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Abstract. We study the deviation of the Yukawa coupling in the gauge-Higgs unification scenario from
the Standard Model one. Taking into account the brane mass terms necessary for generating the flavor
mixing and removing the exotic massless fermions, we derive an analytic formula determining the KK mass
spectrum and Yukawa coupling. Applying the obtained results to the tau and bottom Yukawa couplings, we
numerically calculate the ratio of the Yukawa couplings in the gauge-Higgs unification and in the Standard
Model.

1 Introduction

Although a Higgs boson was discovered at the CERN Large Hadron Collider (LHC) experiment [1, 2], the couplings
of the Higgs boson to the Standard Model (SM) fields and the self-couplings of Higgs boson have not been precisely
measured. It is therefore still an unsettled issue whether the Higgs boson is the SM one or that of physics beyond the
SM. Physics beyond the SM is expected to exist by several reasons, such as the hierarchy problem.

Gauge-Higgs unification (GHU) [3–8] is one of the attractive scenarios beyond the SM, which provides a possible
solution to the hierarchy problem without supersymmetry [9]. In this scenario, the SM Higgs boson and the gauge
fields are unified into the higher-dimensional gauge fields, i.e. Higgs boson is identified with extra spatial components
of higher-dimensional gauge fields. A remarkable fact is that the quantum correction to Higgs mass (and potential) is
UV-finite and calculable due to the higher-dimensional gauge symmetry though the theory is the non-renormalizable.
The finiteness of the Higgs mass has been studied by explicit diagrammatic calculations and verified in models with
various types of compactification at one-loop level [10–15] and even at the two-loop level [16, 17]. The finiteness of
other physical observables such as S and T parameters [18], Higgs couplings to digluons, diphotons [19], Muon g − 2
and the EDM of neutron [20–22] have been investigated by the present authors or one of them.

The fact that the Higgs boson is a part of gauge fields implies that Higgs interactions are governed by gauge
principle and may provide specific predictions in LHC physics. From this viewpoint, the diphoton and Zγ decay of the
SM Higgs boson produced via the gluon fusion in the framework of gauge-Higgs unification was studied and remarkable
predictions were obtained [23–26]. In order to explain experimental results of diphoton decay and 126GeV Higgs boson
mass, some extra matters are required and they may predict a possible dark matter candidate. It has been also shown
that the Zγ decay is not affected at one-loop level, which is a distinctive prediction uncommon in other models of
physics beyond the SM. Thus, Zγ decay is considered to be a good probe of GHU.

In this paper, we focus on the fermion coupling of Higgs boson in the GHU scenario, i.e. Yukawa coupling, whose
measurement in future would be very important to clarify the origin of the Higgs field. In the GHU scenario, Yukawa
coupling generically deviates from the SM one as a consequence of the Higgs boson as a gauge field. Let us parametrize
the fermion mass term as

m(v)ψ̄ψ, (1)

where m(v) is a mass function of the vacuum expectation value (VEV) of Higgs field. Physical Higgs coupling to
fermions are obtained by expanding the Higgs field around its VEV v,

m(v + h)ψ̄ψ = m(v)ψ̄ψ +
dm(v)

dv
hψ̄ψ + . . . , (2)
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where h is a physical Higgs field and the second term is its coupling to fermions of our interest in this paper. Its
coefficient f ≡ dm(v)

dv is Yukawa coupling. “. . .” implies higher-order terms in h which are irrelevant throughout this
paper. In GHU, the Higgs field is a zero mode of the gauge field A

(0)
y for the five-dimensional case. If the fifth dimension

y is compactified on a circle S1 with a radius R, a constant A
(0)
y cannot be removed by the gauge transformation and

has a physical meaning of Aharanov-Bohm (AB) phase or Wilson-loop as

W = P exp
[
i
g

2

∮
S1

Aydy

]
= exp

[
ig4πRA(0)

y

]
, (3)

where g, g4 are 5D and 4D gauge couplings, respectively. An important point of eq. (3) is that W is periodic with
respect to A

(0)
y under A

(0)
y → A

(0)
y + 2/(g4R). This fact is one of the characteristic features of GHU and the physical

observables are expected to have the periodicity in the Higgs field. Actually, it has been already reported in [27] in
the flat extra-dimensional case and [28, 29] in the warped extra-dimensional case that Higgs coupling to the fermions
have such a periodicity. In [27], the ratio of Yukawa coupling of GHU and the SM one is derived as

fGHU

fSM
� g4

2
vπR cot

(g4

2
vπR

)
, (4)

which is quite distinctive from the other models beyond the SM. In particular, as was pointed out in [27–29], the
Yukawa coupling vanishes at v = 1/(g4R) due to the periodicity.

