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2 Institut de Mathématiques et de Sciences Physiques (IMSP), 01 BP 613 Porto-Novo, Benin

Received: 11 July 2015 / Revised: 26 August 2015
Published online: 9 October 2015 – c© Società Italiana di Fisica / Springer-Verlag 2015

Abstract. This paper is devoted to study the cosmic acceleration in the presence of pilgrim dark energy
with conformal age of the universe in the framework of DGP braneworld. We explore different cosmological
parameters such as Hubble, equation of state and squared speed of sound parameters. Also, we develop the
ωϑ−ω′

ϑ. We observe that these parameters as well as plane provide consistent results with the observational
data.

1 Introduction

It was confirmed through observational data that our universe undergoes accelerated expansion [1–3]. In order to
explain this cosmic acceleration, two approaches have been adopted. One of them is the inclusion of some unknown
element possessive repulsive force called dark energy (DE) in Einstein gravity. In this respect, the five-year WMAP
data [4] provided the bounds −1.11 < ωDE < −0.86 (where ωDE is the equation-of-state (EoS) parameter which is
defined as the ratio of the pressure of the DE to its energy density). If ωDE = −1, then DE represents the cosmological
constant which is the more favorable candidate for explanation of the accelerated expansion of the universe. In
this scenario, the universe looks like asymptotically a de Sitter universe. In order to avoid the problems plagued
with cosmological constant, different DE models have been developed, which include the family of chaplygin gas [5],
holographic [6,7], new agegraphic [8], polytropic gas [9], pilgrim [10–12].

A second approach for understanding this strange component of the universe is the modified theories of gravity
which are f(R), f(R, T ) [13,14], f(G) [15–17], where R is the curvature scalar, T the trace of the energy momentum
tensor, G the invariant of Gauss-Bonnet defined as G = R2 − 4RμνRμν + RμνλσRμνλσ and the theory so-called f(T )
gravity [18,19] as the modified version of the TEGR, where T denotes the torsion scalar. Special attention is attached
to the so-called braneworld model proposed by Dvali, Gabadadze, and Porrati (DGP) [20–22] (for reviews, see [23]).
In a cosmological scenario, this approach leads to a late-time acceleration as a result of the gravitational leakage from
a 3-dimensional surface (3-brane) to a fifth extra dimension on Hubble distances.

More precisely this model presents two phases, of which one is accelerated but with an effective dark energy
component with wDE > −1, and dependent of the redshift. Hirano and Komiya [24] have generalized the modified
Friedmann equation suggested by Dvali and Turner [25], for the purpose of achieving the phantom-like gap with an
effective energy density with an EoS with w < −1. The DGP model presents two branches of solutions, i.e. the
self-accelerating branch and the normal one. The self-accelerating branch leads to an accelerating universe without
using any exotic fluid, but shows problems like ghost [26]. The normal branch need a dark energy component which
is compatible with the observational data [27,28]. The extension of these models on the brane have been studied by
in f(R) gravity in order to obtain a self-acceleration in the normal branch [29]. The attempts of solutions for a DGP
brane-world cosmology with a k-essence field were found in [30] showing big rip scenarios and asymptotically de Sitter
phase in the future.

Moreover, it has also been shown, through the analysis of cosmological perturbations, that the DGP model contains
a ghost mode [31–33]. Some authors pointed out a significantly worse fit to supernova data and the distance to the
last-scattering surface in the pure DGP model as compared to the ΛCDM model [34]. Some have also tried to constrain
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the DGP model using SNIa data and the baryon acoustic peak in the Sloan Digital Sky Survey and found similar
results [35,36]. It has been suggested that the flat DGP model can be consistent with the SNIa data, it is under strong
observational pressure by adding the data of the BAO and the CMB shift parameter. The open DGP model gives a
slightly better fit relative to the flat model [37,38]. In general, it has been observed that the DGP model is disfavored
by the joint observational constraints from SNIa, BAO, and CMB [34–38]. Recently, some observational efforts have
been made DGP models and claimed that this model favors the observational data [39]. However, more attention has
been required for removing the drawback of DGP scenario.

