lie bracket. In view of the vector field of eq. (1),
one has

[V1, V1] = [V2, V2] = [V3, V3] = 0, [V2, V3] = −[V3, V2] = 0,

[V1, V2] = −[V2, V1] =
4a2

25b
V3 − V2, [V1, V3] = −[V3, V1] = −1

5
V3, (12)

where the commutator operators [Vs, Vt] = VsVt − VtVs.
Then by using the following Lie series:

Ad(exp(εVi))Vj = Vj − ε[Vi, Vj ] +
1
2
ε2[Vi, [Vi, Vj ]] − · · · , (13)

one can obtain the adjoint representation of the vector field. For the KdV-Sawada-Kotera-Ramani equation (1), we
have the adjoint representation of the vector field as follows:

Ad(exp(εVi))Vi = Vi, i = 1, 2, 3, (14)

Ad(exp(εV1))V2 = V2 −
4a2

25b
εV3 + εV2, Ad(exp(εV1))V3 = V3 +

ε

5
V3, Ad(exp(εV2))V1 = V1 +

4a2

25b
εV3 − εV2,

Ad(exp(εV2))V3 = V3, Ad(exp(εV3))V1 = V1 −
ε

5
V3, Ad(exp(εV3))V2 = V2, (15)

with any ε ∈ R.
The adjoint representation of the vector field of eq. (2) can be obtained in the similar way. According to the adjoint

representation of the vector field, we have the optimal system of the KdV-Sawada-Kotera-Ramani equation as follows:

{V1, V2, V3 + rV2}, (16)

in which r is an arbitrary constant.
Following the same computational procedure, the optimal system of eq. (2) is given by

{V1, V2, V3, V4, V2 + rV3}, (17)

in which r is an arbitrary constant.

3 Similarity reductions and exact solutions

In the preceding section, we study the vector fields and the optimal systems of the KdV-Sawada-Kotera-Ramani
equation and the KdV equation, respectively. In this section, based on the obtained optimal systems, we will study
the similarity reductions and exact solutions of these equations.

3.1 Reductions and exact solutions of eq. (1)

Case I. For the generator V1, one has
u = f(ξ)t−

2
5 − a

15b
, (18)

where ξ = xt−
1
5 + a2

5b t
4
5 . Combining (18) and (1), we can obtain the following result

−1
5
f ′ξ − 2

5
f + 45bf2f ′ + 15bf ′f ′′ + 15bff ′′′ + bf (5) = 0, (19)

where f ′ = df
dξ .

Case II. For the generator V2, one has
u = f(ξ), (20)
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where ξ = x. Combining (20) and (1), we can obtain the following ordinary differential equation:

a(6ff ′ + f ′′′) + b(45f2f ′ + 15f ′f ′′ + 15ff ′′′ + f (5)) = 0, (21)

where f ′ = df
dξ .

Case III. For the linear combination V3 + rV2, one has

u = f(ξ), (22)

where ξ = −rx + t. Combining (22) and (1), we can obtain the following ordinary differential equation:

f ′ + a
(
−6rff ′ − r3f ′′′) + b

(
−45rf2f ′ − 15r3f ′f ′′ − 15r3ff ′′′ − r5f (5)

)
= 0, (23)

in which f ′ = df
dξ .

3.2 Reductions and exact solutions of eq. (2)

Case I. For the generator V1, one has
u = f(ξ)t−

2
3 , (24)

where ξ = x3t−1. Combining (24) and (2), we obtain the following result:

−f ′ξ − 2
3
f + a[18ff ′ξ

2
3 + 27f

′′′
ξ2 + 36f ′′ξ + 18f ′ξ + 6f ′] = 0, (25)

in which f ′ = df
dξ .

Case II. For the generator V2, one has

u = f(ξ) +
1
6a

xt−1, (26)

where ξ = t. Combining (26) and (2), one reduces this equation to the following ordinary differential equation:

f ′ + fξ−1 = 0, (27)

in which f ′ = df
dξ . Solving eq. (27) yields f = c

t , where c is an arbitrary constant. From eq. (26), one has

u =
c

t
+

x

6at
. (28)

Case III. For the generator V3, one has
u = f(ξ), (29)

where ξ = x. Combining (29) and (2), we can obtain the following ordinary differential equation:

6ff ′ + f
′′′

= 0, (30)

in which f ′ = df
dξ . Solving eq. (30) yields

f = −2℘(ξ + c1, 0, ξ + c2), (31)

where ℘(·, ·, ·) is the Weierstrass elliptic function. Considering eqs. (29) and (31), one can obtain the following solution:

u = −2℘(x + c1, 0, x + c2). (32)

Case IV. For the generator V4, one obtains the trivial solution of eq. (2) given by u(x, t) = c, where c is an arbitrary
constant.
Case V. For the linear combination V2 + rV3, one has

u = f(ξ) +
1

6ar
t, (33)

where ξ = x − 1
2r t2. Combining (33) and (2), we have the following result

1
6ar

+ 6aff ′ + af
′′′

= 0, (34)

where f ′ = df
dξ . One can see that eq. (34) is the first Painlevé-like equation.
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4 The exact power series solutions

In this section, based on the power series method, we will investigate the exact analytic solutions of the reduced
equations. Once the exact analytic solutions of the reduced equations are obtained, we can get the exact power series
solutions for the original partial differential equations. In the following, we will take eqs. (19), (21) and (23) as examples.