In the minimal supersymmetric standard model (MSSM) case, the corresponding ratio is known to be

fMSSM

fSM
=

⎧⎪⎪⎨
⎪⎪⎩

cos α

sin β
(up-type quarks),

− sin α

cos β
(down-type quarks and charged leptons),

(5)

where α is a mixing angle of two Higgs doublets in the MSSM and β is defined as tanβ = 〈Hu〉/〈Hd〉. As for the UED
models, the Yukawa coupling is the same as the SM one. Thus, it is a very important issue for the new physics search
to measure the Yukawa couplings precisely at LHC and ILC.

We study the deviations of Higgs coupling to fermions from the SM predictions by using a five-dimensional GHU
model of SU(3) gauge theory. Unlike the analysis where only the bulk Lagrangian was considered [27], we take into
account the effects from the brane mass terms necessary in a more realistic model for generating the flavor mixing
as clarified in [30–33] and removing the exotic massless fermions absent in the SM. The brane mass terms change
the boundary conditions of mode equations, which give the formula to determine Kaluza-Klein (KK) mass spectrum
mn(v). Therefore, it is crucial for the study of the deviation of Yukawa coupling in a realistic model to incorporate
the appropriate brane mass terms. Solving the mode equation with the correct boundary conditions, we will derive
analytic formulas of determining KK mass spectrum and the ratio of Yukawa coupling in GHU and the SM one. As
an illustration, we numerically calculate its ratio for the tau and the bottom Yukawa couplings, which are expected to
be more promising detectable couplings in the quark and lepton sector comparing to those of other lighter fermions.

This paper is organized as follows. In sect. 2, we introduce our model. We elaborate the equations of motion and the
corresponding boundary conditions. Analytic formulas determining KK mass spectrum and the expression of Yukawa
coupling are derived in sect. 3. Numerical calculations for the ratio of the tau and the bottom Yukawa couplings in
GHU and the SM ones are also performed as an application. Section 4 is devoted to summary. In appendix A, the
derivation of the equations of motion is described in detail. The validity of the analytic formula obtained in this paper
is checked by taking various limits of parameters in appendix B.

2 The model

In this section, we introduce our model. We consider an SU(3) gauge theory in a five dimensional space-time where
an extra dimension is compactified on an orbifold S1/Z2. The Lagrangian consists of two parts:

L = LBulk + LBrane. (6)

One is the Lagrangian in the bulk where the extra dimensions spread and the other is that on the brane located at
fixed points y = 0, πR. The bulk Lagrangian is

LBulk = ψ̄(3)(i /D3 − Mε(y))ψ(3) + ψ̄(6∗)(i /D6∗ − Mε(y))ψ(6∗) − 1
2

Tr FMNFMN , (7)
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where the 3 and the 6 stands for the three- and six-dimensional representations of SU(3), the covariant derivative is
given by the SU(3) gauge field /D = Γ M (∂M − igAa

MT a) with the appropriate generators T a for the corresponding
representation, and the field strength of SU(3) is denoted by FMN . The components of 3 and 6∗ are

ψ(3) =

⎛
⎝

ν

τ

τ1

⎞
⎠ , ψ(6∗) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ↓ − 1√
2
τ3

1√
2
τ ′

− 1√
2
τ3 Σ↑

1√
2
ν

1√
2
τ ′ 1√

2
ν

1√
2
νs

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

The τ field belongs to different isospin but has the same electric charge as τ lepton, so that they will mix each other
by the VEV of Ay. This matter contents are common in quarks and leptons except for the top quark. The fermion
mass is at most of order W-boson mass and the top quark has a mass around twice of the W-boson mass, so it has to
be embedded in higher dimensional representation such as 15 for example to obtain the enhancement factor “2” [34].

Since the fifth dimension y is compactified on the circle S1, the periodic boundary condition is imposed for the
fields φi;

φi(y) = φi(y + 2πR). (9)

To have the chiral theory, the Z2 symmetry is imposed on the fermions. By assigning even eigenvalue of Z2 to the
right-handed singlet and left-handed doublets for the SM fermions, their zero modes remains massless. For the singlet
lepton ψ, the Z2 eigenvalues are assigned as

ψL(+y) = −ψL(−y), ψR(+y) = ψR(−y). (10)

For the lepton doublets χ, they becomes

χL(+y) = χL(−y), χR(+y) = −χR(−y), (11)

where the chiral projection operators are defined as L = 1−γ5

2 and R = 1+γ5

2 . For other cases, the Z2 parities are given
by

ψ(+y) = γ5ψ(−y), χ(+y) = −γ5χ(−y). (12)

We note that the SU(3) gauge symmetry is simultaneously broken to SU(2) × U(1)Y and the SM Higgs doublet is
realized in A

(0)
y by the appropriate Z2 parity assignment.

In general, we have extra massless fermions which are not included in the SM. In particular, the two massless SU(2)
doublets appear per generation since up and down sector fermions should be embedded in different representations.
One of the linear combination of them corresponds to the SM SU(2) doublet, but the other orthogonal one should
be removed from the low-energy effective theory. A possible way is that they couple with the brane-localized fermions
(τ ′

B and τ ′′
B) and become massive through the Dirac mass terms.

