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Abstract. It has been shown by Cai et al. that the apparent horizon of radius r0 in the cosmological
Friedmann space-time emits radiation at the temperature T0 = 1/2πr0. Here, we derive this result from the
Wheeler-DeWitt equation for the wave function of the Universe Ψ , starting from a classical gravitational
Lagrangian L that contains a quadratic higher-derivative term R2, the scalar component of which is
non-tachyonic, by application of the horizon hypothesis and definition of the physical three-space on the
time-slice dx0 = 0. We also extend our previous analysis of the Wheeler-DeWitt equation for the wave
function Φ of the apparent horizon of the de Sitter space-time to include the case of a more general energy-
momentum source, that generates an arbitrary Friedmann space-time, confirming the expression for T0

after application of the ADM formalism.

1 Introduction

Apparent horizons in space-time lead to thermal effects which have been intensively investigated and continue to be
the subject of much research, involving both classical thermodynamics and quantum field theory, since the original
discovery by Hawking [1] that a Schwarzschild [2] black hole of mass M emits radiation at a temperature given by the
formula

TH =
1

8πM
=

1
4πr0

, (1)

in natural units where c = h̄ = kB = GN = 1 and r0 ≡ 2M is the horizon radius.
The Schwarzschild space-time is most simply defined in static coordinates (t̄, r, θ, ϕ), the line element being

ds2 = (1 − 2Mr−1)dt̄2 − (1 − 2Mr−1)−1dr2 − r2dΩ2, (2)

where dΩ2 ≡ dθ2 + sin2 θdϕ2 specifies the unit two-sphere. More recently, however, the analysis of radiative processes
has been extended to dynamical space-times, in particular the cosmological Friedmann space-time

ds2 = dt2 − a2(t)dx2, (3)

where t ≡ x0 is comoving time and a(t) ≡ eα(t) is the radius function of the three-space

dx2 =
dr̃2

1 − kr̃2
+ r̃2dΩ2, (4)

of curvature k = 0,±1. Irrespective of the value of k, Cai et al. [3] find that the apparent horizon exhibits thermal
characteristics, at the temperature

T0 =
1

2πr0
, (5)

a result confirmed by Li et al. [4] for the emission of fermionic particles, and which we have also derived via quantum
cosmology [5].
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Expressed in geometrical terms, the formulae (1) and (5) differ by a factor of 2, raising the question why this is
so. Let us first consider the problem from the classical viewpoint. In order to clarify the rôle played by the apparent
horizon, we have to recast the line element (3) into the form analogous to eq. (2), by introducing the new radial
coordinate r ≡ ar̃, which yields

ds2 =
(

1 − r2/r2
0

1 − kr2/a2

)
dt2 +

(
2ξr

1 − kr2/a2

)
dtdr −

(
dr2

1 − kr2/a2
+ r2dΩ2

)
, (6)

where the Hubble parameter is defined as ξ = ȧ/a = α̇ and • ≡ d/dt.
Equation (6) can be written in the local form due to von Weyssenhoff [6],

ds2 = gijdxidxj = dτ2 − dσ2 = g−1
00 dx2

0 − γαβdxαdxβ , (7)

where dτ ≡ dx0/
√

g00 is the proper time1 and

dσ2 ≡ γαβdxαdxβ = (−gαβ + g0αg0β/g00) dxαdxβ (8)

is the proper three-space measured by a local observer. We have

ds2 =
(

1 − kr2/a2

1 − r2/r2
0

)
dx2

0 −
(

dr2

1 − r2/r2
0

+ r2dΩ2

)
, (9)

remembering [7] the definition of the cosmological apparent horizon as the boundary hypersurface of an anti-trapped
region with topology S2, given by the equation

(∇r)2 = 0, (10)

the solution to which is
r0 = 1/

√
ξ2 + k/a2 . (11)

On Einstein-shell, the Friedmann equation

ξ2 =
8π

3
ρ − k

a2
(12)

enables us to re-express eq. (11) as r2
0 = 3/8πρ(t), while the inverse metric (6) is

g00 = 1, g01 = ξr, g11 = −(1 − r2/r2
0), g22 = −r−2, g33 = −r−2 cosec2 θ, (13)

for all values of k.
The total proper energy contained within the apparent horizon is

