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Abstract. The qualitative structures of electron-acoustic waves are investigated in an unmagnetized plasma
containing cold electron fluid, q-nonextensive hot electrons and stationary ions. Applying the phase plane
analysis, we present all phase portraits of the dynamical system and corresponding solitary- and periodic-
wave solutions. Considering an external periodic perturbation, we study the chaotic structure of the per-
turbed dynamical system. The non-extensive parameter (q), the ratio between hot electron and cold electron
number density at equilibrium (α) and speed of the traveling wave (v) play crucial roles for electron-acoustic
solitary, periodic and chaotic structures. The results may have relevance in laboratory plasmas as well as
space plasma environments.

1 Introduction

During last few decades, a collection of noticeable research works have been reported on the linear as well as nonlinear
propagation of electron-acoustic waves (EAWs) in plasma literature. Fundamentally, electron-acoustic waves are high-
frequency electrostatic modes in comparison with the ion plasma frequency [1] which can propagate in unmagnetized
plasma [2,3] as well as in magnetized plasma [4–6]. It is important to note that an electrostatic wave in which the inertia
is provided by the cold electrons and the restoring force is given by the pressure of the hot electrons. Furthermore, the
ions play the role of a neutralizing background and there is no influence of the ion dynamics on the EAWs. It has been
noticed that the phase speed of the EAWs lie between the cold- and hot-electron thermal velocities. EA waves are
influential for their excitation in space as well as in laboratory plasma, and also vital for their potential importance [7].
The idea of EAWs had been originated by Fried and Gould [8] during their numerical simulations of the linear
electrostatic Vlasov dispersion equation in an unmagnetized homogenous plasma. These types of waves can appear in
the cusp region of the terrestrial magnetosphere [9,10], the geomagnetic tail [11], and the dayside auroral accelaration
region [12]. Dubouloz et al. [13,14] studied the electron-acoustic solitons in an unmagnetized and as well as magnetized
plasma and reported the fact that the negative-polarity electrostatic solitary potential structures are found by the
Viking satellite in the dayside auroral zone. Positive-polarity soliton structures have been studied in the auroral plasma
by the FAST and POLAR spacecraft [15]. Singh et al. [10] investigated electron-acoustic solitons in four-component
plasmas successfully to apply their results to Viking satellite observations in the dayside auroral zone. Lakhina et
al. [16,17] studied electron-acoustic nonlinear solitary waves in three- and four-component plasmas and applied their
results to the magnetosheath plasma and the plasma sheet boundary layer. Anderegg et al. [18] observed standing
electron-acoustic waves (EAWs) in a pure ion plasma and they showed that at moderate amplitude, EAW-type plasma
waves can be excited over a broad range of frequencies. Montgomery et al. [19] reported the observation of stimulated
electron-acoustic wave scattering (SEAS) and they reinterpreted the previous SRS (stimulated Raman scattering) data
from low-density plasmas in terms of SEAS. Kabantsev et al. [20] showed that electron-acoustic waves have strong
linear Landau damping, and were observed as nonlinear BGK modes in experiments with pure electron plasmas.

It has been observed that systems that present long-range interactions, long-time memory, fractality of the corre-
sponding space-time or phase-space, or intrinsic inhomogeneity are untractable within the conventional Boltzmann-
Gibbs (BG) statistics [21,22]. The main cause for this failure is that BG statistics is an additive or extensive formalism.
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In dealing with the statistical properties of systems with long-range correlations, Tsallis [23] consistently extended BG
thermodynamics by generalizing the concept of entropy to nonextensive regimes. Nonextensivity means that the en-
tropy of the composition (A+B) of two independent systems A and B is equal to S