LBrane =
√

πRτ̄ ′
BMBτHδ(y) +

√
πRMBτ̄ ′′

Bτ3δ(y) + h.c., (13)

where the τH is the massive tau leptons orthogonal to the massless tau lepton τSM. They are mixing states of the τ
and τ ′ which are defined by ⎛

⎜⎜⎜⎝
τ1

τ

τ ′

τ3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

τ1

τSM

τH

τ3

⎞
⎟⎟⎟⎠ ≡ U

⎛
⎜⎜⎜⎝

τ1

τSM

τH

τ3

⎞
⎟⎟⎟⎠ . (14)

These mixings play an important role to produce the flavor mixings [30–33].
To achieve our purposes, we concentrate on the tau leptons and the equation of motion (EOM) derived from the

Lagrangian as follows:

[
i∂μγμ − ∂yγ5 + i

g4

2
vγ5Σ1 − Mε(y)

]
τ = −

√
πRMB

⎛
⎜⎜⎜⎝

0
0
τ ′
B

τ ′′
B

⎞
⎟⎟⎟⎠ δ(y), (15)

i∂μγμτ ′
Bδ(y) = −

√
πRMBτHδ(y), (16)

i∂μγμτ ′′
Bδ(y) = −

√
πRMBτ3δ(y), (17)
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where τ = (τ1, τSM, τH, τ3)T. Σ1 is defined by

Σ1 = U†

(
σ1 0

0
√

2σ1

)
U, (18)

where U connects the basis between (τ, τ ′) and (τH, τSM) as we mentioned before. σ1 is a Pauli matrix. The factor
√

2
comes from the group theoretical factor of the representation of 6∗ (two-rank symmetric tensor).

Defining τ̂ to eliminate Σ1 as
τ = exp

[
i
g4

2
vΣ1y

]
τ̂ , (19)

then we have

[
i∂μγμ − ∂yγ5 − Mε(y)

]
τ̂ = −

√
πRMB

⎛
⎜⎜⎜⎝

0
0
τ ′
B

τ ′′
B

⎞
⎟⎟⎟⎠ δ(y), (20)

i∂μγμτ ′
Bδ(y) = −

√
πRMBτ̂Hδ(y), (21)

i∂μγμτ ′′
Bδ(y) = −

√
πRMBτ̂3δ(y). (22)

The boundary conditions (BCs) of the τ̂ at y = 0 is same as before, but it changes at y = πR because of the Wilson
line phases. We summarize the Z2 conditions on the τ̂ at the origin y = 0

τ̂ (−y) = Pγ5τ̂ (y), (23)

where P = diag(−,+,+,−) and the periodic BC at y = |πR| with respect to S1

exp
[
i
g4

2
vΣ1y

]
τ̂
∣∣∣
y=πR

= exp
[
i
g4

2
vΣ1y

]
τ̂
∣∣∣
y=−πR

. (24)

In other words, these periodicities are rewritten in terms of the parities at the y = πR, namely,
[
ei gv

2 Σ1yτ̂ (y)
]
odd

∣∣∣
y=πR

= 0, (25)

where [. . . ]odd/even stands for extracting odd/even function of y. The conditions of the derivative ∂yτ̂ are obtained by
integrating the EOM around y = πR. Then we have the following two conditions from (24):

⎧⎨
⎩

[
ei gv

2 Σ1y τ̂(y)
]
odd

∣∣
y=πR

= 0,

[
ei gv

2 Σ1yγ5∂yτ̂ (y)
]
odd

∣∣
y=πR

= −M
[
ei gv

2 Σ1yτ̂ (y)
]
even

∣∣
y=πR

.
(26)

A few comments are listed. We omit the strong interaction through this paper since our purpose is to investigate
the effects of the flavor mixing and brane mass term on the deviation of Yukawa coupling from the SM one and the
strong interaction does not affect the deviation.

The Weinberg’s angle in this model is not consistent with the observed one, which is obtained by introducing an
extra U(1)′ gauge group or the brane localized kinetic terms. This does not affect the deviation of Yukawa couplings
originated from an SU(2) gauge coupling and we can safely ignore them in this paper. By adjusting these extra U(1)′
charge, the hypercharge can be changed as we like. Therefore, the τ lepton and the b quark can be assigned to the
same representations 3 and 6∗ by taking different hypercharges [35].