M(t) =
∫ √

−gρ(t)d3x = 4π

∫ r0

0

r2ρ(t)dr√
1 − kr2/a2

, (14)

where
√−g =

√
g00

√
γ and γ = det γαβ . When k = 0, we have M(t) = 4πρ(t)r3

0/3. The quantity M(t) is in fact the
Misner-Sharp [8] energy, which Kodama [9] has used to construct a conserved energy flux. The line element (9) can
be re-expressed in the canonical double-null form [9], which in the signature (+ −−−) is

ds2 =
4r,ur,vdu dv

g11
− r2dΩ2, (15)

where
g11 = g−1

11 = −
(
1 − r2/r2

0

)
(16)

and the advanced and retarded null coordinates are defined as

dv =
√

1 − kr2/a2dx0 + dr, du =
√

1 − kr2/a2dx0 − dr = dv − 2dr, (17)

1 The holonomic time coordinate t′ corresponding to x0 is obtained via the integrating factor f(t, r) ≡ dt′/dx0, so defined
that ∂(fg00)/∂r = ∂(fg01)/∂t. From eq. (6), we write f(t, r) = (1 − kr2/a2)h(t), where h(t) satisfies the differential equation
d(ln h)/dt = −(ξ̇+2/r2

0)/ξ. For example, when k = 0 and for the perfect-fluid source defined by eq. (28), we have f(t, r) ≡ f(t) =

h(t), ξ = 2/3γ′t, ξ̇ = −ξ/t and 1/r2
0 = ξ2, yielding the solution f(t) = t1−4/3γ′

and hence t′ = t−4/3γ′
[t2/(2− 4/3γ′)+ r2/3γ′] if

γ′ �= 0, 2/3. Note, for a radiative universe where γ′ = 4/3, that f = 1 and therefore x0 ≡ t′ = t+ r2/4t is holonomic in this case.
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respectively. From expression (17), we construct the derivatives

∂

∂v
=

1
2

(
1√

1 − kr2/a2

∂

∂x0
+

∂

∂r

)
,

∂

∂u
=

1
2

(
1√

1 − kr2/a2

∂

∂x0
− ∂

∂r

)
, (18)

while ∂r/∂v = −∂r/∂u = 1/2, and therefore the Kodama vector is

K ≡ −1
2
g11

[(
1

∂r/∂v

)
∂

∂v
−

(
1

∂r/∂u

)
∂

∂u

]
=

1 − r2/r2
0√

1 − kr2/a2

∂

∂x0
(19)

referred to the local basis vectors, or in component form referred to the metric (6),

Ki =
1√

1 − kr2/a2

(
1 − r2/r2

0, ξr, 0, 0
)

Ki =
(√

1 − kr2/a2, 0, 0, 0
)

. (20)

The scalar invariant is independent of k,
K2 = KiK

i = 1 − r2/r2
0, (21)

showing that Ki is time-like, null or space-like for r < r0, r = r0 or r > r0, respectively, as noted in ref. [3].

2 Classical thermodynamics

An important quantity characterizing a thermodynamical system is the Helmholtz free energy F ≡ fV , defined by
the equation

F = U − TS (22)

in terms of the temperature T , which is an intensive variable, and the internal energy U ≡ ρV and entropy S ≡ sV ,
which are extensive variables, where V is the volume, f , ρ and s being the corresponding densities. After applying the
fundamental differential relationship

dU = TdS − pdV, (23)

that is, the first law of thermodynamics referred to a fixed amount of matter, we obtain the equation

(f + p)d ln V = Tds − dρ, (24)

where, from eq. (22),
f = ρ − Ts. (25)

In flat space-time, V is arbitrary, and can be varied independently of T , as a consequence of which eq. (24) splits
up into the two separate equations

f = −p, Tds = dρ, (26)

the second of which is the Gibbs-Duhem relation. When the space-time is curved, however, V may be temperature-
dependent, in which case eqs. (26) no longer necessarily hold.