The holographic DE (HDE) has become an attractive DE model, nowadays, which is developed in the context
of quantum gravity and widely used in solving the cosmological problems, by using the holographic principle, which
stipulates that the number of degrees of freedom of a physical system should scale with its bounding area rather than
its volume [40]. A relationship between ultraviolet and infrared (IR) cutoffs has been proposed by suggesting that the
size of a system should not exceed the mass of a black hole (BH) of the same size [41]. By using this relationship,
Li [7] developed the HDE density as follows:

ρΛ = 3n2M2
p L−2,

where n, Mp, L indicate the HDE constant, the reduced Planck constant, the IR cutoff, respectively. Compatibility
of results [42–44] with the observational data has allowed to retain the different IR cutoffs: Hubble, particle, event
horizons, conformal age of the universe, Ricci scalar, Granda-Oliveros, higher derivative of Hubble parameter, etc.

According to Cohen et al. [41], the bound of energy density from the idea of formation of BH in quantum gravity.
However, it is suggested that formation of BH can be avoided through appropriate repulsive force, which resists the
matter collapse phenomenon. This force can only provide phantom DE in spite of other phases of DE, like vacuum and
quintessence DE. By keeping in mind this phenomenon, Wei [10] has suggested the DE model called pilgrim DE (PDE)
on the speculation that phantom DE possesses a large negative pressure as compared to the quintessence DE, which
helps violating the null energy condition and possibly prevent the formation of BH. In the past, many applications of
phantom DE were present in the literature. For instance, phantom DE also plays an important role in the wormhole
physics where the event horizon can be avoided due to its presence [45].

This motivated Wei [10] to develope the PDE model, and he analyzed this model with the Hubble horizon through
different theoretical as well as observational aspects. Also, Saridakis et al. [46–55] have widely discussed the crossing
of the phantom divide line, quintom as well as phantom-like nature of the universe in different frameworks and found
interesting results in this respect. Recently, we have investigated this model by taking different IR cutoffs in flat as well
as non-flat FRW universe with different cosmological parameters as well as cosmological planes [11,12]. This model
has also been investigated in different modified gravities [56–64].

In the present paper, we check the role of PDE with the conformal age of the universe in the DGP braneworld.
We develop different cosmological parameters and planes. The paper is organized as follows. In sect. 2, we present the
generality of the DGP braneworld model. The basic cosmological parameters are presented in sect. 3. In the sect. 4,
we develop the cosmological plane. The concluding remarks are presented in the last section.

2 DGP braneworld scenario

In the DGP braneworld framework, the field equation corresponding to non-flat FRW metric in the presence of PDE
and CDM is given by [65,66]

H2 − ε

rc

√
H2 +

k

a2
= ρm + ρϑ − 3k

a2
, (1)

where, a, H = ȧ
a and k are the cosmic scale factor, the Hubble parameter and the spatial curvature, respectively.

Also, k = −1, 0, 1 shows the open, flat and closed universes, respectively. Moreover, ρm and ρϑ are the energy densities
corresponding to CDM and PDE.

Here, we only consider ε = −1, where the accelerating expansion of the universe can only be explained through
the inclusion of the DE component in this scenario. In the present work, we consider a flat universe,

H2 − ε

rc
H = ρm + ρϑ, (2)

which is suggested by Planck results [67]. There exist two different branches for the DGP model depending on the
sign of ε. For ε = +1, there is a de Sitter solution for eq. (2), with constant Hubble parameter, i.e.,

H =
1
rc

⇒ a(t) = a0e
t

rc ,
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Fig. 1. Plot of H versus a for NAPDE in DGP with u = 1.