3 Deviation of Yukawa coupling in GHU from the SM one

In this section, we discuss the deviation of Yukawa coupling in GHU from the SM one. First of all, we derive the analytic
formula determining the KK mass spectrum from the boundary conditions of fermions, the continuous conditions at
y = |πR| and the Z2 condition. Next we obtain the Yukawa coupling in GHU through the analytic formula by
differentiating the KK fermion mass m(v) with respect to the VEV v. As a phenomenological application, numerical
calculations for the ratio of the tau and the bottom Yukawa couplings in GHU and the SM ones are performed.
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3.1 Analytic formula determining KK mass spectrum

To begin with, we expand the τ̂ in terms of the mode functions as follows:

τ̂ (x, y) =
∞∑

n=0

⎡
⎢⎢⎢⎢⎢⎣

τ̂
(n)
1L (x)f (n)

1L (y) + τ̂
(n)
1R (x)f (n)

1R (y)

τ̂
(n)
SML(x)f (n)

SML(y) + τ̂
(n)
SMR(x)f (n)

SMR(y)

τ̂
(n)
HL (x)f (n)

HL (y) + τ̂
(n)
HR(x)f (n)

HR(y)

τ̂
(n)
3L (x)f (n)

3L (y) + τ̂
(n)
3R (x)f (n)

3R (y)

⎤
⎥⎥⎥⎥⎥⎦

. (27)

Hereafter, we omit the index n in the mode functions for notational simplicity. Then the eigen equations of the mode
functions of τ̂1 is obtained as {

mnf1L + (∂y − Mε(y))f1R = 0,

mnf1R + (−∂y − Mε(y))f1L = 0,
(28)

where mn is a KK mass eigenvalue. The mode functions of τ̂SM obey the same eigen equations. The eigen equations
for mode functions of τ̂H, τ̂3 are given by using the integration by parts of the delta function

∫
dyf(y)∂yδ(y) =

−
∫

dy∂yf(y)δ(y), {
[m2

n − ∂2
y − 2M(δ(y) − δ(y − πR)) + M2]fHL = −πRM2

BfHLδ(y),

[m2
n − ∂2

y + 2M(δ(y) − δ(y − πR)) + M2]fHR = −πRM2
BfHRδ(y),

(29)

for τ̂H , and the mode functions of τ̂3 obeys the same eigen equations1.
The eigen equations are immediately solved by respecting the Z2 parties at the origin (26) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1L ∝ sin
(√

m2
n − M2y

)
, f1R ∝ cos

(√
m2

n − M2|y| + α1

)
,

fSML ∝ cos
(√

m2
n − M2|y| + αSM

)
, fSMR ∝ sin

(√
m2

n − M2y
)

,

fHL ∝ cos
(√

m2
n − M2|y| + αH

)
, fHR ∝ sin

(√
m2

n − M2y
)

,

f3L ∝ sin
(√

m2
n − M2y

)
, f3R ∝ cos

(√
m2

n − M2|y| + α3

)
,

(30)

where the α’s in the above argument are defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos α1 =

√
m2

n − M2

mn
, sinα1 = − M

mn
,

cos αSM = −
√

m2
n − M2

mn
, sinαSM = − M

mn
,

tan αH =
2M − πRM2

B

2
√

m2
n − M2

,

tan α3 =
−2M − πRM2

B

2
√

m2
n − M2

.

(31)

The brane mass terms MB are considered to come from the underlying theory, such as a Grand Unified Theory,
it is therefore much larger than the compactification scale. Then we take the limit MB → ∞ and it reduces to
αH = α3 = −π/2.

To obtain the practical BCs leading to the KK eigenstates, we first calculate the phase matrix,

ei
g4v
2 Σ1y =

(
(1, 1) (1, 2)
(2, 1) (2, 2)

)
, (32)

1 The derivation of these mode equations are described in appendix A.
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the submatrices become

(1, 1) =
[
1 + σ3

2
+

1 − σ3

2
cos2 θ

]
cos

g4vy

2
+

1 − σ3

2
sin2 θ cos

g4vy√
2

+ iσ1 cos θ sin
g4vy

2
, (33)

(1, 2) = σ− sin θ cos θ

(
cos

g4vy√
2

− cos
g4vy

2

)
− i

1 + σ3

2
sin θ sin

g4vy

2
+ i

1 − σ3

2
sin θ sin

g4vy√
2

, (34)

(2, 1) = σ+ sin θ cos θ

(
cos

g4vy√
2

− cos
g4vy

2

)
− i

1 + σ3

2
sin θ sin

g4vy

2
+ i

1 − σ3

2
sin θ sin

g4vy√
2

, (35)

(2, 2) =
1 + σ3

2
sin2 θ cos

g4vy

2
+

[
1 − σ3

2
+

1 + σ3

2
cos2 θ

]
cos

g4vy√
2

+ iσ1 cos θ sin
g4vy√

2
, (36)

where σ1,2,3 are the Pauli matrices and σ± = σ1±iσ2
2 . The BCs on the left-handed part from the continuous condi-

tion (26) [ei
g4v
2 yΣ1 τ̂ (y)]odd|y=πR = 0 is given by extracting the odd function from each part,

0 =
[
ei

g4v
2 yΣ1 τ̂ (y)

]
odd

∣∣∣
y=πR

⊃

⎛
⎜⎜⎝

cos
λ

2
f1L i cos θ sin

λ

2
fSML −i sin θ sin

λ

2
fHL 0

0 i sin θ sin
λ√
2
fSML i cos θ sin

λ√
2
fHL cos

λ√
2
f3L

⎞
⎟⎟⎠ τ̂

(n)
L , (37)

where λ = g4vπR. The f1L/SML/HL/3L in the above expressions are understood to be the values of mode functions at
y = πR.