In ref. [5], hereafter called paper I, we analyzed the spatially flat Friedmann space-time generated by dust, described
by the metric (3) with k = 0, that is a Universe composed of pressure-free matter which expands adiabatically doing
no pdV work against the boundary, the total mass-energy content being constant. We have

MU = ρ(t)a3(t) = ρ0a
3
0, (27)

since ρ(t) = ρ0t
−2 and a(t) = a0t

2/3, assuming a perfect fluid with pressure

p = (γ′ − 1) ρ (28)

and setting the adiabatic index γ′ = 1.
The radius function a(t) is arbitrary, a priori, and can be normalized such that the volume is V = a3 by setting

the fundamental fiducial three-volume equal to unity via eq. (I22),

V3 =
∫

d3x
√
−g̃ = 1. (29)
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This arbitrariness in a(t) means that V is independent of T . From eqs. (26), it therefore follows that the free-
energy density vanishes, this being explicable by the vanishing of the total energy density, matter plus gravitational,
as expressed by the Friedmann equation (12) written in the form

ρ − 3ξ2/8π = 0, (30)

when k = 0. Equation (22) can then be understood in the present application, where F = 0, if the gravitational energy
(−3ξ2V/8π) is reinterpreted as the term (−TS).

To make this hypothesis precise, we consider not the whole Universe contained within the volume a3(t), but rather
the causally connected region contained within the apparent horizon of an observer at r = 0, the proper volume of
which is

V0 = 4πr3
0/3, (31)

so that
3ξ2V0/8π ≡ r0/2 = T0S. (32)

It then follows from eqs. (5), (22) and (32) that the entropy is given by the formula

S = U/T0 = πr2
0 = A/4, (33)

where A ≡ 4πr2
0 is the area of the apparent horizon, which is the result obtained by Bekenstein [10] and Hawking [11]

for the entropy of the black hole.
If we now take the differential of eq. (22) setting F = 0, in place of eq. (23) we obtain

dU = T0dS + SdT0 = T0dS/2. (34)

Even though p = 0, the first law of thermodynamics does not hold, due to the additional term SdT0 ≡ −T0dS/2,
which is explained by the fact that the Kodama observer detects an amount of matter which is not fixed. For although
the total proper mass-energy of the Universe, given by eq. (27), is constant, the proper mass-energy contained within
the apparent horizon is not constant, being

U = 4πr3
0ρ/3 = r0/2. (35)

By contrast, in the case of the Schwarzschild black hole, the stationary observer at spatial infinity does detect a
fixed amount of matter M , the sum of the residual mass of the hole itself plus the matter-energy contained in the
emitted radiation. Therefore, the first law of thermodynamics has to hold in its normal form: writing

S = πr2
0 = U/2TH, (36)

we find that
dU = THdS (37)

after setting U = M and substituting from eq. (1). The volume of the black hole changes during the radiation process,
so that ρ, s and TH are not independent of V , and although eq. (24) still holds, eqs. (26) do not. There is no “pressure”
as such, but the free energy density does not vanish, as noted expressly by Padmanabhan [12].

We now see that the difference by a factor of 2 between eqs. (1) and (5) is explained by the factor of 2 difference
between eq. (37) and eq. (34), or equivalently between eq. (36) and eq. (33), when referred to the ratio U/TS.

3 The Wheeler-DeWitt equation in the Friedmann space-time

Previously, in paper I, we derived the temperature of the cosmological apparent horizon, given by eq. (5), from the
Wheeler-DeWitt equation for the wave function Ψ of a spatially flat, Friedmann dust Universe, after Euclideanization
of the time coordinate t. Without repeating all the details, we focus here on certain general features of the analysis.