4.1 Exact analytic solutions of eq. (19)

First of all, for eq. (19), we will construct a solution of it in the following form:

f(ξ) =
∞∑

n=0

cnξn. (35)

Combining (35) and (19), one obtains the following equation:

− 1
5

[
c1 +

∞∑
n=1

(n + 1)cn+1)ξn

]
ξ − 2

5

[
c0 +

∞∑
n=1

cnξn

]
+ 45b

⎡
⎣c2

0c1 +
∞∑

n=1

n∑
k=0

k∑
j=0

(n + 1 − k)cjck−jcn+1−kξn

⎤
⎦

+ 15b

[
2c1c2 +

∞∑
n=1

n∑
k=0

(k + 1)(n − k + 1)(n − k + 2)ck+1cn−k+2ξ
n

]

+ 15b

[
6c0c3 +

∞∑
n=1

n∑
k=0

(n − k + 1)(n − k + 2)(n − k + 3)ckcn−k+3ξ
n

]

+ b

[
120c5 +

∞∑
n=1

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)cn+5ξ
n

]
= 0. (36)

When n = 0, comparing coefficients of ξ yields

c5 = − 1
120b

(
−2

5
c0 + 45bc2

0c1 + 30bc1c2 + 90bc0c3

)
. (37)

When n ≥ 1, one has

cn+5 = − 1
b(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

⎡
⎣−n + 2

5
cn + 45

n∑
k=0

k∑
j=0

(n − k + 1)cjck−jcn+1−k

+15b

n∑
k=0

(k + 1)(n − k + 1)(n − k + 2)ck+1cn−k+2 + 15b
n∑

k=0

(n − k + 1)(n − k + 2)(n − k + 3)ckcn−k+3

]
.

(38)

From (37) and (38), one can obtain all the coefficients cn(n ≥ 5) of the eq. (35), for example

c6 = − 1
720b

(
−3

5
c1 + 90bc0c2 + 90bc0c

2
1 + 180bc1c3 + 60bc2

2 + 360bc0c4

)
, . . . . (39)

Therefore, for arbitrary chosen constant numbers c0, c1, c2, c3 and c4, the other terms of the sequence {cn}∞n=0 can
be determined from (37) and (38) in a unique manner. It shows that eq. (19) exists a power series solution (35) with
the coefficients given by (37) and (38). Moreover, it is easy to prove the convergence of the power series (35) with the
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coefficients given by (37) and (38). Thus, we can write the power series solution of eq. (19) in the following form:

f(ξ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 + c5ξ

5 +
∞∑

n=1

cn+5ξ
n+5

= c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 − 1

120b

(
−2

5
c0 + 45bc2

0c1 + 30bc1c2 + 90bc0c3

)
ξ5

−
∞∑

n=1

1
b(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

⎡
⎣−n + 2

5
cn + 45

n∑
k=0

k∑
j=0

(n − k + 1)cjck−jcn+1−k

+15b

n∑
k=0

(k + 1)(n − k + 1)(n − k + 2)ck+1cn−k+2 + 15b
n∑

k=0

(n − k + 1)(n − k + 2)(n − k + 3)ckcn−k+3

]
ξn+5.

(40)

Furthermore, we get the exact power series solution of eq. (1) as follows:

u(x, t) = c0 + c1

(
xt−

1
5 +

a2

5b
t

4
5

)
+ · · · + c4

(
xt−

1
5 +

a2

5b
t

4
5

)4

+ c5

(
xt−

1
5 +

a2

5b
t

4
5

)5

+
∞∑

n=1

cn+5

(
xt−

1
5 +

a2

5b
t

4
5

)n+5

= c0 + c1

(
xt−

1
5 +

a2

5b
t

4
5

)
+ · · · + c4

(
xt−

1
5 +

a2

5b
t

4
5

)4

− 1
120b

(
−2

5
c0 + 45bc2

0c1 + 30bc1c2 + 90bc0c3

) (
xt−

1
5 +

a2

5b
t

4
5

)5

−
∞∑

n=1

1
b(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

⎡
⎣−n + 2

5
cn + 45

n∑
k=0

k∑
j=0

(n − k + 1)cjck−jcn+1−k

+15b
n∑

k=0

(k + 1)(n − k + 1)(n − k + 2)ck+1cn−k+2 + 15b
n∑

k=0

(n − k + 1)(n − k + 2)(n − k + 3)ckcn−k+3

]

×
(

xt−
1
5 +

a2

5b
t

4
5

)
xn+5, (41)

in which ci, (i = 0, 1, 2, 3, 4) are arbitrary constants, and other coefficients cn (n ≥ 5) can be obtained from (37)
and (38).