(A+B)
q = S

(A)
q +S

(B)
q +(1−q)S(A)

q S
(B)
q ,

where the parameter q that underpins the generalized entropy of Tsallis is linked to the underlying dynamics of the
system and provides a measure of the degree of its correlation. There is a collection of various physical systems
where the Tsallis entropy have been applied are plasma physics [24,25], long-range Hamiltonian systems [26], and
gravitational systems [27]. Verheest et al. [28] presented successfully that the inclusion of the hot-electron inertia
provides compressive type of electron-acoustic solitons. Electron-acoustic waves (EAWs) have been observed in labo-
ratory plasmas consisting of hot and cold electrons [29,30] and in an electron ion plasma consisting of ions hotter than
electrons [8]. The nonlinear propagation of EAWs plays a crucial role in laboratory and space plasma environments.
Many researchers have payed their contributions on linear [31,32] as well as nonlinear [33–35] features of EAWs in
unmagnetized plasma. Ferdousi and Mamun [36] studied electrostatic shock structures in nonextensive plasma with
two distinct temperature electrons. El-Wakil et al. [37] investigated finite-amplitude electron-acoustic solitary waves in
plasma with cold-electron fluid and two different temperature isothermal ions. Their study could be useful to describe
the compressive and rarefactive bipolar pulses of the Broadband Electrostatic Noise type emissions in the regions with
no electron beams.

It is important to note that the integrability of a system could be destroyed due to the effect of external periodic
perturbations occurring in some real physical environments [38–40]. The type of the external periodic perturbation
may vary depending upon different physical situations. A significant attention is recently received on the study of
nonlinear evolution equations considering an external periodic perturbations as a completely integrable nonlinear
wave equations is unable to describe quasi-periodic or chaotic features. But, the presence of an external periodic
perturbation to a nonlinear integrable wave equation may lead to quasi-periodic or chaotic motions. Recently, Samanta
et al. [41] investigated bifurcations nonlinear waves in plasmas using bifurcation theory of planar dynamical systems
for the first time in plasma literature. Saha and Chatterjee [42] studied nonlinear electron-acoustic traveling waves
in an unmagnetized quantum plasma on the framework of KdV equation employing the bifurcation theory of planar
dynamical systems. Saha and Chatterjee [43] reported electron-acoustic blow-up solitary waves and periodic waves in
an unmagnetized plasma with kappa distributed hot electrons using bifurcation theory of planar dynamical systems
in the framework of KdV equation. Sahu et al. [44] investigated the nonlinear wave structures of electron-acoustic
waves (EAWs) in an unmagnetized quantum plasma consisting of cold and hot electrons. The authors presented the
solitonic, quasi-periodic and periodic pattern of electron-acoustic waves in quantum plasma. Sahu [45] also reported
the nonlinear properties of electron-acoustic solitary waves in an unmagnetized plasma consisting of a cold electron
fluid, κ distributed hot electrons and stationary ions. Saha et al. [46] investigated the dynamic behavior of ion-acoustic
waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons considering external periodic
perturbation. Very recently, Saha et al. [47] studied bifurcation and quasiperiodic behaviors of ion acoustic waves in
electron-ion magnetoplasmas with non-thermal electrons featuring Cairns-Tsallis distribution on the framework of
the Kadomtsev-Petviashvili (KP) equation. Zhen et al. [48] also studied soliton solution and chaotic motion of the
extended ZK equations in a magnetized dusty plasmas with Maxwellian hot and cold ions. But, the chaotic structure of
electron-acoustic waves in unmagnitized plasmas has not been reported in the literature to the best of our knowledge.

In the present work, our intention is to study the qualitative structures of electron-acoustic waves in an unmagne-
tized plasma containing cold electron fluid, q-nonextensive hot electrons and stationary ions. We present all possible
phase portraits of the dynamical system and corresponding solitary- and periodic-wave solutions. Considering an
external periodic perturbation, we present the chaotic structure of the perturbed dynamical system.

The remaining part of the paper is composed as follows: In sect. 2, we consider model equations. We present phase
plane analysis in sect. 3. In sect. 4, we obtain new form of solitary- and periodic-wave solutions. We present the chaotic
structure of the perturbed dynamical system in sects. 5 and 6 is kept for conclusions.