The starting point is the effective action including quadratic higher-derivative gravitational terms R2 ≡ μR2 −
νRijR

ij ,

S =
∫

d4x
√
−g

(
− R

2κ2
+ R2 + Lm

)
, (38)

where κ2 ≡ 8πGN = 8π is the gravitational coupling, R the Ricci scalar, Rij the Ricci tensor and Lm the matter
Lagrangian. In the space-time (3), setting k = 0 and remembering eq. (29), expression (38) takes the form

S =
∫

dt

(
−3α̇2

κ2
+ βα̈2 + Lm

)
e3α, (39)
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where we have introduced the parameter β ≡ 3/κ2M2
0 = 12(3μ − ν), M0 and M2 being the spin-0 and spin-2 particle

masses, defined by
M2

0 = 1/4 (3μ − ν) κ2, M2
2 = 1/2νκ2. (40)

The spin-2 particle is absent, due to conformal invariance of the metric (3).
Note that the Lagrangian (39) contains no quartic term α̇4 (which is only true in space-time dimensionality

D = 4), but that it contains a quadratic term in second derivatives α̈2. To deal with this, we apply the method of
Ostrogradsky [13], defining the auxiliary coordinate

q = −∂L/∂α̈ = −2βα̈e3α, (41)

in terms of which the Lagrangian (39) can be rewritten, dropping all divergences, as

L = α̇q̇ −
(

3α̇2

κ2
+ βα̈2

)
e3α + Lm ≡ Lg + Lm. (42)

The Hamiltonian is therefore
H = παα̇ + πξ ξ̇ − Lg + Hm, (43)

where the canonical momenta are

πα = ∂L/∂α̇ = q̇ − 6α̇/κ2, πq = ∂L/∂q̇ = α̇ (44)

and Hm is the matter Hamiltonian density.
We have interchanged the coordinate q and momentum πq according to

q = −πξ, πq = ξ = α̇, (45)

as explained in ref. [14], with particular reference to the dimensionally reduced heterotic superstring theory of Gross
et al. [15–17], for which μ = ν = B, β = 24B, where B is given by the integral over the internal space

B =
1
8
ζ(3)κ6ArB

−2
r

∫
d6y

√
ḡR̄μνξoR̄

μνξo

/∫
d6y

√
ḡ, (46)

ζ(3) = 1.202, Ar and Br are moduli and R̄μνξo is the Riemann-Christoffel tensor of the space ḡμν — see also
Horowitz [18].

In the semi-classical approximation for the wave function,

Ψ ≈ exp(iS), (47)

the canonical momenta are replaced by their operator equivalents

πα → −i∂α, πξ → −i∂ξ. (48)

The action integral (39) is rendered finite by means of the horizon hypothesis [19–21], whereby the spatial integral is
bounded by the causal horizon at the distance ξ−1. The Wheeler [22]-DeWitt [23] equation, obtained by promoting
the Hamiltonian constraint H = 0 into the operator equation ĤΨ = 0 after substituting from the replacements (48),
can be written in the form of a Schrödinger equation,

i∂Ψ

∂t
=

[
−e−3α

4β

∂2

∂ξ2
+

(
3ξ2e3α

κ2
+ Hm

)]
Ψ ≡ H̃Ψ, (49)

where H̃ is the pseudo-Hamiltonian.
Operator-ordering ambiguities have been ignored in the double derivative ∂2/∂ξ2, which is anyway negligible far

from the Planck era at times t � tP ≡ G
1/2
N , where classically (1/4βa3)π2

ξ = (β/t2)ξ2a3 � (3/8πt2P)ξ2a3. Thus, in the
semi-classical approximation, from eqs. (12) and (27) we have

H̃ ≈ 3ξ2e3α

κ2
+ Hm ≈ 2MU. (50)

It is important to note that the application of this method results in an effective doubling of the matter Hamilto-
nian. Although the gravitational energy itself is negative, the classical Friedmann equation (12) reading equivalently
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Hg ≡ −3ξ2e3α/κ2 = −Hm, the presence of the higher-derivative terms R2 has the effect of reversing the sign of Hg in
expression (50) for H̃. That is to say, the pseudo-Hamiltonian is positive semi-definite, even though it is independent
of β in this approximation. (In fact H̃ ≈ 2MU for all spatial curvatures k = 0,±1.)