Next we discuss the conditions on the derivatives of mode function in eq. (26),

[
ei

g4v
2 Σ1yγ5∂yτ̂ (y)

]
odd

∣∣∣
y=πR

= −M
[
ei

g4v
2 Σ1yτ̂ (y)

]
even

∣∣∣
y=πR

. (38)

The conditions on the derivatives of mode functions are obtained from the lower part of eq. (26) as

0 =⎡
⎢⎢⎣

i cos θ sin
λ

2
(∂y + M)f1L

(
cos2 θ cos

λ

2
+ sin2 θ cos

λ√
2

)
(∂y + M)fSML

−i sin θ sin
λ

2
(∂y + M)f1L sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
(∂y + M)fSML

sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
(∂y + M)fHL i sin θ sin

λ√
2
(∂y + M)f3L

(
sin2 θ cos

λ

2
+ cos2 θ cos

λ√
2

)
(∂y + M)fHL i cos θ sin

λ√
2
(∂y + M)f3L

⎤
⎥⎥⎦ τ̂

(n)
L . (39)

Note that the derivatives of the mode functions in the above are also understood to be ∂yf = ∂yf |y=πR.
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Combining these two conditions (37) and (39), we have

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
λ

2
f1L i cos θ sin

λ

2
fSML

0 i sin θ sin
λ√
2
fSML

i cos θ sin
λ

2
(∂y + M)f1L

(
cos2 θ cos

λ

2
+ sin2 θ cos

λ√
2

)
(∂y + M)fSML

−i sin θ sin
λ

2
(∂y + M)f1L sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
(∂y + M)fSML

−i sin θ sin
λ

2
fHL 0

i cos θ sin
λ√
2
fHL cos

λ√
2
f3L

sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
(∂y + M)fHL i sin θ sin

λ√
2
(∂y + M)f3L

(
sin2 θ cos

λ

2
+ cos2 θ cos

λ√
2

)
(∂y + M)fHL i cos θ sin

λ√
2
(∂y + M)f3L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

τ̂
(n)
L . (40)

To have non-trivial solutions of τ̂
(n)
L , the determinant of the above matrix must be vanished. Substituting the mode

functions (30) into the above matrix, the determinant takes the following form:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos
λ

2
sin φn i cos θ sin

λ

2
cos(φn − α1)

0 i sin θ sin
λ√
2

cos(φn − α1)

i cos θ sin
λ

2
cos(φn + α1) −

(
cos2 θ cos

λ

2
+ sin2 θ cos

λ√
2

)
sinφn

−i sin θ sin
λ

2
cos(φn + α1) − sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
sin φn

−i sin θ sin
λ

2
cos(φn + αH) 0

i cos θ sin
λ√
2

cos(φn + αH) cos
λ√
2

sinφn

− sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
sin(φn + αH + α1) i sin θ sin

λ√
2

cos(φn + α1)

−
(

sin2 θ cos
λ

2
+ cos2 θ cos

λ√
2

)
sin(φn + αH + α1) i cos θ sin

λ√
2

cos(φn + α1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(41)

= cos(φn + α1) sin φn

[
− sin2 φn +

{
sin2 λ

2
+

(
sin2 λ√

2
− sin2 λ

2

)
sin2 θ

}
cos2 α1

]
, (42)

where we employ φn as πR
√

m2
n − M2. The phase αH is here set to be −π

2 .
Then, we find the three conditions of vanishing determinant as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos(φn + α1) = 0,

sinφn = 0,

sin2 φn

cos2 α1
= sin2 λ

2
−

(
sin2 λ

2
− sin2 λ√

2

)
sin2 θ = sin2 λ

2
cos2 θ + sin2 λ√

2
sin2 θ.

(43)
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The last condition depending on the Higgs VEV λ = g4vπR includes a zero-mode fermion since the SM fermions get
a mass from the VEV of the Higgs field. Note that the mixing parameter θ appears in the right hand side of the third
line in (43) due to the mixing of τ and τ ′. When θ = 0, it is expected that the above result reduces to the case where
only the representation 3 is introduced. In fact, our obtained result agrees with the results in [27] as we expected.