in the absence of any kind of energy or matter field on the brane (i.e., ρ = 0).
In the present work, we consider ε = −1, where the accelerating expansion of the universe can only be explained

through the inclusion of the DE component in the DGP scenario. Thus, we start from eq. (2) and consider the
interacting scenario of CDM (ρm) and PDE (ρϑ). In the presence of interaction between PDE and CDM, the continuity
equations take the following form:

ρ̇m + 3Hρm = Θ, ρ̇ϑ + 3H(ρϑ + pϑ) = −Θ, (3)

where Θ is the interaction term and possesses dynamical nature. The unknown nature of DE as well as CDM leads to
the basic problem for the choice of interaction term. In the present scenario, we take the following form of interaction:

Θ = 3d2Hρm, (4)

where d2 is an interacting constant and plays the role in exchanging the energy between the CDM and PDE components.
Hence, eqs. (3) and (4) give

ρm = ρm0a
3(d2−1). (5)

The PDE model is defined as follows:
ρϑ = 3n2m4−u

p L−u, (6)

where u represents the PDE parameter. In this work, we discuss PDE by adopting the choice of the conformal age of
the universe, which is defined as follows:

L = η =
∫ t

0

dt̃

a(t̃)
. (7)

Next, we explore the cosmological parameters as well as planes for three different values of u, i.e., u = 1, − 1, − 2.

3 Basic cosmological parameters

The corresponding rate of change of PDE is

ρ̇ϑ = −uρϑ

a

(
H2Ωϑ

n2m2−u
p

) 1
u

. (8)

The differential equation in terms of the Hubble parameter for the conformal age universe PDE becomes

dH

da
= (aH)−1((−((uH2)a−1)(1 − (Ωm0H

2
0a3(d2−1)))H−2 − ε(rcH)−1)

× ((H2(1 − (Ωm0H
2
0a3(d2−1))H−2 − ε(rcH)−1))n−2)(1/u) + Ωm0H

2
0

× a3(d2−1))(2H − ε/rc)−1. (9)

The display of H versus a for three different values of d2 is shown in figs. 1–3. For u = 1 (fig. 1), the Hubble parameter
approaches 73.3+0.1

−0.1. However, it approaches 73.0010+0.0002
−0.0002 for the case u = −1 (fig. 2). For u = −2 (fig. 3), it

approaches 74.012.



Page 4 of 9 Eur. Phys. J. Plus (2015) 130: 198

0 10 20 30 40 50

74.0000

74.0002

74.0004

74.0006

74.0008

74.0010

74.0012

a
H

For NAPDE with u��1

d2�0.4

d2�0.3

d2�0.2

Fig. 2. Plot of H versus a for NAPDE in DGP with u = −1.
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Fig. 3. Plot of H versus a for NAPDE in DGP with u = −2.
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Fig. 4. Plot of ωϑ versus a for NAPDE in DGP with u = 1.

The evolution parameter corresponding to conformal age of the universe PDE has the form

ωϑ = −d2(Ωm0H
2
0a3(d2−1)(H2(1 − (Ωm0H

2
0a3(d2−1))H−2 − ε(rcH)−1))−1)

− u(3H)−1((H2(1 − Ωm0H
2
0a3(d2−1)H−2 − ε(rcH)−1))n−2)1/u − 1. (10)

This EoS parameter is shown in figs. 4–6 versus the scale factor with same constant constraints as mentioned in the
above sections. For u = 1 (fig. 4), it has been observed that the evolution parameter translates the universe from the
quintessence-dominated phase towards the phantom-like phase of the universe by crossing the phantom divide line.
Figure 5 shows that the EoS parameter has always remained in the quintessence phase of the universe for d2 = 0.4.
However, it crosses the phantom divide line from the phantom era to the quintessence era for d2 = 0.2, 0.3. In the
last case (fig. 6), the evolution parameter evolutes the universe in the phantom phase and also so close to vacuum DE
region. It is also remarked that this model also favors the phantom crossing phenomenon as well as phantom universe
which may help in avoiding the formation of BH in the universe.