In physical applications, based on the above calculation, it is more convenient to write the solution of eq. (1) as
the following form:

u(x, t) = c0 + c1

(
xt−

1
5 +

a2

5b
t

4
5

)
+ · · · + c4

(
xt−

1
5 +

a2

5b
t

4
5

)4

− 1
120b

(
−2

5
c0 + 45bc2

0c1 + 30bc1c2 + 90bc0c3

)(
xt−

1
5 +

a2

5b
t

4
5

)5

− 1
720b

(
−3

5
c1 + 90bc0c2 + 90bc0c

2
1 + 180bc1c3 + 60bc2

2 + 360bc0c4

)(
xt−

1
5 +

a2

5b
t

4
5

)6

· · · . (42)

4.2 Exact analytic solutions of eq. (21)

For eq. (21), integrating it with respect to x yields

3af2 + af ′′ + 15bf3 + 15bff ′′ + bf (4) + c = 0, (43)
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in which c is an integration constant. Then we will construct a solution of eq. (43) in a power series of the form (35).
Combining (35) and (43), one obtains the following equation

3a

[
c2
0 +

∞∑
n=1

(
n∑

k=0

ckcn−k

)
ξn

]
+ a

[
2c2 +

∞∑
n=1

(n + 1)(n + 2)cn+2ξ
n

]
+ 15b

⎡
⎣c3

0 +
∞∑

n=1

n∑
k=0

k∑
j=0

cjck−jcn−kξn

⎤
⎦

+ 15b

[
2c0c2 +

∞∑
n=1

(
n∑

k=0

(n − k + 2)(n − k + 1)ckcn−k+2

)
ξn

]
+ b

[
24c4 +

∞∑
n=1

(n + 1)(n + 2)(n + 3)(n + 4)cn+4ξ
n

]

+ c = 0. (44)

When n = 0, comparing coefficients of ξ yields

c4 = − 1
24b

(
3ac2

0 + 2ac2 + 15bc3
0 + 30bc0c2 + c

)
. (45)

When n ≥ 1, one has

cn+4 = − 1
b(n + 1)(n + 2)(n + 3)(n + 4)

⎛
⎝3a

n∑
k=0

ckcn−k + a(n + 1)(n + 2)cn+2 + 15b
n∑

k=0

k∑
j=0

cjck−jcn−k

+15b

n∑
k=0

(n − k + 2)(n − k + 1)ckcn−k+2

)
. (46)

From (45) and (46), one can obtain all the coefficients cn(n ≥ 4) of the eq. (35), such as

c5 = − 1
120b

(
6ac0c1 + 6ac3 + 45bc2

0c1 + 90bc0c3 + 30bc1c2

)
,

c6 = − 1
360b

(
6ac0c2 + 3ac2

1 + 12ac4 + 45bc2
0c2 + 45bc0c

2
1 + 180bc0c4 + 90bc1c3 + 30bc2

2

)
, . . . . (47)

Therefore, for arbitrary chosen constant numbers c0, c1, c2 and c3, the other terms of the sequence {cn}∞n=0 can
be determined from (45) and (46) in a unique manner. The power series solution of eq. (43) can be written as the
following form:

f(ξ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 − 1
24b

(
3ac2

0 + 2ac2 + 15bc3
0 + 30bc0c2 + c

)
ξ4

−
∞∑

n=1

1
b(n + 1)(n + 2)(n + 3)(n + 4)

⎡
⎣3a

n∑
k=0

ckcn−k + a(n + 1)(n + 2)cn+2 + 15b
n∑

k=0

k∑
j=0

cjck−jcn−k

+15b
n∑

k=0

(n − k + 2)(n − k + 1)ckcn−k+2

]
ξn+4. (48)

Furthermore, we get the following exact power series solution of eq. (1):

u(x, t) = c0 + c1x + c2x
2 + c3x

3 − 1
24b

(
3ac2

0 + 2ac2 + 15bc3
0 + 30bc0c2 + c

)
x4

−
∞∑

n=1

1
b(n + 1)(n + 2)(n + 3)(n + 4)

⎡
⎣3a

n∑
k=0

ckcn−k + a(n + 1)(n + 2)cn+2 + 15b
n∑

k=0

k∑
j=0

cjck−jcn−k

+15b

n∑
k=0

(n − k + 2)(n − k + 1)ckcn−k+2

]
xn+4, (49)

in which ci (i = 0, 1, 2, 3) are arbitrary constants, and other coefficients cn (n ≥ 4) can be determined from (45)
and (46).