3.2 Deviation of Yukawa couplings in GHU from the SM one

In the above subsection, we have derived an analytic formula determining the KK mass spectrum (43). The last
formula in (43) provides the SM fermion spectrum. Although it cannot be analytically solved in terms of mn(v), we
can still get the exact form of their derivatives: d

dv mn(v). Expressing the last formula in the following way,

sin2 φn =
(

1 − M2

m2
n

)
F (λ), (44)

where

F (λ) = sin2 λ

2
−

(
sin2 λ

2
− sin2 λ√

2

)
sin2 θ, (45)

it is straightforward to calculate the derivative of mn(v),

dmn

dv
=

g4

2
φn cos α1

φn cot φn − sin2 α1

1
F (λ)

dF (λ)
dλ

, (46)

where eq. (43), cos α1 =
√

m2
n−M2

mn
and sinα1 = − M

mn
are used.

This is the Yukawa coupling in GHU what we would like to obtain and it varies according to the Higgs VEV v. To
compare it with the SM Yukawa coupling, we focus on the zero mode (n = 0) sector and the ratio of them is found to
be

f

fSM
=

dm0
dv
m0
v

=
λ

2πRm0

φ0 cos α1

φ0 cot φ0 − sin2 α1

1
F (λ)

dF (λ)
dλ

. (47)

For the case M > m0 (the zero mode is plausible), we should replace φ0 with iπR
√

M2 − m2
0, and then, we have

f

fSM
=

λ

2
M2 − m2

0

M2 − πRMm2
0

√
M2 − m2

0 coth(πR
√

M2 − m2
0)

d
dλ

ln(F (λ)). (48)

3.3 Numerical study

In this subsection, we apply the above result (48) to the tau lepton and the bottom quark which would be measured
at the LHC or ILC more promising than those of other fermions. Moreover, the tau lepton and the bottom quark can
be assigned to the same fundamental representation of SU(3) in GHU as mentioned above, therefore the result (48)
can be independently applied to the both cases. Regarding the fermion mass as an input parameter m0 = mτ (mb)
and rewriting the Higgs VEV by W-boson mass through MW = gv/2, the analytic formula determining the fermion
mass and the ratio of the Yukawa coupling are the following:

sinh2
[
πR

√
M2 − m2

τ(b)

]
=

M2 − m2
τ(b)

m2
τ(b)

×
[
sin2(πRMW ) −

(
sin2(πRMW ) − sin2

(√
2πRMW

))
sin2 θ

]
, (49)

f

fSM
=

M2 − m2
τ(b)

M2 − πRm2
τ(b)

√
M2 − m2

τ(b) coth
(
πR

√
M2 − m2

τ(b)

)

×πRMW

sin(2πRMW ) −
[
sin(2πRMW ) −

√
2 sin

(
2
√

2πRMW

)]
sin2 θ

1 − cos(2πRMW ) −
[
cos

(
2
√

2πRMW

)
− cos(2πRMW )

]
sin2 θ

. (50)

There are three parameters R, M and θ in our theory, but one of them can be determined by the eq. (49), that is
to say, the combination RM is determined to reproduce the realistic fermion mass. We plot the ratio of the tau and
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Fig. 1. The plots of the ratio of the Yukawa coupling as a function of the compactification scale are shown. The left (right)
one is the case for the tau lepton (the bottom quark).

the bottom Yukawa coupling with some values of θ as a function of the compactification scale R−1 in fig. 1. We see
that the deviations of both Yukawa couplings in GHU from the SM Yukawa couplings are a few percent, which is
almost consistent with the present experimental data [36, 37]. This result can be understood by expanding the exact
expression of the ratio of Yukawa coupling for small mτ(b) and MW

f

fSM
∼ 1 − (πRMW )2

3
5 − cos 2θ

3 − cos 2θ
+

m2
τ(b)

M2
[πRM coth(πRM) − 1]. (51)

For 1/R ∼ 1TeV, we can check f/fSM ∼ 0.978 for θ = 0 and f/fSM ∼ 0.958 for θ = π/2 from the above approximated
expression. Especially, the results for θ = 0 case confirms those in [27]. The behavior is almost the same since the
masses of the bottom quark and the tau lepton are very close. Although the deviation itself is tiny, the deviation
becomes larger when the mixing angle θ between the doublets is larger. Measuring it precisely is very important to
explore the physics beyond the SM.

We also note that the periodicity of the VEV v in Yukawa coupling of GHU exists if and only if θ = 0, π/2. This is
because Yukawa coupling of GHU contains different two functions e2iπRMW and e2

√
2iπRMW with different periodicity

in v.

4 Summary

In this paper, we have studied deviations of Yukawa coupling in GHU from the SM one by taking a five-dimensional
SU(3) GHU model on the orbifold S1/Z2. It has been already pointed out in [27–29], the fermion mass m(v) is periodic
with respect to the Higgs VEV v in GHU scenario. Then the derived Yukawa coupling can be a nonlinear function of
Higgs VEV v with fermion bulk mass. In the extreme case, the Yukawa coupling vanishes at v = 1/(g4R) even though
the fermions get nonzero mass from the Higgs VEV v. However, it is not clear that these properties are common in
such scenario since several modifications are needed to construct realistic models.