For the dust Universe defined by eq. (27), MU, and hence H̃, is constant, so that either directly from the ansatz (47)
or by integration of eq. (49), we find that the wave function is

Ψ ≈ Ψ0 exp(−iH̃t). (51)

After performing the Wick rotation t → −it̃, we rewrite eq. (51) in the form

Ψ ≈ Ψ0 exp(−H̃t), (52)

which can be interpreted as a Boltzmann distribution at the temperature given by

T = 1/2λt̃. (53)

The factor of 2 in the denominator of eq. (53) is the factor of 2 in eq. (50), while the parameter λ is the “form factor”
introduced in I. To obtain the temperature measured by the Kodama observer, we have to transform from comoving
time t ≡ x0 to the time coordinate x0. From eq. (9), we see that the local, physical three-dimensional subspace dσ2

defined on the time-slice dx0 = 0 has compact topology with volume Ṽ3 = 2π2r3
0 for all values of k. In deriving eq. (53),

we have assumed a cut-off at a = r0 corresponding to the flat topology with volume a3. Conversion to the physical
coordinate system requires transformation of the flat volume a3 to the compact volume [2π2/(4π/3)]a3 = (3π/2)a3,
implying that λ = 3π/2, as indicated in I, and resulting in eq. (I(E) 35), which is eq. (5).

Thus, if we define MU = λM̃U, the exponent in eq. (52) can be rewritten as

H̃t̃ = 2λM̃Ut̃ = M̃U/T0 = S̃, (54)

where S̃ is the entropy referred to the volume Ṽ3, in agreement with eq. (22), setting F̃ = 0, and with the probabilistic
interpretation of Ψ .

4 The comoving observer

Central to our discussion is the notion of a comoving observer. Pauli [24] noted, in the context of special relativity,
that the three-surfaces of simultaneity for an observer moving with the volume element are given by the equation

uidxi = 0, (55)

where ui is the unit four-velocity of the observer and uiu
i = 1. This idea carries over to general relativity, when the

metric gij typically has non-vanishing off-diagonal space-time components g0α, g0α, as a consequence of which eq. (55)
admits two natural solutions: we can choose

ui = ∗ui = (1, 0, 0, 0)/
√

g00 or ui = ∗ui = (1, 0, 0, 0)/
√

g00 , (56)

corresponding to the coordinate basis vectors

∗u = ∗ui∂/∂xi = ∂/
√

g00∂x0 or ∗u = ∗ui∂/∂xi = ∂/
√

g00∂x0, (57)

respectively.
Note that g00 = g00 = 1 in the comoving coordinate system (t, r̃, θ, ϕ) defining the line element (3), for which

∗ui = ∗ui = (1, 0, 0, 0), while from eqs. (13), g00 = 1 in the coordinate system (t, r, θ, ϕ), when ∗ui = (1, 0, 0, 0). By
comparison with eq. (19), we see that the Kodama vector can be written as [9]

K =
(
1 − r2/r2

0

)1/2 ∗u. (58)

A separate formalism can be constructed around each choice defined by eqs. (56). In the case ui = ∗ui, eq. (55)
yields dx0 = 0 and the spatial three-volume is the physical volume V3 =

∫ √
γd3x measured by a local observer,

defined by eqs. (7), (8) — see Landau and Lifschitz [25].
The division into space and time can be put on a covariant basis via the tensor hij , defined by [26,27]

hj
i = δj

i − uiu
j , (59)
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which has the property of projecting all four-tensors into the three-space orthogonal to the time lines ui, since hi
i = 3

and hiju
j = 0. Indices are raised and lowered by means of the four-metric gij , gij , the line element taking the form

quite generally, provided that ui can be defined,

ds2 =
(
uidxi

)2
+ hijdxidxj . (60)

When ui = ∗ui, we find that

h00 = h0α = 0, h00 = −γαγα, h0α = −γα hαβ = −γαβ , hαβ = −γαβ , (61)

where the three-vector γ is defined as γα = −g0α/g00, γα = −g0α, indices α, β being raised and lowered by the
three-metric γαβ , γαβ ≡ −gαβ .

In the alternative case ui = ∗ui, the quantity uidxi = dx0/
√

g00, and we obtain the formalism due to Arnowitt,
Deser and Misner [28] (ADM) which is based on the holonomic time coordinate x0. Thus,

h00 = h0α = 0, h00 = −NαNα, h0α = −Nα hαβ = −3gαβ , hαβ = −3gαβ , (62)

where the three-vector N is defined as Nα = −g0α, Nα = −g0α/g00, indices α, β being raised and lowered by the
three-metric 3gαβ ≡ −gαβ , 3gαβ ≡ −gαβ + g0αg0β/g00, g00 = 1/N2 and g00 = N2 − NαNα.