Page 8 of 15 Eur. Phys. J. Plus (2016) 131: 98

4.3 Exact analytic solutions of eq. (23)

In the similar way, we also can construct a solution of eq. (23) in the power series form (35). By combining (35)
and (23), and comparing the corresponding coefficients yields

c4 =
1

24br5

(
c0 − 3arc2

0 − 2ar3c2 − 15brc3
0 − 30br3c0c2 + g

)
,

cn+4 = − 1
br5(n + 1)(n + 2)(n + 3)(n + 4)

⎡
⎣cn − 3ar

n∑
k=0

ckcn−k − ar3(n + 1)(n + 2)cn+2 − 15br

n∑
k=0

k∑
j=0

cjck−jcn−k

−15br3
n∑

k=0

(n − k + 2)(n − k + 1)ckcn−k+2

]
, n = 1, 2, 3 · · · . (50)

From (50), we can obtain all the coefficients cn (n ≥ 4) of the power series eq. (35), for example

c5 =
1

120br5

(
c1 − 6arc0c1 − 6ar3c3 − 45brc2

0c1 − 90br3c0c3 − 30br3c1c2

)
, . . . . (51)

Therefore, for arbitrary chosen constant numbers c0, c1, c2 and c3, the other terms of the sequence {cn}∞n=0 can
be determined from (50) in a unique manner. It shows that eq. (23) exists a power series solution (35) with the
coefficients given by (50). Following the same way, one can also investigate the power series solution of eq. (25) to find
the corresponding solutions of the KdV equation.

4.4 Convergence analysis of the power series solutions

In this subsection, we will prove the convergence of power series solution (35) for eq. (19). For (38), we have

|cn+5| ≤ M

⎡
⎣|cn| +

n∑
k=0

k∑
j=0

|cj ||ck−j ||cn+1−k| +
n∑

k=0

|ck+1||cn−k+2| +
n∑

k=0

|ck||cn−k+3|

⎤
⎦ , n = 0, 1, 2, · · · , (52)

where M = max{45, 15b}. Then, we define a new power series

R = R(ξ) =
∞∑

n=0

rnξn, (53)

with ri = |ci| (i = 0, 1, 2, 3, 4) and rn+5 = M [rn+
∑n

k=0

∑k
j=0 rjrk−jrn−k+1+

∑n
k=0 rk+1rn−k+2+

∑n
k=0 rkrn−k+3], (n =

0, 1, 2, · · · ). It is clearly show that
|cn| ≤ rn, n = 0, 1, 2, . . . . (54)

In other words, the series R = R(ξ) =
∑∞

n=0 rnξn is a majorant series of eq. (35).
Then, we will show that the series R = R(ξ) has positive radius of convergence. Actually, we can write R(ξ) in the

following form:

R(ξ) = r0 + r1ξ + r2ξ
2 + r3ξ

3 + r4ξ
4 +

∞∑
n=0

rn+5ξ
n+5

= r0 + r1ξ + r2ξ
2 + r3ξ

3 + r4ξ
4 + M

⎡
⎣ ∞∑

n=0

rnξn+5 +
∞∑

n=0

n∑
k=0

k∑
j=0

rjrk−jrn−k+1ξ
n+5 +

∞∑
n=0

n∑
k=0

rk+1rn−k+2ξ
n+5

+
∞∑

n=0

n∑
k=0

rkrn−k+3ξ
n+5

]

= r0 + r1ξ + r2ξ
2 + r3ξ

3 + r4ξ
4 + M

[
R(ξ)ξ5 + R3(ξ)ξ4 − r0R

2(ξ)ξ4 + (R − r0)(R − r0 − r1ξ)ξ2

+R(R − r0 − r1ξ − r2ξ
2)ξ2

]
. (55)
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Consider the functional equation about the independent variable ξ

F (ξ,R) = R − r0 − r1ξ − r2ξ
2 − r3ξ

3 − r4ξ
4 − M

[
R(ξ)ξ5 + R3(ξ)ξ4 − r0R

2(ξ)ξ4 + (R − r0)(R − r0 − r1ξ)ξ2

+R(R − r0 − r1ξ − r2ξ
2)ξ2

]
. (56)

From the above formula, we see F is analytic in the neighborhood of (0, r0) and

F (0, r0) = 0, F ′
R(0, r0) = 1 �= 0. (57)

Based on the following theorem, we see that the R = R(ξ) is analytic in a neighborhood of the point (0, r0) and
with the positive radius. It shows that the power series (35) is convergent in a neighborhood of the point (0, r0).