2 Model equations

In this work, we consider a homogeneous, unmagnetized plasma consisting of a cold electron fluid, q-nonextensive hot
electrons and stationary ions. Nonlinear dynamics of the electron-acoustic waves (EAWs) in this plasma system is
described by the following equations:

∂n

∂t
+

∂(nu)
∂x

= 0, (1)

∂u

∂t
+ u

∂u

∂x
= α

∂φ

∂x
, (2)

∂2φ

∂x2
= ne +

1
α

n −
(

1 +
1
α

)
, (3)
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where n denotes the cold electron number density normalized by n0, ne denotes the hot electron number density, u
denotes the cold electron velocity normalized by ion fluid speed Cs =

√
kBTh/αme, where α = ne0/n0 > 1, me is the

electron mass, Th is the temperature of hot electron, e is the electron charge, kB is the Boltzman constant, φ is the
electrostatic potential normalized by kBTh/e. The space and time variables are normalized by the hot electron Debye
radius λh =

√
kBTh/4πne0e2 and the inverse of cold electron plasma frequency ω−1

pc =
√

me/4πn0e2, respectively.
We use the following nonextensive electron distribution function to model an electron distribution with nonextensive

particles:

fe(v) = Cq

{
1 + (q − 1)

[
mev

2

2Te
− eφ

Te

]} 1
(q−1)

,

where φ is the electrostatic potential and the other variables or parameters carry their usual meaning. It is interesting
to point out that fe(v) is the special distribution that maximizes the Tsallis entropy and, thus, conforms to the laws
of thermodynamics. In this case, the constant of normalization is given by

Cq = ne0

Γ
(

1
1−q

)
Γ

(
1

1−q − 1
2

)
√

me(1 − q)
2πTe

for − 1 < q < 1,

and

Cq = ne0
1 + q

2

Γ
(

1
q−1 + 1

2

)
Γ

(
1

q−1

)
√

me(q − 1)
2πTe

for q > 1.

Integrating fe(v) over all velocity space, one can derive the following nonextensive electron number density as:

ne(φ) = ne0

{
1 + (q − 1)

eφ

Te

} 1
(q−1)+

1
2

.

The normalized number density of q-nonextensive [49] hot electrons is given by

ne = {1 + (q − 1)φ}
1

q−1+ 1
2 , (4)

where, the parameter q indicates the strength of nonextensivity. It is important to note that when q < −1, the
q-distribution is not normalizable [50]. The strength of nonextensivity, q varies as −1 < q < 1. When q ≥ 1, the
distribution function exhibits Maxwell-Boltzmann velocity distribution. In the extensive limiting case q → 1, the
electron density, eq. (4) reduces to the well-known Maxwell-Boltzmann distribution.

3 Phase plane analysis

In this section, we transform our model equations into a planar dynamical system and present bifurcations of phase
portraits of the system. To do so, we introduce a new variable ξ = x− vt, where v is the speed of the electron-acoustic
traveling wave. Substituting the new variable ξ into eqs. (1) and (2) and using the initial condition u = 0, n = 1 and
φ = 0, we can express the cold electron number density as

n =
v√

v2 + 2αφ
. (5)

Substituting eqs. (4), and (5) into eq. (3) and considering the terms involving φ up to third degree, we have

d2φ

dξ2
= aφ + bφ2 + cφ3, (6)

where a = (q+1)
2 − 1

v2 , b = (q+1)(3−q)
8 + 3α

2v4 , and c = (q+1)(3−q)(5−3q)
48 − 5α2

2v6 .
Then eq. (6) is equivalent to the following planar dynamical system:

⎧⎪⎪⎨
⎪⎪⎩

dφ

dξ
= z,

dz

dξ
= cφ

(
φ2 +

b

c
φ +

a

c

)
.

(7)
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Fig. 1. Phase portrait of eq. (7) for q = −0.3, α = 1.2 and v = 1.2.
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Fig. 2. Phase portrait of eq. (7) for q = 1.4, α = 1.2 and v = 1.2.