Correspondingly, the line element (60) can be written as eq. (7),

ds2 = g−1
00 (dx0)

2 − γαβdxαdxβ , (63)

or as
ds2 = N2

(
dx0

)2 − 3gαβdxαdxβ . (64)

The local physical three-space dσ2 defined by eq. (8) is the chronometrically invariant subspace in the sense of
Zel’manov [29], being invariant on the time-slice dx0 = 0 under the group of coordinate transformations

x0 → x′0(xi), xα → x′α(xβ). (65)

While the ADM 3-space 3gαβ is defined on the time-slice dx0 = 0.

5 The Wheeler-DeWitt equation on the apparent horizon

The derivation of the temperature T0 of the apparent horizon given by eq. (5), in paper I for the heterotic superstring
theory and more generally in sect. 3 above, by means of the quantum-cosmological Wheeler-DeWitt equation for the
wave function Ψ of the Friedmann Universe generated by a dust source, is based upon the line element (3) expressed
in the coordinates (t, r̃, θ, ϕ), involving a transformation to coordinates (t, r ≡ ar̃, θ, ϕ) at the end of the calculation
to realize the horizon hypothesis.

It is also possible, however, to formulate the Wheeler-DeWitt equation directly on the apparent horizon, starting
from the line element (6) expressed in the coordinates (t, r, θ, ϕ) (in which the metric is non-singular on the horizon,
since 1− kr2/a2 = 1− r2/r2

0 + ξ2r2 > 0 ∀ r ≤ r0), as we have shown in refs. [30,31] regarding the Schwarzschild black
hole and in ref. [31], hereafter called paper II, vis-à-vis the cosmological metric (6).

The line element is written in the general form

ds2 = h̃abdxadxb − φ2dΩ2, (66)

where a, b = 0, 1 and the two-metric h̃ab is parametrized in the ADM formalism due to Hajicek [32], which in the
signature (+ −−−) reads (see eq. (II18))

h̃ab =

(
α̃2 − β̃2/γ̃ −β̃

−β̃ −γ̃

)
, h̃ab =

(
1/α̃2 −β̃/α̃2γ̃

−β̃/α̃2γ̃ −1/γ̃ + β̃2/α̃2γ̃2

)
, (67)

while φ ≡ r. The quantities N , N1, N1 defined from eqs. (62) are

N = α̃, N1 = β̃, N1 = β̃/γ̃. (68)
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Applied to the problem of the radiating Schwarzschild space-time, the metric defined by eqs. (67) is that of
Vaidya [33,34] (see also Lindquist et al. [35]), where

α̃ = (1 + 2M/r)−1/2
, β̃ = 2M/r, γ̃ = 1/α̃2 = 1 + 2M/r. (69)

In the cosmological case, the parameters α̃, β̃ and γ̃ are given by eqs. (II59),

α̃ = 1, β̃ = −ξr/(1 − kr2/a2), γ̃ = 1/(1 − kr2/a2). (70)

Full details of the analysis are contained in paper II, the chief result of which, following the method of Tomimatsu [36],
is the Wheeler-DeWitt equation for the wave function Φ on the apparent horizon, given by eq. (II93), correcting a
minus sign,

i
∂Φ

∂φ
=

(
− 1

4πφ2

∂2

∂ζ2
+ V

)
Φ. (71)

Here, ζ is a matter field and the potential V ≡ V 0 ≡ V 1 is defined, for the de Sitter space-time generated by a
cosmological constant Λ, by eqs. (II88), correcting the sign of λ̃′, where λ̃ ≡ β̃/α̃

√
γ̃ = −ξr/(1 − kr2/a2)1/2, as

V 0 = 1 +
√

γ̃

(
1√
γ̃

)′
φ +

1
2
γ̃

(
Λφ2 − 1

)
, V 1 = 1 +

[√
γ̃

(
1√
γ̃

)′
− λ̃′

]
φ, (72)

and where ′ ≡ d/dr.
Setting Λ = 3/r2

0, it is straightforward to show from eqs. (70) that

V 0 = V 1 = 2 (73)

on the apparent horizon for all spatial curvatures k = 0,±1. Now the potential V 1, defined as part of the momentum
H1, does not contain Λ, suggesting that eqs. (73) remain true for any Friedmann space-time. To prove this we need to
establish two results: firstly, that Λ can be replaced by 3/r2

0 for any perfect-fluid source density in the potential V 0,
which forms part of the Hamiltonian H0; and secondly, that V 1 is then unchanged.