Theorem [37]. Let f be a C ′-mapping of an open set E ⊂ Rn+m into Rn, such that f(a, b) = 0 for some point (a, b) ∈ E.
Assume that A = f ′(a, b) and Ax is invertible. Then the following properties hold in the open sets U ⊂ Rn+m and
W ⊂ Rm with (a, b) ∈ U and b ∈ W .
i) For each y ∈ W , there exist a unique x such that

(x, y) ∈ U and f(x, y) = 0. (58)

ii) If x is defined to be g(y), then

g(b) = a,

f(g(y), y) = 0 (y ∈ W ),

g′(b) = −(Ax)−1Ay, (59)

where g is a C ′-mapping of W into Rn.
iii) The function g is “implicitly” defined by (59).

5 Bilinear representation and N-soliton solutions

In order to explore the existence of linearizable representation of eq. (1), one introduces a potential field

u = h(t)q2x, (60)

where q = q(x, t) and h = h(t) are two free functions to be the suitable choice such that eq. (1) connects with
P-polynomials. Combining transformation (60) and (1) yields

ht(t)q2x + h(t)q2x,t + a(6h(t)2q2xq3x + h(t)q5x) + b(45h3(t)q2
2xq3x + 15h2(t)q3xq4x + 15h2(t)q2xq5x + h(t)q7x) = 0.

(61)

Integrating eq. (61) with respect to x and taking the function h(t) = 1, we obtain the result as follows:

E(q) = qx,t + a(q4x + 3q2
2x) + b(15q3

2x + 15q2xq4x + q6x) + c = 0, (62)

where c = c(t) is an integration constant. By utilizing the formula (A.6) in the appendix, eq. (62) can be rewritten in
a combination form of P-polynomials

E(q) ≡ Px,t(q) + aP4x(q) + bP6x(q) + c = 0. (63)

Considering the property of multi-dimensional Bell polynomials and using the following change:

q = 2(ln f) ⇐⇒ u = h(t)q2x = 2(ln f)xx, (64)

we can obtain the bilinear representation of KdV-Sawada-Kotera-Ramani equation

D(Dt,Dx) ≡ (DxDt + aD4
x + bD6

x + c)f · f = 0. (65)

According to the obtained bilinear representation, we obtain the one-soliton solution of the KdV-Sawada-Kotera-
Ramani equation

u = 2∂2
x ln(1 + eη), η = μx − (aμ3 + bμ5)t + δ, (66)
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Fig. 1. Propagation situations of the one solitary wave for the KdV-Sawada-Kotera-Ramani equation (1) via expression (66)
with a = 1, b = 1, μ = 1, δ = 1. (a) The perspective view of the wave. (b) The overhead view of the wave. (c) The corresponding
contour plot.

by taking c = 0, where μ �= 0, and δ is an arbitrary constant. In a similar way, we obtain the two-soliton solution of
eq. (1)

u = 2∂2
x ln(1 + eη1 + eη2 + eη1+η2+A12), ηi = μix − (aμ3

i + bμ5
i )t + δi,

eA12 = − (μ1 − μ2)(ν1 − ν2) + a(μ1 − μ2)4 + b(μ1 − μ2)6

(μ1 + μ2)(ν1 + ν2) + a(μ1 + μ2)4 + b(μ1 + μ2)6
,

νi = −aμ3
i − bμ5

i , (67)

in which μi �= 0, and νi, δi, (i = 1, 2) are arbitrary constants. More generally, when c = 0, the KdV-Sawada-Kotera-
Ramani equation admits the following N -soliton solution:

u = 2(ln f)xx, f =
∑

ρ=0,1

exp

⎛
⎝ N∑

j=1

ρjηj +
N∑

1≤j<i≤N

ρiρjAij

⎞
⎠ , (68)

with

ηi = μix − (aμ3
i + bμ5

i )t + δi,

eAij = − (μi − μj)(νi − νj) + a(μi − μj)4 + b(μi − μj)6

(μi + μj)(νi + νj) + a(μi + μj)4 + b(μi + μj)6
,

νi = −aμ3
i − bμ5

i , (1 ≤ j < i ≤ N) (69)

in which μj , νj are parameters characterizing the jth soliton,
∑N

1≤j<i≤N is the summation of all possible pairs
taken from N elements with the condition 1 ≤ j < i ≤ N , and

∑
ρ=0,1 represents the summation over all possible

combinations of ρi, ρj = 0, 1 (i, j = 1, 2, . . . , N).
To further investigate the properties of the soliton solutions of KdV-Sawada-Kotera-Ramani equation, we present

some figures to describe the propagation situations of the solitary waves based on the above obtained soliton solutions.
Figure 1 show the propagation situations of the one solitary waves with appropriate parameters in eq. (66). Figure 2
show the propagation situations of the two solitary waves with appropriate parameters in eq. (67).