What should be emphasized in this paper is that the brane mass terms and the additional different representa-
tions are taken into account unlike the previous work [27]. In a realistic model of GHU, the brane mass terms are
indispensable not only to remove exotic massless fermions absent in the SM but also to realize the flavor mixing as
clarified in [30–33]. Since the brane mass terms change the boundary conditions for equation of motion and this might
change KK mass spectrum and Yukawa coupling, it is important for our study to incorporate the brane mass terms
in realistic model of GHU.

We have derived an analytic formula determining KK mass spectrum and Yukawa coupling. It can be shown that
the nonlinear Yukawa coupling still appears even in the case where the brane mass terms are considered. It should
be noted that there is vanishing points of Yukawa coupling in this theory even though the periodicity of VEV v is
generically lost in the Yukawa coupling since it contains two different periodic function. This difference comes from
the fact that the different kinds of representations are introduced to construct more realistic models in GHU. As an
application, we have numerically studied the ratio of tau and bottom Yukawa couplings in GHU and the SM, which
would be measured at the LHC or ILC more promising than those of other lighter fermions. We have found that the
both Yukawa coupling in GHU are almost consistent with the SM Yukawa coupling, which is also consistent with the
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present experimental data [36, 37]. It is expected that the consistency is true in any GHU scenario since the Higgs
VEV v is much smaller than the compactification scale R−1. We can always expand the Yukawa couplings in terms
of vR and safely neglect the higher order terms of vR, i.e. the linear Higgs field approximation of Yukawa coupling is
always good picture in realistic parameter space.

The work of NM is supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and
Culture, Japan No. 24540283.

Appendix A. Derivation of mode equations

In this appendix, we describe the derivation of the mode equation, which is skipped in the main text. Note that there
are four kinds of fields, but their difference is whether the brane mass term exists or not. We first discuss the EOM of
the τ̂1 and τ̂SM without the brane mass term. Substituting mode expansions of τ̂1 (27) into the EOM (20), we have

⎧⎨
⎩

i∂μγμτ̂
(n)
1L f1L + (∂y − Mε(y))τ̂1Rf1R = 0,

i∂μγμτ̂1Rf1R + (−∂y − Mε(y))τ̂1Lf1L = 0.
(A.1)

Replacing i∂μγμτ
(n)
1L/R with mnτ

(n)
1R/L, the above mode equations become

⎧⎨
⎩

mnf1L + (∂y − Mε(y))f1R = 0,

mnf1R + (−∂y − Mε(y))f1L = 0.
(A.2)

Since the τSM obeys the same EOM of the τ1, the corresponding mode functions fSML and fSMR obey the same
equations.

Next, we derive mode equations of τ̂H, τ̂3. To eliminate the brane localized fermion from the mode equation, we
multiply the conjugate of the differential operator of EOM from the left-hand side:

[−i∂μγμ + ∂yγ5 − Mε(y)][i∂μγμ − ∂yγ5 − Mε(y)]τ̂H = −
√

πRMB [−i∂μγμ + ∂yγ5 − Mε(y)]τ ′
Bδ(y). (A.3)

In the right-hand side of the above equation, ignoring the last term because of the property of the sign function:
ε(0) = 0 and the integration by parts of the delta function

∫
dyf(y)∂yδ(y) = −

∫
dy∂yf(y)δ(y), we arrive at

[∂2 − ∂2
y − 2M(δ(y) − δ(y − πR))γ5 + M2]τ̂H = −πRM2

B τ̂Hδ(y), (A.4)

and the corresponding mode equation becomes
⎧⎨
⎩

[m2
n − ∂2

y − 2M(δ(y) − δ(y − πR)) + M2]fHL = −πRM2
BfHLδ(y),

[m2
n − ∂2

y + 2M(δ(y) − δ(y − πR)) + M2]fHR = −πRM2
BfHRδ(y).

(A.5)

As mentioned at the beginning of this section, the mode functions f3L and f3R obey the same mode equations.

Appendix B. Consistency checks of the analytic formula

In this appendix, we check the consistency of the analytic formula determining KK mass spectrum in this model by
considering some specific cases. These observations support the validity of our analytic formula derived in this paper.

Case 1: M, MB → 0 and θ = 0

We first consider the simplest case vanishing the brane mass term and the mixing of SU(2) doublets. In this case, the
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analytic formula determining the KK mass spectrum is reduced to

0 = sin
(

φn +
λ

2

)
sin

(
φn − λ

2

)
sin

(
φn +

λ√
2

)
sin

(
φn − λ√

2

)
. (B.1)

It indicates that the pattern of the mass spectrum is two kinds: One is n
R ± g4v

2 and the other is n
R ± g4v√

2
. Due to the fact

that the τ leptons in the 3 and 6∗ does not mix each other, their form of the KK mass spectrum retain the property
of each representations. Namely, the τ leptons in the 3 and 6∗ have the Yukawa coupling g

2 and g√
2

respectively.