In fact, although Λ originates in the Lagrangian of eq. (II53) as a cosmological constant, it occurs in eqs. (72) as
a multiple of the energy density, 8πρ, and from eqs. (11), (12), we see indeed that 8πρ = 3/r2

0 for any perfect fluid.
While the momentum constraint H1 = 0, of which V 1 forms a part, is classically the

(
0
1

)
component of the Einstein

equations — see p. 236 of ref. [28]. And since the unit four-velocity is given by the first of eqs. (56), ui = ∗ui, in the
ADM space-time convention, then u1 = 0, implying that V 1 is defined purely geometrically, irrespective of the matter
source, for which

T 0
1 ≡ (ρ + p)u1u

0 = 0. (74)

(See also sect. 7 below.)
Thus, when the matter field is ignorable, eq. (71) can be written in the approximate form

i
∂Φ

∂φ
≈ V Φ, (75)

where the potential V is constant on the apparent horizon. The Euclideanization argument of paper II, sect. 7, then
implies that the temperature obtained previously as eq. (II101) for the de Sitter space-time, namely

T = 1/2πr0, (76)

is valid for any perfect-fluid source, including in particular the cosmic dust considered in paper I, and for all spatial
curvatures k = 0,±1, in agreement with the result found in refs. [3,4] as eq. (5).

6 Phenomenology

At the present epoch, the cosmic temperature defined by eq. (5) is far below the limit of observational detection, for
numerically

T0 = 3.940 × 10−30h K, (77)

where the Hubble parameter today is ξ0 = 100h km s−1 Mpc−1, some thirty orders of magnitude less than the temper-
ature Tc ≈ 2.73K of the cosmic microwave background radiation. The possibility of experimental verification would
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improve for a hypothetical observer travelling backwards in time, since T0 ∼ ξ ∼ t−1 while Tc ∼ a−1 ∼ t−1/2 in
a radiation-dominated universe, but even then the two effects do not become comparable until the Planck era at
t ∼ 10−43 s.

In energetic terms, kBT0 ∼ 2πh̄ν0, where the frequency ν0 = c/r0, that is to say, the thermal fluctuations resulting
from the presence of the apparent horizon occur at approximately the same level as the zero-point quantum fluctuations
of a harmonic oscillator with wavelength λ ∼ r0.

The origin of the horizon thermal effect is quite different, however, as explained by Mamaev et al. [37] in their
analysis of the Friedmann space-time in the vacuum limit ξ = 0, k = +1, for which, from eq. (11), r0 = a. It was found
in ref. [37] not only that created pairs of virtual bosonic particles are characterized by temperature T = 1/2πa, in
accordance with eq. (5), but also that the spectrum is exactly Planckian for massless particles, or that of a relativistic
Bose gas with zero chemical potential for massive particles, the effect being due to the non-Euclidean spatial sections
associated with the finite distance r0 to the apparent horizon.

In the vacuum theory, r0 is only real and finite if k = 1. The spatial curvature is produced by matter with the
stringy equation of state γ′ = 2/3 and density ρ = 3/8πa2, following from eq. (12).

In the non-vacuum case ξ2 �= 0 considered in the present paper, however, the matter source is a perfect fluid with
arbitrary γ′. The horizon distance r0 can then be real and finite for all three spatial curvatures k = 0,±1, giving rise
to the non-zero temperature (5), essentially because of the closed topology of the three-dimensional physical subspace
dσ2 defined by eq. (9) on the slice dx0 = 0.