6 The bilinear Bäcklund transformation and associated Lax pair

To obtain the bilinear Bäcklund transformation of the KdV-Sawada-Kotera-Ramani equation (1), we introduce two
different solutions of eq. (62)

q = 2 ln g, q′ = 2 ln f. (70)

Combining (70) and the two-field condition from (62) yields

E(q′)−E(q) = (q′−q)x,t+a[(q′−q)4x+3(q′−q)2x(q′+q)2x]+b[(q′−q)6x+15(q′2xq′4x−q2xq4x)+15(q′32x−q3
2x)] = 0. (71)
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Fig. 2. Propagation situations of the two solitary waves for the KdV-Sawada-Kotera-Ramani equation (1) via expression (67)
with a = 1, b = 1, μ1 = 1, μ2 = −1.5, ν1 = −2, ν2 = 10.96875, δ1 = 1, δ2 = 0. (a) The perspective view of the wave. (b) The
overhead view of the wave. (c) The corresponding contour plot.

This two-field condition can be regarded as an ansatz for a bilinear Bäcklund transformation, which may produce
the required transformation under applicable constraints. In order to find such constraints, two new variables are
introduced by

v = (q′ − q)/2 = ln(f/g), ω = (q′ + q)/2 = ln(fg). (72)

By using the new variables, condition (71) can be rewritten in the following form:

E(q′) − E(q) = E(ω + v) − E(ω − v) = 2vx,t+a[2v4x+12v2xω2x]+b[2v6x+30v4xω2x+30v2xω4x+90v2xω2
2x + 30v3

2x]
= ∂x[2Yt(v) − 3bY5x(v, ω) + 2aY3x(v, ω)] + R(v, ω) = 0, (73)

where

R(v, ω) = b[5v6x + 60v4xω2x + 30v3xω3x + 45v2xω4x + 15vxω5x + 60vxv2xv3x + 30v2
xv4x

+ 135v2xω2
2x + 90vxω2xω3x + 90v2

xv2xω2x + 30v3
xω3x + 15v4

xv2x + 30v3
2x] + a[6v2xω2x − 6vxω3x − 6v2

xv2x].
(74)

By introducing the following constraints:

Y3x(v, ω) = λ,

Y2x(v, ω) + αYx(v, ω) = β, (75)

R(v, ω) is obtained as

R(v, ω) = b
[
−30vxv2xv3x − 15v2

xv4x − 180v2
xv2xω2x − 60v3

xω3x − 75v4
xv2x − 15v4xω2x − 15v3xω3x

−45v2xω2
2x − 90vxω2xω3x

]
+ a

[
6v2xω2x − 6vxω3x − 6v2

xv2x

]
, (76)

i.e.
R(v, ω) = ∂x[−15bλY2x(v, ω) + 6aβYx(v, ω)], (77)

where λ, α, β are arbitrary parameters.
Combining relations (75) and (77), we can obtain a coupled system of Y -polynomials

Y3x(v, ω) = λ,

Y2x(v, ω) + αYx(v, ω) = β,

∂x [2Yt(v, ω) + 2a (Y3x(v, ω) + 3βYx(v, ω)) − b (3Y5x(v, ω) + 15λY2x(v, ω))] = 0. (78)

By means of the identity (A.5), we obtain the following bilinear Bäcklund transformation:

(D3
x − λ)f · g = 0,

(D2
x + αDx − β)f · g = 0,

(2Dt + 2aD3
x + 6aβDx − 3bD5

x − 15bλD2
x + γ)f · g = 0, (79)

where λ, α, β are arbitrary parameters, γ = γ(t) is an arbitrary function.



Page 12 of 15 Eur. Phys. J. Plus (2016) 131: 98

Next, based on the system (78), we will construct the Lax pair of eq. (1). By using the Hopf-Cole transformation
v = lnψ, the Bell system (78) is linearized into the following system:

(L1)ψ ≡ ψ3x + 3uψx − λψ = 0, (80a)
(L2)ψ ≡ uψ + ψx + αψx − βψ = 0, (80b)

(L3 + 2∂t)ψ = 2ψt + 2a(3uψx + ψ3x) + 6aβψx − 3b(ψ5x + 10uψ3x + 5u2xψx + 15u2ψx) − 15bλ(uψ + ψ2x) = 0,
(80c)

where λ, α, β are arbitrary parameters and u is a solution of eq. (1). Under the condition eq. (80b), the expression
ψ3x,t = ψt,3x yields eq. (1). Thus, the system (80) can be considered as the Lax pair of eq. (1).