The system of equations (7) is a planar Hamiltonian system with Hamiltonian function:

H(φ, z) =
z2

2
− a

φ2

2
− b

φ3

3
− c

φ4

4
= h, say. (8)

The system of equations (7) is a planar dynamical system with parameters q, α and v. It is clear that the phase
orbits defined by the vector fields of eq. (7) will determine all traveling-wave solutions of eq. (6). A homoclinic orbit
of eq. (7) gives a solitary-wave solution of the system. Similarly, a periodic orbit of eq. (7) gives a periodic traveling-
wave solution of the system. In this study, the bifurcation theory of planar dynamical systems plays an important
role [51,52].

We study the bifurcation set and phase portraits of the planar Hamiltonian system (7). Clearly, on the (φ, z) phase
plane, the abscissas of equilibrium points of system (7) are the zeros of f(φ) = φ(φ2 + b

cφ + a
c ). Let Ei(φi, 0) be an

equilibrium point of the dynamical system (7) where f(φi) = 0. When b2 − 4ac > 0, there exist three equilibrium
points at E0(φ0, 0), E1(φ1, 0) and E2(φ2, 0), where φ0 = 0, φ1 = −b+

√
b2−4ac
2c and φ2 = −b−

√
b2−4ac
2c . If M(φi, 0) is the

coefficient matrix of the linearized system of the traveling system (7) at an equilibrium point Ei(φi, 0), then we get

J = det M(φi, 0) = −cf ′(φi). (9)

By the theory of planar dynamical systems [51–53], it is clear that the equilibrium point Ei(φi, 0) of the planar
dynamical system (7) is a saddle point when J < 0 and the equilibrium point Ei(ψi, 0) of the planar dynamical
system (7) is a center when J > 0.

Applying the systematic analysis of the non-extensive parameter (q), ratio between unperturbed hot electron to
cold electron density (α) and the speed of the traveling wave (v), we consider different cases and present all possible
phase portraits of the system (7) in figs. 1–3. We mainly consider the effect of the non-extensive parameter q with
fixed values of other parameters α and v. It is interesting that we obtain a variety of different phase portraits which
represent qualitative different trajectories of the system, where each trajectory represents a solution of the system
with respect to a initial condition.
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Fig. 3. Phase portrait of eq. (7) for q = −0.3, α = 1.2 and v = 2.

For the phase portrait given by fig. 1, the parameters q, α and v satisfy the relations c < 0, ac > 0, bc < 0,
b2 − 4ac > 0 and 2b2 − 9ac > 0. In this case, the system (7) has three equilibrium points at E0(φ0, 0), E1(φ1, 0) and
E2(φ2, 0) with 0 < φ1 < φ2, where E0(φ0, 0) and E2(φ2, 0) are centers, and E1(φ1, 0) is a saddle point. There is a pair
of homoclinic orbits at E1(φ1, 0) enclosing the centers at E0(φ0, 0) and E2(φ2, 0). The phase portrait (see fig. 1) of
the system (7) is presented for q = −0.3, α = 1.2 and v = 1.2 considering q in the range −1 < q < 0. In this case,
the system has compressive and rarefactive solitary-wave solutions corresponding to the pair of homoclinic orbits (see
fig. 1) at E1(φ1, 0) and two families of periodic-wave solutions corresponding to two families of periodic orbits about
the equilibrium points at E0(φ0, 0) and E2(φ2, 0). If we increase value of q and consider it in the range 0 < q < 1 with
fixed values of other parameters (α = 1.2 and v = 1.2), then one also can obtain the similar phase portrait as fig. 1.

For the phase portrait given by fig. 2, the parameters q, α and v are connected by the relations c < 0, ac < 0,
bc < 0, and b2 − 4ac > 0. Then the system (7) has three equilibrium points at E0(φ0, 0), E1(φ1, 0) and E2(φ2, 0)
with φ1 < 0 < φ2, where E1(φ1, 0) and E2(φ2, 0) are centers, and E0(φ0, 0) is a saddle point. There is a pair of
homoclinic orbits at E0(φ0, 0) enclosing the centers at E1(φ1, 0) and E2(φ2, 0). The phase portrait (see fig. 2) of the
system (7) is shown considering q = 1.4 in the range q > 1 with same values of α and v as fig. 1. In this case, the
system has compressive and rarefactive solitary-wave solutions corresponding to the pair of homoclinic orbits (see
fig. 2) at E0(φ0, 0) and two families of periodic-wave solutions corresponding to two families of periodic orbits about
the equilibrium points at E1(φ1, 0) and E2(φ2, 0).