For analyzing the stability of the NAPDE model, we use the squared speed of sound which is defined as follows:

υ2
s =

ṗϑ

ρ̇ϑ
=

p′ϑ
ρ′ϑ

, (11)
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Fig. 5. Plot of ωϑ versus a for NAPDE in DGP with u = −1.
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Fig. 6. Plot of ωϑ versus a for NAPDE in DGP with u = −2.

where pressure corresponds to PDE only. Differentiating the relation pϑ = ρϑωϑ with respect to ln a and dividing by
ρ′ϑ, we get

p′ϑ
ρ′ϑ

= ωϑ +
ρϑ

ρ′ϑ
ω′

ϑ. (12)

The squared speed of sound becomes

υ2
s = 1 − (u((−a−3+3d2

Ωm0H
2
0 − (εH/rc + H2)n−2)1/u)(3H)−1 + (a3d2

× d2rcΩm0H
2
0 )(a3d2

rcΩm0H
2
0 + a3H(ε − rcH))−1 + (((−a−3+3d2

× Ωm0H
2
0 − (εH)/rc + H2)n−2)−1/u(3a4+3d2

d2rcΩm0H
2
0H2(−a3

× (−1 + d2)H2(ε − 2rcH)(ε − rcH) + a3d2
rcΩm0H

2
0 (−ε + 2rcH))

+ u((−a−3+3d2
Ωm0H

2
0 − (εH)/rc + H2)n−2)2/u(a3d2

rcΩm0H
2
0 + a3

× H(ε − rcH))2(a3d2
rcΩm0H

2
0u − a3H(ε − uε + rc(−2 + u)H)

+ a1+3d2
rcΩm0H

2
0 ((−a−3+3d2

Ωm0H
2
0 − (εH)/rc + H2)n−2)1/u(a3d2

× rcΩm0H
2
0 + a3H(ε − rcH))(a3d2

rcΩm0H
2
0u + a2H(a(−1 + u)ε

+ H(−arc(−2 + u) + a(−1 + d2)ε − 3d2uε + 6rc(−a(−1 + d2)

+ d2u)H)))))(a4uH3(ε − 2rcH)(a(3d2)rcΩm0H
2
0 + a3H(ε − rcH))2)−1. (13)

The plots of this squared speed of sound corresponding to the NAPDE model are displayed in figs. 7–9. It can be seen
that the squared speed of sound shows positive behavior which leads to stability of the present model for all cases
of u and d2. Since the squared speed of sound remains greater than one (i.e., υ2

s > 1) [68], it exhibits superluminal
behavior in all the cases of u and d2 (figs. 7–9).

4 Cosmological plane

The ωϑ-ω′
ϑ plane (prime denotes the differentiation with respect to x = ln a) also helps elaborating the accelerating

expansion phenomenon [69]. Initially, this phenomenon was applied for analyzing the behavior of the quintessence
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Fig. 9. Plot of υ2
s versus a for NAPDE in DGP with u = −2.

model and it was found that the corresponding area occupied on the ωϑ-ω′
ϑ plane describes the thawing and freezing

regions. The thawing models describe the region ω′
ϑ > 0, when ωϑ < 0, and the freezing models represent the region

ω′
ϑ < 0, when ωϑ < 0. We also developed this plane for the present DE model by taking the derivative of ωϑ with

respect to x = ln a, by which one can get ω′
ϑ, for the NAPDE,

ω′
ϑ = −a−1(3a4+3d2

d2rcΩm0H
2
0H2(−a3(−1 + d2)H2(ε − 2rcH)(ε − rcH)

+a3d2
rcΩm0H

2
0 (−ε + 2rcH)) + u((−a−3+3d2

Ωm0H
2
0 − (εH)/rc + H2)