7 Infinite conservation laws

In order to redecompose the two-field condition (71) into the x- and y-derivative of Y -polynomials, we revisit R(v, ω)
in the condition (73) and write it in another form

R(v, ω) = [−15bλ(v2
x + ω2x) + 6aβvx]x + [2vx]t = 0. (81)

Moreover, the two-field constraint system (78) can be rewritten in the following form:

v2
x + ω2x + αvx − β = 0,

v3x + 3vxω2x + v3
x − λ = 0,

[2a(v3x + 3vxω2x + v3
x) + 6aβvx − 3b(v5x + 10v3xω2x + 5vxω4x + 10v2

xv3x + 15vxω2
2x + 10v3

xω2x + v5
x)

− 15bλ(v2
x + ω2x)]x + [2vx]t = 0. (82)

Introducing the new potential function
η = (q′x − qx)/2, (83)

and utilizing relation (72), we obtain the following formula:

vx = η, ωx = qx + η. (84)

Combining (84) and (82), and taking β = ε2, λ = ε3, we can decompose the two-field condition (73) into two
Riccati-type equations

η2 + q2x + ηx + αη − ε2 = 0,

η2x + 3η(q2x + ηx) + η3 − ε3 = 0, (85)

which are new potential functions with respect to q, and a divergence-type equation as follows:

∂x[2aε3 + 6aε2η − 3b(η4x + 10ε2η2x − 15αηη2x − 10η2η2x − 10ηη2
x + 15ε4η − 30αε2η2 + 15α2η3 − 20ε2η3

+ 20αη4 + 6η5 + 5ε5 − 5αε3η)] + [2η]t = 0, (86)

where (86) is obtained by using (85).
Inserting the following expansion:

η = ε +
∞∑

n=1

In(q, qx, q2x, . . .)ε−n (87)

into the linear combination as follows:

η2 + q2x + ηx + αη − ε2 + r[η2x + 3η(q2x + ηx) + η3 − ε3] = 0, (88)

and equating the coefficients for ε, where r �= 0, we can obtain the conversed densities In’s as follows:

I1 = −u − α

3r
,

I2 = ux +
u

3r
+

2α

9r2
, . . . . (89)
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Then combining expansion (87) and the divergence-type equation (86) yields

∂x

{
2aε3 + 6aε2

(
ε +

∞∑
n=1

Inε−n

)
− 3b

[ ∞∑
n=1

In,4xε−n + 10ε2
∞∑

n=1

In,2xε−n − 15α

(
ε +

∞∑
n=1

Inε−n

) ∞∑
n=1

In,2xε−n

−10

(
ε +

∞∑
n=1

Inε−n

)2 ∞∑
n=1

In,2xε−n − 10

(
ε +

∞∑
n=1

Inε−n

) ( ∞∑
n=1

In,xε−n

)2

+ 15ε4

(
ε +

∞∑
n=1

Inε−n

)

−30αε2

(
ε +

∞∑
n=1

Inε−n

)2

+ 15α2

(
ε +

∞∑
n=1

Inε−n

)3

− 20ε2

(
ε +

∞∑
n=1

Inε−n

)3

+ 20α

(
ε +

∞∑
n=1

Inε−n

)4

+6

(
ε +

∞∑
n=1

Inε−n

)5

+ 5ε5 − 5αε3

(
ε +

∞∑
n=1

Inε−n

)⎤
⎦

⎫⎬
⎭ + ∂t

(
2ε + 2

∞∑
n=1

Inε−n

)
= 0. (90)

From eq. (90), the fluxes Jn’s are given by

J1 = 6aI3 − 3b[I1,4x − 20I1I1,2x − 10I 2
1,x − 15αI2,2x − 15I5 + 15αI4 + 180αI1I2 + 45α2I3 + 45α2I 2

1 ],

J2 = 6aI4 − 3b[I2,4x − 20I1I2,2x − 20I2I1,2x − 20I1,xI2,x − 15αI1I1,2x − 15αI3,2x − 15I6 + 15αI5

+180αI1I3 + 90αI 2
2 + 80αI 3

1 + 45α2I4 + 90α2I1I2 + 120I 2
1 I2], . . . . (91)

The conversed densities In’s and Jn’s provide us the infinite conservation laws as follows

In,t + Jn,x = 0, n = 1, 2, . . . . (92)

8 Conclusions and discussions

In this paper, we study the Lie symmetries, exact solutions and integrability of KdV-Sawada-Kotera-Ramani equation.
On the one hand, based on Lie symmetry analysis method, the vector field and optimal system are obtained. Then
the symmetry reductions and exact solutions are also obtained by employing the optimal system. Moreover, we
construct the exact analytic solutions of the equation by utilizing the power series method with the convergence of
power series solutions. On the other hand, we systematically investigate the integrability of KdV-Sawada-Kotera-
Ramani equation by using Bell polynomial approach, such as N -soliton solutions, Lax pair, Bäcklund transformation
and infinite conservation laws. The P-polynomial expression and Y - polynomial of KdV-Sawada-Kotera-Ramani
equation are obtained, respectively, which can be cast into the bilinear form and the bilinear Bäcklund transformation.
Furthermore, by linearizing the Bell-polynomial-typed Bäcklund transformation, the corresponding Lax pair is also
derived. Besides, by using the Hirota bilinear method, the N -soliton solutions of the KdV-Sawada-Kotera-Ramani
equation are also obtained. On the basis of binary Bell polynomial form, we found infinite conservation laws of the
KdV-Sawada-Kotera-Ramani equation.