Case 2: θ → 0, MB → ∞

Next, we discuss the case where the brane mass term exists. Since the mixing parameter θ is taken to be zero, the τH

is equivalent to τ ′ which come from the 6∗. Thus it is expected that the zero mode of τ ′ become massive by the brane
mass MB. In this case, the analytic formula determining the KK mass spectrum is found as

0 =
[
sin2 φn − sin2 λ

2
cos2 α1

]
sin φn cos(φn − α1) ⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin φn = 0,

cos(φn − α1) = 0,

sin2 λ

2
=

sin2 φn

cos2 α1
,

(B.2)

where we set αH to be −π/2. We notice that only the last condition depends on the Higgs VEV through λ and includes
the zero mode fermion mass. For the case mn < M , the last condition becomes

sin
λ

2
= ± 1

cos α1
sin

(
πR

√
m2

n − M2
)

= ± mn

i
√

M2 − m2
n

i sinh
(
πR

√
M2 − m2

n

)
, (B.3)

where we replace
√

m2
n − M2 with i

√
M2 − m2

n. Then we have

sin
λ

2
� ±mn

M
sinh(πRM) ⇒ mn � ± M

sinh(πRM)
sin

λ

2
. (B.4)

Namely, the Yukawa suppressions due to the bulk mass appears. Moreover, the λ → 0 recovers massless mode mn = 0.
This case reproduces the result in [27].

General case MB → ∞

Finally, we consider the most general case, the 3 and 6∗ mix in arbitrary angle θ which is discussed in the main text.
The mode functions at y = πR in this case become

f1L ∝ sin φn, fSML ∝ cos(φn − α1), fHL ∝ cos(φn + αH), f3L ∝ sin φn, (B.5)

and the derivatives are given as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂y + M)f1L = mn cos(φn + α1),

(∂y + M)fSML = −mn sin φn,

(∂y + M)fHL = −mn sin(φn + αH + α1),

(∂y + M)f3L = mn cos(φn + α1),

(B.6)
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where we use cos α1 =
√

m2
n − M2/mn and sinα1 = −M/mn. Then the KK mass condition will be

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos
λ

2
sinφn i cos θ sin

λ

2
cos(φn − α1)

0 i sin θ sin
λ√
2

cos(φn − α1)

i cos θ sin
λ

2
cos(φn + α1) −

(
cos2 θ cos

λ

2
+ sin2 θ cos

λ√
2

)
sin φn

−i sin θ sin
λ

2
cos(φn + α1) − sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
sin φn

−i sin θ sin
λ

2
cos(φn + αH) 0

i cos θ sin
λ√
2

cos(φn + αH) cos
λ√
2

sinφn

− sin θ cos θ

(
cos

λ√
2
− cos

λ

2

)
sin(φn + αH + α1) i sin θ sin

λ√
2

cos(φn + α1)

−
(

sin2 θ cos
λ

2
+ cos2 θ cos

λ√
2

)
sin(φn + αH + α1) i cos θ sin

λ√
2

cos(φn + α1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.7)

= cos(φn + α1) sin φn

[
− sin2 φn +

{
sin2 λ

2
+

(
sin2 λ√

2
− sin2 λ

2

)
sin2 θ

}
cos2 α1

]
(B.8)

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos(φn + α1) = 0,

sin φn = 0,

sin2 φn

cos2 α1
= sin2 λ

2
−

(
sin2 λ

2
− sin2 λ√

2

)
sin2 θ = sin2 λ

2
cos2 θ + sin2 λ√

2
sin2 θ.

(B.9)

We can see that the zeromode mass m0 which mass is provided by the VEV v is corresponds to the third conditions
Then we have the KK mass conditions as follows:

sin2 λ

2
−

(
sin2 λ

2
− sin2 λ√

2

)
sin2 θ =

m2
n

m2
n − M2

sin2(πR
√

m2
n − M2) (B.10)

=
m2

n

m2
n − M2

sinh2(πR
√

M2 − m2
n). (B.11)

The last expression corresponds to the case in M > mn, especially to the zero mode. The effects of mixture between
the 3 and 6∗ reflects the left hand side of the above. Namely, if we set θ → 0, it recovers (B.3). On the other hand, if
we set θ → π/2, the τSM is equivalent to the τ in the 6∗ so that the Yukawa coupling is give by g√

2
,

sin2 λ√
2

=
m2

n

m2
n − M2

sinh2
(
πR

√
M2 − m2

n

)
. (B.12)

It corresponds to replace the g/2 in eq. (B.3) with g/
√

2.
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