Although unobservable at the present day, the result of a non-vanishing temperature (77), given fundamentally by
eq. (5), is clearly of theoretical importance in linking thermal and gravitational cosmic phenomena. The derivation of
eq. (5) in sect. 5 via the Wheeler-DeWitt equation formulated on the apparent horizon proceeds from the Lagrangian
for the Einstein-Hilbert theory alone coupled to matter,

L =
√
−g

(
− R

2κ2
+ Lm

)
, (78)

without the inclusion of any higher-derivative gravitational terms Rn, n ≥ 2. While the previous derivation in sect. 3
from the Wheeler-DeWitt equation for the Friedmann dust Universe requires the additional existence of a quadratic
higher-derivative term, defined by eqs. (38) and (39) as

L(2) =
√
−gR2 = βα̈2e3α, (79)

this being necessary to obtain the wave equation in the Schrödinger form (49).
The potential from which T0 is calculated, however, is independent of β, which should be positive for reasons

of causality, but occurs only in the kinetic term −(1/4βe3α)∂2Ψ/∂ξ2 in eq. (49), that can be ignored at sufficiently
large radius a (that is, sufficiently large time t). In this sense, it is the Einstein-Hilbert term −R/2κ2 which actually
determines T in both derivations.

7 The matter Lagrangian

Let us note that the matter source is generally specified through its constituent fields, and is then particularly suited
to description by the ADM space-time decomposition, in a background Friedmann space-time. Consider first the dust
Universe assumed in sect. 3. In this case Lm can be defined via a scalar dust field χ of mass m, as shown by Salopek
et al. [38]. For a perfect fluid, Lm is given by the pressure p, provided that p �= 0. Dust is characterized by vanishing
pressure, however, and therefore it is necessary to specify the source by the addition of a constraint, enforced by a
Lagrange multiplier l, which is just the dust density ρ, up to a numerical factor of (−1/2).

Thus, in the metric signature (+ −−−), we find that [38]

Ldust = l
(
1 − gijχ,iχ,j/m2

)
, (80)

which yields the constraint equation

∂Ldust

∂l
=

√
−g

(
1 − gijχ,iχ,j/m2

)
= 0. (81)

It is therefore possible to define a unit time-like vector

ui = χ,i/m, (82)

satisfying uiu
i = 1. The energy-momentum tensor is

Tij = ρuiuj , (83)
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and taking into account the constraint (81), the Hamiltonian is

H = χ̇
∂Ldust

∂χ̇
− Ldust = ρu0u

0 = T 0
0 , (84)

since Ldust = 0.
Now if χ is generating the Friedmann space-time (3), it can only depend upon the time coordinate t, assuming

that k = 0, in which case χ = χ(t) and from eq. (82), ui = ∗ui, in the notation of eqs. (56), corresponding to the ADM
convention. Thus, uα = 0 and T 0

α = 0, as required by eq. (74).
When the pressure is non-vanishing, it is also possible to describe the matter by means of a scalar field, as we have

shown [39], although the resulting theory is non-linear unless γ′ = 2. The matter Lagrangian is defined in terms of a
scalar field η by eq. (76) of ref. [39],

Lm =
1
2

(γ′ − 1)
[
(∇η)2

]γ′/2(γ′−1)

≡ (γ′ − 1) ρ = p, (85)

from which we derive the energy-momentum tensor

Tij =
1
2
γ′

[
(∇η)2

][γ′/2(γ′−1)]

[γ′uiuj − (γ′ − 1)gij ] , (86)

where the unit time-like four-velocity is
ui = η,i/

√
(∇η)2 . (87)

If the matter Lagrangian (85) is the source of the Friedmann space-time (3), then η = η(t), so that ui = ∗ui and
consequently again

T 0
α =

1
2
γ′

[
(∇η)2

][−(γ′−2)/2(γ′−1)]

η,αη,jg
0j = 0, (88)

as required by eq. (74), while the Hamiltonian is

T 0
0 =

1
2

[
g00η̇2

]γ′/2(γ′−1)
= ρ. (89)

It therefore apppears that the matter part of the momentum constraint vanishes for any perfect fluid,

Hα
matter ≡ T 0

α = 0, (90)

as stated previously in sect. 5.

This paper was written at the University of Cambridge, Cambridge, England.
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