In conclusion, we construct the Lie symmetries, exact solutions and integrability to the KdV-Sawada-Kotera-
Ramani equation. Based on the Bell’s polynomials, a straightforward way is explicitly provided to construct its bilinear
equation, N -soliton solutions, Lax pair, Bäcklund transformation and infinite conservation laws for such equation. This
method is also suitable for other nonlinear differential equations.

The authors are greatly indebted to the editor and reviewers for their helpful comments and constructive suggestions, and one
of the authors Pan-Li Ma is grateful for Li Wang’s valuable discussion and help. This work is supported by the Fundamental
Research Funds for the Central Universities of China under the Grant No. 2015QNA53.

Appendix A. Multidimensional bell polynomials

In what follows, we simply recall some necessary notations on multidimensional binary Bell polynomials; for example,
to Lembert and Gilson’s work [38–40]. Let f = f(x1, x2, . . . , xn) be a C

∞ function with multi-variables, the polynomial

Yn1x1,...,nrxr
(f) ≡ Yn1,...,nr

(fl1x1 , . . . , flrxr
) = e−f∂n1

x1
· · · ∂nr

xr
ef (A.1)
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is called the muliti-dimensional Bell polynomial, where fl1x1,...,lrxr
= ∂l1

x1
· · · ∂lr

xr
(0 ≤ li ≤ ni, i = 1, 2, . . . , r). Taking

n = 1, the Bell polynomials are presented as follows:

Ynx(f) ≡ Yn(f1, f2, . . . , fn) =
∑ n!

s1! · · · sn!(1!)s1 · · · (n!)sn
fs1
1 · · · fsn

n , n =
n∑

k=1

ksk,

Yx(f) = fx, Y2x = f2x + f2
x , Y3x(f) = f3x + 3fxf2x + f3

x , . . . . (A.2)

To build a relationship between the Bell polynomials and the Hirota D-operator, the multidimensional binary poly-
nomials can be defined as follows [39]:

Yn1x1,...,nrxr
(v, ω) = Yn1,...,nr

(f) |
fl1x1,...,lrxr =

8

<

:

vl1x1,...,lrxr
, l1 + · · · + lr is odd,

ωl1x1,...,lrxr
, l1 + · · · + lr is even,

Yx(v, ω) = vx, Y2x(v, ω) = v2
x + ω2x, Yx,t(v, ω) = vxvt + ωxt,

Y3x(v, ω) = v3x + 3vxω2x + v3
x, . . . , (A.3)

which inherit the easily recognizable partial structure of the Bell polynomials. The relation between the Y -polynomials
and the Hirota bilinear equation Dn1

x1
· · ·Dnr

xr
F · G can be given by the identity [39]

Yn1x1,...,nrxr
(ν = lnF/G, ω = lnFG) = (FG)−1Dn1

x1
· · ·Dnr

xr
F · G, (A.4)

where F and G are both the functions about x and t. In particular, taking F = G, the formula (A.4) becomes

F−2Dn1
x1

· · ·Dnr
xr

F · F = Y (0, q = 2 ln F ) =
{

0, if n1 + · · · + nr is odd,

Pn1x1,...,nrxr
(q), if n1 + . . . + nr is even,

(A.5)

in which the P -polynomials can be replaced by an equally recognizable even-part partitional structure,

P2x(q) = q2x, Px,t(q) = qxt, P4x(q) = q4x + 3q2
2x, P6x(q) = q6x + 15q2xq4x + 15q3

2x, . . . . (A.6)

The binary Bell polynomials Yn1x1,...,nrxr
(ν, ω) can be divided into P -polynomials and Y -polynomials

(FG)−1Dn1
x1

, . . . , Dnr
xr

F · G = Yn1x1,...,nrxr
(ν, ω)

∣∣
ν=ln F/G,ω=ln FG

= Yn1x1,...,nrxr
(ν, ν + q)|ν=ln F/G,ω=ln FG

=
∑

n1+n2+···+nr=even

n1∑
l1=0

· · ·
nr∑
lr

r∏
i=0

(
ni

li

)
Pl1x1,...,lrxr

(q)Y(n1−l1)x1,...,(nr−lr)xr
(ν). (A.7)

The multidimensional Bell polynomials admit the following key property:

Yn1x1,...,nrxr
(ν)|ν=ln ψ = ψn1x1,...,nrxr

/ψ, (A.8)

which means that the binary Bell polynomials Yn1x1,...,nrxr
(ν, ω) can still be linearized by taking advantage of the

Hopf-Cole transformation ν = lnψ, i.e. ψ = F/G. The associated Lax system of the nonlinear equations can be
obtained by means of formulas (A.7) and (A.8).
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