×n−2)2/u(a3d2
rcΩm0H

2
0 + a3H(ε − rcH))2(a3d2

rcΩm0H
2
0u − a3H(ε

−uε + rc(−2 + u)H)) + a1+3d2
rcΩm0H

2
0 ((−a−3+3d2

Ωm0H
2
0 − (εH)/rc

+H2)n−2)1/u(a3d2
rcΩm0H

2
0 + a3H(ε − rcH))(a3d2

rcΩm0H
2
0u + a2

×H(a(−1 + u)ε + H(−arc(−2 + u) + 3a−1 + d2ε − 3d2uε + 6rc

×(−a(−1 + d2) + d2u)H))))/(3a5H3(ε − 2rcH)(a3d2
rcΩm0H

2
0 + a3

×H(ε − rcH))2). (14)

The ωϑ-ω′
ϑ plane NAPDE model with different values of u in the DGP scenario is shown in figs. 10–12. For NAPDE,

the cosmological plane only meets the thawing region for the cases of u = −1, − 2, while it goes in the freezing region
for u = 1 with all d2 (figs. 10–12).
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5 Concluding remarks

We have investigated interacting PDE with the conformal age of the universe horizon, so-called NAPDE, in the DGP
braneworld. The primary motivation for this paper is to analyze the cosmological scenario as well as the construction
of possible constraints of the PDE parameter, u, where it fulfills the PDE phenomenon. In this connection, we have
constructed the Hubble parameter, EoS parameter, squared speed of sound and ωϑ-ω′

ϑ, numerically. We have discussed
these parameters corresponding to three values of u = 1,−1,−2 and three values of d2 = 0.2, 0.3, 0.4. We have
observed that the trajectories of the Hubble parameter H(a) for u = 1 (fig. 1) approach 73.3+0.1

−0.1. However, they
approach 73.0010+0.0002

−0.0002 for the case u = −1 (fig. 2). For u = −2 (fig. 3), they approach 74.012. This obtained range
of H(a) shows consistency with the observational data such as H0 = 73.8 ± 2.4 [70] and H0 = 74.3 ± 1.5 [71].

Also, the EoS parameter versus the scale factor was shown in figs. 4–6. For u = 1 (fig. 4), it has been observed
that the evolution parameter translates the universe from quintessence-dominated phase towards phantom-like phase
of the universe by crossing the phantom divide line. Figure 5 shows that the EoS parameter has always remained in
the quintessence phase of the universe for d2 = 0.4. However, it crosses the phantom divide line from phantom era
to quintessence era for d2 = 0.2, 0.3. In the last case (fig. 6), the evolution parameter evolutes the universe in the
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Table 1. Summary of the observational data on ωD.

ωD0 Observational schemes References

−1.13+0.24
−0.25 Planck+WP+BAO [67]

−1.09 ± 0.17 Planck+WP+Union 2.1 [67]

−1.13+0.13
−0.14 Planck+WP+SNLS [67]

−1.24+0.18
−0.19 WMAP+eCMB+BAO+H0+SNe Ia [67]

−1.073+0.090
−0.089 WMAP+eCMB+BAO+H0 [72]

−1.084 ± 0.063 WMAP+eCMB+BAO+H0+SNe [72]

phantom phase and, also, is close to the vacuum DE region. It is also remarked that this model favors the phantom
crossing phenomenon as well as phantom universe, which may help avoiding the formation of BH in the universe. It is
also mentioned, here, that the ranges of the EoS parameter in the present scenario are consistent with the observational
data (table 1).

We have also investigated the squared speed of sound corresponding to the NAPDE model, which has been displayed
in figs. 7–9. It can be seen that the squared speed of sound shows positive behavior, which leads to stability of the
present model for all cases of u and d2. Since the squared speed of sound remains greater than one (i.e., υ2

s > 1) [68], it
exhibits superluminal behavior in all the cases of u and d2 (figs. 7–9). The ωϑ-ω′

ϑ plane NAPDE model with different
values of u in DGP scenario is shown in figs. 10–12. For NAPDE, the cosmological plane only meets the thawing region
for the cases of u = −1, − 2, while it goes in the freezing region for u = 1, with all d2, figs. 10–12.

IGS thanks IMSP for hospitality during the elaboration of this work.
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