For the phase portrait given by fig. 3, the parameters q, α and v are connected by the relations c > 0, ac > 0,
bc > 0, b2 − 4ac > 0 and 2b2 − 9ac > 0. Then the system (7) has three equilibrium points at E0(φ0, 0), E1(φ1, 0) at
and E2(φ2, 0) with φ2 < φ1 < 0, where E0(φ0, 0) and E2(φ2, 0) are saddle points, and E1(φ1, 0) is a center. There
is a homoclinic orbit at E0(φ0, 0) enclosing the center at E1(φ1, 0) (see fig. 3). The phase portrait (see fig. 3) of the
system (7) is presented for q = −0.3, α = 1.2 and v = 2 considering q in the range −1 < q < 0. In this case, the system
has solitary-wave solution corresponding to the homoclinic orbit (see fig. 3) at E2(φ2, 0) and a family of periodic-wave
solutions corresponding to the family of periodic orbits about the equilibrium point at E0(φ0, 0).

It is noted that fig. 1 is presented for q = −0.3, α = 1.2 and v = 1.2. Then considering same values of α and v
we obtain fig. 2 increasing the value of q in the range q > 1. Again considering the same values of q and α as fig. 1,
we obtain fig. 3 taking v = 2. It is seen that for different values of nonextensive parameter q with fixed values α and
v, and for different values of v with fixed values of q and α play crucial role to obtain qualitatively different phase
portraits of the system. Thus, the dynamical behavior of the system is affected by the nonextensive parameter q and
v with fixed value of α. We could in fact vary α with fixed values of q and v, but this does not give us any significant
different qualitative results.

4 Solitary- and periodic-wave solutions

In this section, we will present explicit electron-acoustic solitary wave solutions and periodic wave solutions with the
help of the dynamical system (7) and the Hamiltonian function (8). It is well-known that if a phase portrait of a
dynamical system has a homoclinic orbit at an equilibrium point of the system, then the system has solitary wave
solution corresponding to the homoclinic orbit at that point. If a phase portrait of a dynamical system has a family
of periodic orbits about an equilibrium point of the system, then the system has a family of periodic wave solutions
corresponding to the family of periodic orbits about that point. It should be noted that sn(Ωξ, k) is the Jacobian
elliptic function [54] with the modulo k.



Page 6 of 9 Eur. Phys. J. Plus (2015) 130: 222

i) When the parameters q, α and v satisfy the relations c < 0, ac > 0, bc < 0, b2 − 4ac > 0 and 2b2 − 9ac > 0,
then the phase portrait of the dynamical system (7) has a family of periodic orbits about E0(φ0, 0) (see fig. 1) and
the corresponding family of electron-acoustic periodic-wave solutions is given by

φ(ξ) =
(γ1 − δ1)β1 sn2(Ωξ, k) − γ1(β1 − δ1)

(γ1 − δ1) sn(Ωξ, k) − (β1 − δ1)
, (10)

with Ω =
√
− c

8 (β1 − δ1)(α1 − γ1), k =
√

(α1−β1)(γ1−δ1)
(α1−γ1)(β1−δ1)

, where α1, β1, γ1 and δ1 are roots of the equation h + c
4φ4 +

b
3φ3 + a

2φ2 = 0, h ∈ (0, h2).
ii) When the parameters q, α and v satisfy the relations c < 0, ac < 0, bc < 0, and b2 − 4ac > 0, then the phase

portrait of the dynamical system (7) has a pair of homoclinic orbits at E0(φ0, 0) (see fig. 2) and the corresponding
compressive and rarefactive electron-acoustic solitary-wave solutions are given by

φ(ξ) = ± 1√
2
(
1 − b2

9ac

)
sin

(
2
√

a
c ξ

)
+ b

6a

. (11)

iii) When the parameters q, α and v satisfy the relations c > 0, ac > 0, bc > 0, b2 − 4ac > 0 and 2b2 − 9ac > 0, then
the phase portrait of the dynamical system (7) has a homoclinic orbit at E0(φ0, 0) (see fig. 3) and the corresponding
electron-acoustic solitary-wave solution is given by

φ(ξ) =

(
4b
c + 6A

√
2a
c

)
3(A2 − 1)

, (12)

where A = exp(
√

aξ) − b
3

√
2
ac .

5 Chaotic structure in the perturbed system

In this section, we will present the chaotic structure of the following perturbed system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ

dξ
= z,

dz

dξ
= aφ + bφ2 + cφ3 + f0 cos(ωξ),

(13)

where f0 cos(ωξ) is an external periodic perturbation, f0 is strength of the external perturbation and ω is the frequency.
The difference between the system (7) and the system (13) is that only external periodic perturbation is added with
the system (7). The system (13) depends on five independent parameters q, α, v, f0 and ω. An investigation of such
a system for complete range of parametric space or the influence of each parameter is complicated and difficult. To
simplify the analysis, all parameters are kept as constants except q to be changed. In order to explore the possible
chaotic structure of the perturbed system (13), we consider special values of the parameter q with fixed values of α,
v, f0 and ω in three possible regimes −1 < q < 0, 0 < q < 1 and q > 1. We could in fact vary any of the other
parameters, but this does not give us any significant different qualitative results.

In fig. 4, we have presented phase portrait and variation of z with ξ of the perturbed system (13) for q = −0.3,
α = 1.2, v = 1.2, f0 = 1.42 and ω = 2.6. In fig. 5, we have presented phase portrait and variation of z with ξ of
the perturbed system (13) for q = 0.2, and other parameters are same as fig. 4. In fig. 6, we have presented phase
portrait and variation of z with ξ of the perturbed system (13) for q = 1.42, and other parameters are same as fig. 4.
It is clear that the perturbed system (13) shows chaotic structure of electron-acoustic waves for some special values
of q in the different ranges −1 < q < 0, 0 < q < 1 and q > 1 with fixed values of other parameters α, v, f0 and ω.
Furthermore, the developed chaotic structures of electron-acoustic occurs (see figs. 4–6) and the solutions ignore the
periodic and quasiperiodic structures and represent random sequences of uncorrelated oscillations. It is easily seen
that the chaotic structures of electron-acoustic waves are visible in the system (13) for some special values of q in
different regimes.
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Fig. 4. Phase portrait and variation of z with ξ of the perturbed system (13) for q = −0.3, α = 1.2, v = 1.2, f0 = 1.42 and
ω = 2.6.
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Fig. 5. Phase portrait and variation of z with ξ of the perturbed system (13) for q = 0.2, and other parameters are same as
fig. 4.
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Fig. 6. Phase portrait and variation of z with ξ of the perturbed system (13) for q = 1.42, and other parameters are same as
fig. 4.
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6 Conclusions

We have addressed the qualitative structures of electron-acoustic waves in an unmagnetized plasma whose constituents
are cold electron fluid, q-nonextensive hot electrons and stationary ions. With the help of phase plane analysis, we have
observed that our model has electron-acoustic solitary-wave solutions (compressive and rarefactive) and periodic wave
solutions in terms of Jacobian elliptic function. We have presented three new analytical forms for electron-acoustic
wave solutions depending on the nonextensive parameter (q), ratio between unperturbed hot-electron to cold-electron
density (α) and speed of the traveling wave (v). Considering an external periodic perturbation, the chaotic structure
of electron-acoustic waves has been presented. Depending upon different regimes of the nonextensive parameter q,
we have shown the effect of q on the chaotic structures of electron-acoustic waves. It is found that the perturbed
system has chaotic structures for some special values of q in the different ranges −1 < q < 0, 0 < q < 1, and q > 1
with fixed values of other parameters α, v, f0 and ω. The results of this study may be helpful to understand the
qualitative structures of nonlinear electron-acoustic waves in unmagnetized plasmas with high energetic nonextensive
hot electrons.

The authors are grateful to the editor and the reviewers for their useful comments and suggestions which helped to improve the
paper.
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